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Abstract: In this paper, we consider a class of economic dynamics models in the form of linear functional
differential systems with continuous and discrete times (hybrid models) that covers many kinds of
dynamic models with aftereffect. The focus of attention is periodic boundary value problems with
deviating argument, control problems with respect to general on-target vector-functional and questions
of stability to solutions. For boundary value problems, some sharp sufficient conditions of the unique
solvability are obtained. The attainability of on-target values is under study as applied to control problems
with polyhedral constraints with respect to control, some estimates of the attainability set as well as
estimates to a number of switch-points of programming control are presented. For a class of hybrid
systems, a description of asymptotic properties of solutions is given.
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1. Introduction

Currently, in the context of the digitalization of the economy, strengthening the scientific validity
of decisions is becoming more and more relevant. The basis of such strengthening is economic
and mathematical methods that implement a targeted approach to solving actual applied problems.
This approach allows one to find ways and means to achieve strategic goals, balance the goals and means
to achieve them. Here we consider some of the typical problems of economic dynamics in relation to a
wide class of hybrid dynamic models with aftereffect. For certainty, the focus is on systems that model the
interaction of production processes and procedures of financing them. Recall that an essential feature of
any economic processes is the presence of a lag which means a period of time between the moment of
external action and a reply of the system, for instance, between capital investments moment and an actual
growth in output. Thus a model governing the dynamics of the system under consideration can be written
in the form of functional differential system (FDS) with continuous and discrete times (Hybrid FDS = HFDS,
for short). The term “hybrid” is deeply embedded in the literature in different senses, that is why we follow
the authors employing the more definite name “continuous-discrete systems” (CDS), see, for instance,
References [1–5] and references therein. In the works mentioned, the reader can find a detailed motivation
for studying CDS and examples of applications to problems of controllability, observability and stability.
It should be noted that in most cases dynamics in continuous time is governed by ordinary differential
systems. Contrary to those we consider a quite general case of continuous subsystems.
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After introductory Sections 1 and 2 with necessary preliminaries, we consider three types of problems
separately. Boundary value problems (BVPs) are the problems on the solutions to CDS that satisfy
some additional (boundary) conditions. From the view-point of Economics, the solvability of a BVP
means the existence of a model trajectory with certain property, say, with the periodicity in development.
Some sharp sufficient conditions of the solvability for a wide class of periodic BVPs for hybrid systems
with deviating argument are presented in Section 3. The study of control problems (CPs) in the case of the
solvability answers the questions of attainable values of on-target functionals and allows one to construct
a corresponding programming control with taking into account prescribed constraints. The results on
CPs for CDS with polyhedral constraints with respect to control are given in Section 4. Section 5 focuses
on questions of solutions stability to HFDS as the property of great importance for trajectories defined
on unbounded period of time. For a class of hybrid systems, a description of asymptotic properties of
solutions is presented.

2. Preliminaries

Our consideration is based in essence on the ideas and results of the theory of Abstract Functional
Differential Equation (AFDE) constructed by N.V. Azbelev and L.F. Rakhmatullina in Reference [6]. AFDE is
the equation Lx = f with an operator L acting from a Banach space D isomorphic to the direct product
B× Rn with a Banach space B. The key idea of the AFDE theory applications is in the appropriate choice
of D while studying each new problem. Such a choice allows one to apply standard constructions and
statements to the problem needed before an one-off approach and special constructions. This concept has
demonstrated the high efficiency as applied to wide classes of problems, see Reference [7]. Here we follow
this concept while studying some urgent problems with respect to hybrid models of economic dynamics.

To give a description of the general form to the model, let us start with the main spaces where the
equations are considered.

In description of the systems under consideration we follow Reference [8].
Fix a segment [0, T] ⊂ R. By Ln = Ln[0, T] we denote the space of summable functions v : [0, T]→ Rn

under the norm ||v|| Ln =
∫ T

0 |v(s)|n ds, where | · |n stands for an arbitrary fixed norm of Rn (we omit the
subscript when it does not cause confusion); Ln

2 = Ln
2 [0, T] is the space of square summable functions

u : [0, T]→ Rr with the inner product (u, v) =
∫ T

0 u′(s)v(s) ds, where ·′ stands for transposition.
The space ACn = ACn[0, T] is the space of absolutely continuous functions x : [0, T] → Rn with

the norm
||x||ACn = ||ẋ|| Ln + |x(0)|n.

Let us fix a set J = {t0, t1, ..., tµ}, 0 = t0 < t1 < ... < tµ = T. FDν = FDν{t0, t1, ..., tµ} denotes the
space of functions z : J → Rν under the norm

||z|| FDν =
µ

∑
i=0
|z(ti)|ν.

Below we use the symbol z for elements of FDν keeping in mind z = col(z(t0), . . . , z(tµ)) and ρz =

col(z(t1), . . . , z(tµ)). The space of all ρz, z ∈ FDν embedded in FDν by ρz→ col(0, z(t1), . . . , z(tµ)) ∈ FDν

is denoted by FDν
1 .

We consider the hybrid system

ẋ = T11x + T12z + f ,
ρz = T21x + T22z + g,

(1)
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where the linear bounded operators Tij, i, j = 1, 2 act as follows: T11 : ACn → Ln, T12 : FDν → Ln,
T21 : ACn → FDν, T22 : FDν → FDν; f ∈ Ln, g ∈ FDν. Additionally, operator T11 : ACn → Ln is assumed
to be compact one (compactness conditions can be found in References [7] (pp. 43, 284), [9] (p. 77)). As for
the representation of all operators, it will be given more in detail in each section below.

The system (1) is a particular case of the abstract functional differential equation (AFDE) [6,7]. In the
sequel we use some fundamental results from the Theory of AFDE. Let us recall some of basic results as
those given in Reference [7].

2.1. From the AFDE Theory

Let D and B be Banach spaces such that D is isomorphic to the direct product B× Rn (in the sequel
we write D ' B× Rn for short).

A linear abstract functional differential equation (AFDE) is the equation

Lx = f , (2)

with a linear operator L : D→ B.
We denote by J = {Λ, Y} : B× Rn → D a linear isomorphism with J−1 = [δ, r]. Define the norms in

B× Rn and D by the equalities

‖ {z, β} ‖B×Rn= ‖ z ‖B+ | β |, ‖ x ‖D= ‖ δx ‖B+ | rx | .

The operator Q = LΛ : B → B is called the principal part of L : D → B, A = LY : Rn → B is the
so-called finite-dimensional part.

Theorem 1 ([7]). An operator L : D → B is a Noether one if and only if the principal part Q : B → B of L is a
Noether operator. In this case indL = indQ + n.

It follows from Theorem 1 that in the case indL = n the operator Q is Fredholm (i.e., it can be
represented as a sum of an invertible and a compact operators).

Let (x1, . . . , xn) be a basis for the kernel of L. The vector X = (x1, . . . , xn) is called the fundamental
vector to the equation Lx = 0 with the fundamental system of solutions x1, . . . , xn.

To define a linear boundary value problem, we introduce a linear bounded vector-functional
` = col(`1, . . . , `m) : D→ Rm with linearly independent components `i : D→ R and consider the system

Lx = f , lx = α ∈ Rm. (3)

In the case R(L) = B, dim kerL = n, the unique solvability of (3) takes place if and only if det `X 6= 0,
where `X = (`ixj)i,j=1,...,n.

Theorem 2 ([7]). The problem (3) is a Noether one if and only if the principal part Q : B→ B of L is a Noether
operator and also ind [L, l] = ind Q + n−m.

Corollary 1 ([7]). The problem (3) is a Fredholm one if and only if indQ = m− n.

In the sequel we consider only the case Q is Fredholm. Thus, for the problem (3) with m = n,
the assertions “the problem has a unique solution for a certain right-hand part { f , α} ( the problem is
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uniquely solvable)”, “the problem is solvable for each { f , α} ( the problem is solvable everywhere)”,
“the problem is everywhere and uniquely solvable” are equivalent.

Theorem 3 ([7]). The following assertions are equivalent.

(a) R(L) = B.
(b) dim kerL = n.
(c) There exists a vector-functional l : D → Rn such that the problem (3) is uniquely solvable for each

f ∈ B, α ∈ Rn.

Consider the uniquely solvable problem

Lx = f , lx = α ∈ Rn. (4)

The solution to (4) has the representation

x = G f + Xα,

where the linear operator G : B→ D is called the Green operator.

2.2. Hybrid System as an AFDE

From the view-point of the AFDE Theory, the system (1) is the Equation (2) with L defined by
the equality

Ly =

(
ẋ − T11x − T12z
ρz − T21x − T22z

)
, (5)

where y = col(x, z) ∈ ACn × FDν. Thus we have here D = B× Z with B = Ln × FDν
1 and Z = Rn × Rν.

Note also that the operators δ and r are defined by the equalities

δy = col(ẋ, ρz), ry = col(x(0), z(0)).

To define the principal part Q : B → B for this case, introduce operators V : Ln → ACn and U :
FDν

1 → FDν by the equalities (Vv)(t) =
∫ t

0 v(s) ds and Uu = col(0, u). Now we have the representation

Q

(
v
u

)
=

(
v − T11Vv + T12 Uu
u − T21Vv + T22 Uu

)
. (6)

Due to the assumption on the compactness of T11 this Q is a Fredholm operator.

3. Periodic Boundary Value Problems

Recently, in a variety of mathematical models (including economic ones), both time lags and
advances have begun to be used. Here our review partially follows the review from Reference [10].
Anticipated backward stochastic equations with a generator depended not only on the solution in the
present, but also in the future time were considered in Reference [11]. In Reference [12], there were
introduced backward equations, the coefficients of which depended on the solution in present and past
times. It was natural to consider backward equations, the coefficients of which depend on both the past
and future states [10,13,14]. Such equations have been applied in many fields, from finance to stochastic
management. In References [15–17], mixed functional differential equations were considered in the
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deterministic case, and some economic applications of such equations were indicated. As a rule, to find
conditions for the existence of solutions, the principle of contraction maps or general theorems on fixed
points were used.

Economic mathematical models giving rise to mixed functional differential equations are also
considered in References [18,19]: in production cycle theory the following equation arises

u̇(t) = F(u(t), u(t− τ), u(t + τ)), t ≥ 0, τ > 0.

It is clear that this equation is an idealization, and delays and advances are not constant, they are
not located in a set of points. More realistic formulations lead to functional differential equations with a
general deviation of the argument, the exact laws of change to which cannot be known, as a rule.

We will consider systems of two functional differential equations with general delays and advances.
The first unknown variable is an absolutely continuous function x ∈ AC1 defined on a segment of the real
axis (a component with continuous time), the second is a component with discrete time, represented as an
element of space Rn+1. Boundary value problems for such systems often arise when considering problems
of economic dynamics. We restrict ourselves to considering a periodic boundary value problem that arises,
in particular, in the study of business cycles in economics.

Here the space C = C[0, T] is the space of continuous functions x : [0, T] → R with the norm
||x||C = max

t∈[0,T]
|x(t)|; Rn

+ is the set of vectors from Rn with nonnegative components.

We consider the continuous–discrete system

ẋ(t) = (Ax)(t) + (Cz)(t) + f (t), t ∈ [0, T], (7)

zi − zi−1 = (Dx)i + (Bz)i + gi, i = 1, . . . , n, (8)

subjected to the periodic-like boundary conditions

x(0)− x(T) = αx, z0 − zn = αz, (9)

where x ∈ AC1 is a continuous component of a solution; z = col(z0, z1, . . . , zn) ∈ Rn+1 is a discrete
component of a solution; A : C → L1, C : Rn+1 → L1, B : Rn+1 → Rn, D : C → Rn are linear bounded
operators; f ∈ L1, the numbers gi ∈ R, i = 1, . . . , n, and αx, αz ∈ R are given.

We suppose that the linear operators A, B, C, D are differences of two positive linear operators:

A = A+ −A−, B = B+ −B−, C = C+ − C−, D = D+ −D−,

that means the operators A+/− : C → L1 map nonnegative continuous functions to almost everywhere
nonnegative functions, the operators C+/− : Rn+1 → L1 map elements of Rn+1

+ to almost everywhere
nonnegative functions, the operators D+/− : C → Rn map nonnegative continuous functions to elements
of Rn

+, the operators B+/− : Rn+1 → Rn map Rn+1
+ into Rn

+.
Problems (7)–(9) can always be rewritten in the following way

ẋ(t) = (Ax)(t) +
n

∑
j=1

cj(t)zj + f (t), t ∈ [0, T], (10)

zi − zi−1 = Dix +
n

∑
j=0

bijzj + gi, i = 1, . . . , n, (11)
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x(0)− x(T) = αx, z0 − zn = αz, (12)

whereDi : C → R, i = 1, . . . , n, are linear bounded functionals; the coefficients ci ∈ L1, i = 1, . . . , n; bij ∈ R,
i = 1, . . . , n, j = 0, . . . , n are given. So, the operators C+/−, B+/− are defined by the equalities

(C+z)(t) =
n

∑
j=0

c+j (t)zj, (C−z)(t) =
n

∑
j=0

c−j (t)zj, t ∈ [0, T],

(B+z)i =
n

∑
j=0

b+ij zj (B−z)i =
n

∑
j=0

b−ij zj, i = 1, . . . , n,

where for a ∈ R we use notation

a+ =

{
a if a ≥ 0;
0 if a < 0,

a− =

{
−a if a < 0;

0 if a ≥ 0.

Together with system (7)–(9) (or (10)–(12)) we consider a system with continuous time:

ẋ(t) = (Ax)(t) + (Ĉw)(t) + f (t), t ∈ [0, T], (13)

ẇ(t) = (D̂x)(t) + (B̂w)(t) + ĝ(t), t ∈ [0, T], (14)

x(0)− x(T) = αx, w(0)− w(T) = αz, (15)

where

(Ĉw)(t) =
n

∑
j=0

cj(t)w(θj), t ∈ [0, T], (16)

(D̂x)(t) = Dix, (B̂w)(t) =
n

∑
j=0

bijw(θi), t ∈ ei, i = 1, . . . , n, (17)

with
θi = (i− 1)T/n, i = 0, . . . , n; ei = [θi−1, θi), i = 1, . . . , n− 1; en = [θn−1, T].

Obviously, there is a one-to-one correspondence between solutions (x, z) of problem (10)–(12) and
solutions (x, w) to (13)–(15):

w(t) = (zi−1(θi − t) + zi(t− θi−1))n/T, t ∈ ei, i = 1, . . . , n,

zi = w(θi) i = 0, . . . , n.
(18)

Moreover, the equalities

C+/−
1(t) = (Ĉ+/−1)(t), t ∈ [0, T];

(D+/−1)i = (D̂+/−1)(t), (B+/−
1)i = (B̂+/−1)(t), t ∈ ei, i = 1, . . . , n,

T
n

n

∑
i=1

(D+/−1)i =
∫ T

0
(D̂+/−1)(t) dt,

T
n

n

∑
i=1

(B+/−
1)i =

∫ T

0
(B̂+/−1)(t) dt

(19)

hold, where 1 = col(1, . . . , 1) is the unit vector from Rn+1, 1(t) ≡ 1, t ∈ [0, T], is the unit function from C.
Further we use only the functions A+/−1, C+/−

1 and vectors D+/−1, B+/−
1 for formulating our

assertions. It follows that we may consider in this section problem (13)–(15) instead of problem (7)–(9).
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3.1. Integral Restrictions on Functional Operators

Denote in this section

A+ ≡
∫ T

0
(A+1)(s) ds, A− ≡

∫ T

0
(A−1)(s) ds,

B+ ≡ T
n

n

∑
i=1

(B+1)i =
T
n

n

∑
i=1

n

∑
j=1

b+ij , B− ≡ T
n

n

∑
i=1

(B−1)i =
T
n

n

∑
i=1

n

∑
j=1

b−ij ,

C+ ≡
n

∑
i=1

(C+1)i =
n

∑
i=1

∫ T

0
(ci(s))+ ds, C− ≡

n

∑
i=1

(C−1)i =
n

∑
i=1

∫ T

0
(ci(s))− ds,

D+ ≡ T
n

n

∑
i=1
D+

i 1, D− ≡ T
n

n

∑
i=1
D−i 1.

(20)

Theorem 4. Periodic boundary value problem (7)–(9) is uniquely solvable if the conditions

41 ≡

∣∣∣∣∣∣∣∣∣∣∣

A+ −A− ya + xa C+ − C− yc + xc

−(a+1 − a−1 ) 1− ya −(c+1 − c−1 ) −yc

D+ −D− yd + xd B+ −B− yb + xb

−(d+1 − d−1 ) −yd −(b+1 − b−1 ) 1− yb

∣∣∣∣∣∣∣∣∣∣∣
6= 0, (21)

42 ≡

∣∣∣∣∣∣∣∣∣∣∣

A+ −A− ya + xa C+ − C− yc + xc

−(a+1 − a−1 ) 1− ya −(c+1 − c−1 ) −yc

D+ −D− yd + xd B+ −B− yb + xb

d+1 − d−1 yd b+1 − b−1 1 + yb

∣∣∣∣∣∣∣∣∣∣∣
6= 0, (22)

are fulfilled for all real numbers xa, xb, xc, xd satisfying the conditions

xa ∈ [−A− + a−1 , A+ − a+1 ], xb ∈ [−B− + b−1 , B+ − b+1 ],

xc ∈ [−C− + c−1 , C+ − c+1 ], xd ∈ [−D− + d−1 , D+ − d+1 ],

all real numbers ya, yb, yc, yd satisfying the conditions

ya ∈ [−a−1 , a+1 ], yb ∈ [−b−1 , b+1 ], yc ∈ [−c−1 , c+1 ], yd ∈ [−d−1 , d+1 ],

whenever the real numbers a+/−
1 , b+/−

1 , c+/−
1 , d+/−

1 satisfy the conditions

a+/−
1 ∈ [0,A+/−], b+/−

1 ∈ [0,B+/−], c+/−
1 ∈ [0,C+/−], d+/−

1 ∈ [0,D+/−]

For any given nonnegative numbers A+/−, B+/−, C+/−, D+/−, the conditions of Theorem 4 can
always be verified by numerical calculations.

Remark 1. Theorem 4 and Theorems 5–8 presented below give sufficient conditions of the unique solvability. In fact,
some kind of the necessity takes place. Namely, the proofs implies that these conditions are necessary for the unique
solvability of all problems for given numbers A+/−, B+/−, C+/−, D+/−.
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If diagonal operatorsA, B are zero or all operatorsA, C, B,D are positive, we can formulate solvability
conditions of problems (10)–(12) in closed analytical form (in Theorems 5 and 6). After that we will prove
all these theorem together.

Theorem 5. Let A+ = 0, A− = 0, B+ = 0, B− = 0. Then periodic problems (7)–(9) is uniquely solvable if

C+ 6= C−, D+ 6= D−, (23)

and
C max

(
C, 4C

)
C− C

·
D max

(
D, 4D

)
D− D

< 16, (24)

where D = max(D+,D−), C = max(C+,C−), D = min(D+,D−), C = min(C+,C−).

Theorem 6. Let A− = 0, B− = 0, C− = 0, D− = 0. The periodic boundary value problems (7)–(9) is uniquely
solvable if

0 < A+ < 4, 0 < B+ < 4,

C+D+ < A+B+ min
(

1
1 +A+

, 1− A+

4

)
min

(
1

1 +B+
, 1− B+

4

) (25)

or

0 ≤ A+ < 1, 0 ≤ B+ < 1,
A+ B+

(1−A+) (1−B+)
< C+ D+,

C+ D+ < min
t∈(0,1)

1− t2A+ − (1− t)2B+ +
√
(1− t2A+ − (1− t)2B+)2 − 4A+B+t2(1− t)2

2t2(1− t)2 .
(26)

Proofs of Theorems 4–6. These theorems have been proved by a unified scheme. For the corresponding
problems (7)–(9) with continuous time, these assertions are proved in References [20,21] for
Theorems 4 and 6 and in Reference [22] for Theorem 5. There are one-to-one correspondences between
solutions of problem (13)–(15) with continuous time and the corresponding problems (10)–(12) from
Theorems 4–6. In References [20–22], we used only the functions A+/−1, Ĉ+/−1, D̂+/−1, B̂+/−1 for
proving of sufficiency. As for proving of necessity, it was used only operators of the form (16) and (17) in
References [20–22]. From equalities (19), it follows that the assertions of the theorems and Remark 1 are
valid for hybrid systems too.

Remark 2. Condition (26) is fulfilled if

0 ≤ A+, B+ < 1,
A+B+

(1−A+)(1−B+)
< C+ D+ < 4

(
1 +

√
1−max(A+,B+)

)2
. (27)

In the symmetric case A+ = B+ ∈ [0, 1], the minimum in (26) occurs at t = 1/2. Therefore, condition (26)
means that

0 ≤ A+ = B+ < 3/4,
(

A+

1−A+

)2

< C+ D+ < 4
(

1 +
√

1−A+
)2

. (28)
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In the case A+ = 1−B+ ∈ [0, 1], it is easy to check that the minimum in (26) occurs at

t =
1 +
√
−4B+2 + 4B+ + 1

2B+ +
√
−4B+2 + 4B+ + 1 +

√
3 + 2

√
−4B+2 + 4B+ + 1

.

So, if A+ = 1−B+, we can obtain the minimum in (26) analytically. In particular, we have the following
sufficient condition: (26) is fulfilled if

1 < C+ D+ < 6 + 4
√

2− (2 + 16
√

2− 10
√

5)(B+ − 1/2)2. (29)

Conditions (27), (28) are obtained in Reference [21]. Because the norms of the functions C+1 and Ĉ+1, B+1
and B̂+1, D+1 and D̂+1 coincide, we can use these results from Reference [21] for hybrid systems. To derive
condition (29) from condition (26), we need only to check the elementary inequality with the polynomial of degree 4
in B+ and t:

F2t2(1− t)2 − F(1− t2(1−B+)− (1− t)2B+) + (1−B+)B+ < 0,

for all B+ ∈ [0, 1), t ∈ [0, 1], where F is the right-hand side in (29).

Remark 3. From Reference [21] it follows that the assertion of Theorem 6 is valid for every problem of the form

ẋ(t) = ε11(A+x)(t) + ε12(C+z)(t) + f (t), t ∈ [0, T],

zi − zi−1 = ε21(D+x)i + ε22(B+z)i + gi, i = 1, . . . , n,

x(0)− x(T) = αx, z0 − zn = αz,

where εij ∈ {−1, 1}, i, j = 1, 2, ε11ε12ε21ε22 = 1.

3.2. Point-Wise Restrictions on Functional Operators

Let nonnegative numbers A+/−, B+/−, C+/−, D+/− be given.
First we consider problems (7)–(9) only with positive operators and under more general point-wise

restrictions than conditions (40) in the next theorem, where, however, the operators can be differences of
positive operators.

We suppose (without loss of generality) that there exist a positive function p ∈ L1 and a vector q ∈ Rn

with positive components such that

∫ T

0
p(s) ds = 1,

n

∑
i=1

qi = 1, (30)

and there exist nonnegative numbers A+, B+, C+, D+ such that

(A+1)(t) = A+p(t), (C+1)(t) = C+p(t), t ∈ [0, T],

(D+1)i(t) = D+qi, (B+1)i = B+qi, i = 1, . . . , n.
(31)

Denote D̂+ = T/nD+, B̂+ = T/nB+.
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Theorem 7. Let A− = 0, B− = 0, C− = 0, D− = 0 and conditions (30), (31) be fulfilled. If

A+ < 4, B̂+ < 4, C+D+ 6= A+B+, C+D̂+ <
(
4−A+

) (
4− B̂+

)
, (32)

then periodic boundary value problem (7)–(9) is uniquely solvable.

Proof. It is more convenient to deal with continuous systems. Thus we consider the system

ẋ(t) = (T11x)(t) + (T12w)(t) + f (t), t ∈ [0, T], (33)

ẇ(t) = (T21x) + (T22w) + g(t), t ∈ [0, T], (34)

x(0) = x(T), w(0) = w(T), (35)

with positive operators Tij : C → L1 such that

(T111)(t) ≡ A+p(t), (T121)(t) ≡ C+p(t), t ∈ [0, T],

(T211)(t) ≡ D̂+ q(t), (T221)(t) ≡ B̂+ q(t), t ∈ [0, T],
(36)

where q(t) = qi n/T for t ∈ ei, i = 1, . . . , n.
By all the above arguments, it suffices to prove the statement only for problems (33)–(35) with

continuous time.
Let the homogeneous problems (33)–(35) (for which f ≡ 0, g ≡ 0) have a non-trivial solution

(x, w) and

max
t∈[0,T]

x(t) = x(t1) ≡ x1, min
t∈[0,T]

x(t) = x(t2) ≡ x2,

max
t∈[0,T]

w(t) = w(θ1) ≡ w1, min
t∈[0,T]

w(t) = w(θ2) ≡ w2.

Suppose t1 ≤ t2, θ1 < θ2 (if it is needed, we renumber xi and wi, i = 1, 2).
By Lemma 3.3 [20] (p. 216) (or Lemma 1 [21]) we have

ẋ(t) = p1(t)Ax1 + (p(t)− p1(t))Ax2 + p2(t)Cw1 + (p(t)− p2(t))Cw2, t ∈ [0, T],

ẇ(t) = q1(t)D̂x1 + (q(t)− q1(t))D̂x2 + q2(t)B̂w1 + (q(t)− q2(t))B̂w2, t ∈ [0, T],

x(0) = x(T), w(0) = w(T)

(37)

for some functions pi, qi ∈ L1, i = 1, 2, such that pi(t) ∈ [0, p(t)], qi(t) ∈ [0, p(t)], i = 1, 2, t ∈ [0, T].
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From (37) it follows that the numbers x1, x2, w1, w2 satisfy the following algebraic system:

x1

∫ T

0
p1(s)dsA+ x2

∫ T

0
(p(s)− p1(s))dsA+ w1

∫ T

0
p2(s)dsC+ w2

∫ T

0
(p(s)− p2(s)dsC = 0,

x1

∫ T

0
q1(s)dsD̂+ x2

∫ T

0
(q(s)− q1(s))dsD̂+ w1

∫ T

0
q2(s)dsB̂+ w2

∫ T

0
(q(s)− q2(s)dsD̂ = 0,

x1 = x(0) + x1

t1∫
0

p1(s)dsA+ x2

t1∫
0

(p(s)− p1(s))dsA+ w1

t1∫
0

p2(s)dsC+ w2

t1∫
0

(p(s)− p2(s)dsC,

x2 = x(0) + x1

t2∫
0

p1(s)dsA+ x2

t2∫
0

(p(s)− p1(s))dsA+ w1

t2∫
0

p2(s)dsC+ w2

t2∫
0

(p(s)− p2(s)dsC,

w1 = w(0) + x1

θ1∫
0

p1(s)dsA+ x2

θ1∫
0

(p(s)− p1(s))dsA+ w1

θ1∫
0

p2(s)dsC+ w2

θ1∫
0

(p(s)− p2(s)dsC,

w2 = w(0) + x1

θ2∫
0

p1(s)dsA+ x2

θ2∫
0

(p(s)− p1(s))dsA+ w1

θ2∫
0

p2(s)dsC+ w2

θ2∫
0

(p(s)− p2(s)dsC.

(38)

We can exclude variable x(0) and w(0) and obtain a system of four equations in four unknowns:

x1

∫ T

0
p1(s)dsA+ x2

∫ T

0
(p(s)− p1(s))dsA+ w1

∫ T

0
p2(s)dsC+ w2

∫ T

0
(p(s)− p2(s)dsC = 0,

x1

∫ T

0
q1(s)dsD̂+ x2

∫ T

0
(q(s)− q1(s))dsD̂+ w1

∫ T

0
q2(s)dsB̂+ w2

∫ T

0
(q(s)− q2(s)dsB̂ = 0,

x1(1 +
t2∫

t1

p1(s)dsA) + x2(

t2∫
t1

(p(s)− p1(s))dsA− 1) + w1

t2∫
t1

p2(s)dsC+ w2

t2∫
t1

(p(s)− p2(s)dsC = 0,

x1

θ2∫
θ1

q1(s)dsD̂+ x2

θ2∫
θ1

(q(s)− q1(s))dsD̂+ w1(1 +
θ2∫

θ1

q2(s)dsB̂+ w2(

θ2∫
θ1

(q(s)− q2(s)dsB̂− 1) = 0.

Further we use the notation: e = [t1, t2], δ = [θ1, θ2], e′ = [0, T] \ [t1, t2], δ′ = [0, T] \ [θ1, θ2]. Obviously,
system (38) has a non-trivial solution if and only if the following determinant ∆ vanishes:

∆ ≡

∣∣∣∣∣∣∣∣∣∣∣

∫ T
0 p1(s)dsA (1−

∫ T
0 p1(s)ds)A

∫ T
0 p2(s)dsC (1−

∫ T
0 p2(s)ds)C∫ T

0 q1(s)dsD̂ (1−
∫ T

0 q1(s)ds)D̂
∫ T

0 q2(s)dsB̂ (1−
∫ T

0 q2(s)ds)B̂
1 +

∫
e

p1(s)dsA −1 +
∫
e
(p(s)− p1(s))dsA

∫
e

p2(s)dsC
∫
e
(p(s)− p2(s))dsC∫

δ

q1(s)dsD̂
∫
δ

(q(s)− q1(s))dsD̂ 1 +
∫
δ

q2(s)dsB̂ −1 +
∫
δ

(q(s)− q2(s))dsB̂

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 +
∫
e′

p1(s)dsA
∫
e′

p(s)ds)A
∫
e′

p2(s)dsC
∫
e′

p(s)dsC∫
δ′

q1(s)dsD̂
∫
δ′

q(s)dsD̂ −1 +
∫
δ′

q2(s)dsB̂
∫
δ′

q(s)dsB̂

1 +
∫
e

p1(s)dsA
∫
e

p(s)dsA
∫
e

p2(s)dsC
∫
e

p(s)dsC∫
δ

q1(s)dsD̂
∫
δ

q(s)dsD̂ 1 +
∫
δ

q2(s)dsB̂
∫
δ

q(s)dsB̂

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=
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∣∣∣∣∣∣∣∣∣
−1 + zpA (1− Pe)A wpC (1− Pe)C

zpD̂ (1−Qδ)D̂ −1 + wqB̂ (1−Qδ)B̂

1 + xpA PeA ypC PeC

xqD̂ QδD̂ 1 + yqB̂ QδB̂

∣∣∣∣∣∣∣∣∣ = 0,

where

Pe ≡
∫
e

p(s)ds, Qδ ≡
∫
δ

q(s)ds, zp ≡
∫
e′

p1(s)ds, wp ≡
∫
e′

p2(s)ds, xp ≡
∫
e

p1(s)ds,

yp ≡
∫
e

p2(s)ds, zq ≡
∫
δ′

q1(s)ds, wq ≡
∫
δ′

q2(s)ds, xq ≡
∫
δ

q1(s)ds, yq ≡
∫
δ

q2(s)ds.

Thus, the variables xp, yp may take any value from the interval [0, Pe]; zp, wp from the interval
[0, 1− Pe]; zq, wq from [0, Qδ]; yq, xq from [0, 1−Qδ] independently. Here Pe and Qδ take all values from
the interval [0, 1] also independently.

Now to prove the assertion of the theorem we have to show that ∆ 6= 0 for all admissible values
of parameters xp, yp, xq, yq, wp, zp, wq, zq, Pe, Qδ. Then the homogeneous problem has no non-trivial
solutions. Therefore, by the Fredholm property (see Section 2.2) problem (33)–(35) is uniquely solvable.

For admissible values xp = yp = xq = yq = wp = zp = wq = zq = Pe = Qδ = 0, we have
∆ = CD̂−AB̂. Therefore, the condition

CD̂ 6= AB̂ (39)

is the first necessary condition of the unique solvability.
Since ∆ 6= 0 and ∆ is continuous in all its parameters, we see that ∆ must preserve its sign for all

admissible values of parameters. Since ∆ is linear in every variable xp, yp, xq, yq, wp, zp, wq, zq, we have to
consider ∆ for all these variables at the ends of admissible intervals. There are 8 such variables, therefore,
we have to consider 256 cases. However, all these cases can be reduced to only 16: the ratio ∆

AB̂−CD̂ may
take the following values

− 1, ±A− 1, ±B− 1, (1−±A)(±B− 1), ±Y− 1, ±Y− 1, ±Y± A− 1, ±Y± B− 1,

− X−Y− A + B− 1, −X−Y− A− B− 1, −X + Y + A + B− 1, −X + Y− A− B− 1,

X−Y + A− B− 1, X−Y− A + B− 1, X + Y + A− B− 1, X + Y− A + B− 1,

where

X = AB̂r(1− r)s(1− s) ∈ [0,AB̂/16], Y = CD̂r(1− r)s(1− s) ∈ [0,CD̂/16],

A = Ar(1− r) ∈ [0,A/4], B = B̂s(1− s) ∈ [0, B̂/4],

r = Pe ∈ [0, 1], s = Qδ ∈ [0, 1].

Therefore, if and only if the problem is uniquely solvable, all these values are negative. From inequalities
A < 1, B < 1, we obtain that A < 4 and B̂ < 4. As to the rest inequalities, it is enough to verify
the inequalities

X + Y− A + B− 1 < 0, X + Y + A− B− 1 < 0, −X + Y + A + B− 1 < 0.

These inequalities are fulfilled for all r, s ∈ [0, 1] if and only if

CD̂ ≤ (4−A)(4− B̂).



Mathematics 2020, 8, 1832 13 of 30

Therefore, the assertion is proved both for problems (7)–(9) and for problems (33)–(35).

Now we formulate solvability conditions for a boundary value problem with arbitrary operators
A+/−, C+/−, D+/−, B+/− satisfying the following equalities for given non-negative constants A+/−,
C+/−, D+/−, B+/−:

(A+1)(t) = A+, t ∈ [0, T]; (A−1)(t) = A−, t ∈ [0, T];

(B+1)i =
n

∑
j=0

b+ij = B+, i = 1, . . . , n; (B−1)i =
n

∑
j=0

b−ij = B−, i = 1, . . . , n;

(C+1) =
n

∑
i=1

(ci(t))+ = C+, t ∈ [0, T]; (C−1) =
n

∑
i=1

(ci(t))− = C−, t ∈ [0, T];

D+
i 1 = D+, i = 1, . . . , n; D−i 1 = D−, i = 1, . . . , n.

(40)

Denote

Â ≡ T(A+ +A−), B̂ ≡ T(B+ +B−), A ≡ A+ −A−, B ≡ B+ −B−,

Ĉ ≡ T/n(C+ + C−), D̂ ≡ T/n(D+ +D−), C ≡ C+ − C−, D ≡ D+ −D−.
(41)

Theorem 8. Let conditions (40) be fulfilled. If

Â < 4, B̂ < 4, CD 6= AB, ĈD̂ < (4− Â)(4− B̂), (42)

then periodic problems (10)–(12) is uniquely solvable.

The scheme of the proof is the same as in Theorem 7, where the factors p, q are chosen constant.
We omit the complete proof due to its cumbersomeness caused by the need to consider both the positive
and negative parts of the operators. It is important that the form of necessary and sufficient conditions
turns out to be similar to conditions for the case of positive operators.

3.3. A Nonlinear Case

It Theorems 4–6, we obtained conditions for uniqueness and existence of periodic solutions in the
linear case. Here we find non-existence conditions for the nonlinear system (see other results on similar
nonlinear problems in References [23,24])

ẋ(t) = ε11(F11x)(t) + ε12(F12z)(t), t ∈ [0, T], (43)

zi − zi−1 = ε21(F21x)i + ε22(F22z)i, i = 1, . . . , n, (44)

x(0) = x(T), z0 = zn, (45)

where εij ∈ {−1, 1}, i, j = 1, 2.
We impose on the operators Fij some kind of the Lipschitz conditions:

• there exists a constant A+ such that for every x ∈ C the following inequality holds

ess sup
t∈[0,T]

(F11x)(t)− ess inf
t∈[0,T]

(F11x)(t) ≤ A+

(
max

t∈[0,T]
x(t)− min

t∈[0,T]
x(t)

)
; (46)
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• there exists a constant D+ such that for every x ∈ C the following inequality holds

max
i=1,...,n

(F21x)i − min
i=1,...,n

(F21x)i ≤ D+

(
max

t∈[0,T]
x(t)− min

t∈[0,T]
x(t)

)
; (47)

• there exists a constant C+ such that for every z ∈ Rn+1 the following inequality holds

ess sup
t∈[0,T]

(F12z)(t)− ess inf
t∈[0,T]

(F12z)(t) ≤ C+

(
max

j=0,...,n
zi − min

j=0,...,n
zi

)
; (48)

• there exists a constant B+ such that for every z ∈ Rn+1 the following inequality holds

max
i=1,...,n

(F22z)i − min
i=1,...,n

(F22z)i ≤ B+

(
max

j=0,...,n
zi − min

j=0,...,n
zi

)
. (49)

It should be noted that under some natural conditions the product of the Nemytskii operator [7]
(p. viii) and the inner superposition operator [7] (p. 93) satisfies these conditions.

The following theorem describes conditions under which non-constant business cycles become
impossible whenever the nonlinear functional operators of system have point-wise restrictions.

Denote Â+ = T A+, B̂ = T B+, Ĉ+ = T/nC+, D̂ = T/nD+.

Theorem 9. If the inequalities

Â+ < 4, B̂+ < 4, A+B+ 6= Ĉ+D̂+ <
(

4− Â+
) (

4− B̂+
)

(50)

are fulfilled, then problems (43)–(45) under conditions (46)–(49) has no non-constant solutions.

Proof. From conditions (46)–(49), it is easy to see that if a pair (x, z) is a solution of periodic
problems (43)–(45), then this pair is a solution of some linear non-homogeneous problem

ẋ(t) = ε11(A+x)(t) + ε12(C+z)(t) + c, t ∈ [0, T],

zi − zi−1 = ε21(D+x)i + ε22(B+z)i + d, i = 1, . . . , n,

x(0) = x(T), z0 = zn,

for some constants c, d ∈ R, where positive linear operators A+, C+, D+, B+ satisfy conditions (40).
From (50) and Theorem 8, it follows that this problem has a unique solution. It is clear in this case,
that both components of the solution x and z are constants.

4. Control Problems

Let us recall the general formulation of the control problem as applied to the hybrid system
under control

Ly = Fu + q (51)

with an operator L : ACn × FDν → Ln × FDν
1 defined by the equality (5) and control u : [0, T] → Rr

with components from the Hilbert space L2 = L2[0, T] of square summable functions v : [0, T] → R1

equipped with the inner product 〈v1, v2〉 =
∫ T

0 v1(s)v2(s) ds (as usually, Lr
2 = L2 × L2 × · · · × L2︸ ︷︷ ︸

r times

); F :
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Lr
2 → Ln × FDν

1 is a linear bounded Volterra [7], ([9] p. 106) operator, q = col( f , g). The initial state of the
system (51) is assumed to be fixed:

y(0) = col(x(0), z(0)) = col(α, δ). (52)

The aim of control is prescribed by the equality

`y = `(x, z) = β ∈ RN , (53)

where ` : ACn × FDν → RN is a given linear bounded vector-functional.
We say that the control problems (51)–(53) is solvable by a control u if the trajectory yu = col(xu, zu),

generated by u, brings the prescribed value β to the on-target vector-functional `.

4.1. General Results

Within this subsection, we consider the hybrid system (51) with operators Tij defined as follows.

(T11) T11 : ACn → Ln, (T11x)(t) =
∫ t

0
K1(t, s)ẋ(s) ds + A1(t)x(0), t ∈ [0, T].

Here the elements k1
ij(t, s) of the kernel K(t, s) are measurable on the set 0 ≤ s ≤ t ≤ T and such that

|k1
ij(t, s)| ≤ κ(t), i, j = 1, . . . , n, κ(·) is summable on [0, T], the (n× n)-matrix A1 has elements summable

on [0, T].

(T12) T12 : FDν → Ln, (T12z)(t) = ∑
{j:tj<t}

B1
j (t)z(tj), t ∈ [0, T],

where elements of matrices B1
j , j = 0, ..., µ, are summable on [0, T] . As it usually is, here and in the sequel

∑l
i=k Fi = 0 for any Fi if l < k.

T21 : ACn → FDν, (T21x)(ti) =
∫ ti−1

0
K2

i (s)ẋ(s)ds + A2
i x(0), i = 1, . . . , µ,

with measurable and essentially bounded on [0, T] elements of matrices K2
i and constant (ν× n)-matrices

A2
i , i = 1, . . . , µ.

T22 : FDν → FDν; (T22z)(ti) =
i−1

∑
j=0

B2
ijz(tj), i = 1, ..., µ,

with constant (ν× ν)-matrices B2
ij.

This system is a special case of the general continuous-discrete system considered in detail in
Reference [25]. Theorem 1 [25] gives the representation of the general solution in the form(

x
z

)
= Y

(
x(0)
z(0)

)
+ C

(
f
g

)
, (54)

where z = col(z(t1), ..., z(tµ), g = col(g(t1), ..., g(tµ),

Y =

(
Y11 Y12

Y21 Y22

)
, C =

(
C11 C12

C21 C22

)
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are the fundamental matrix and the Cauchy operator respectively. The block-components Yij, Cij, i, j = 1, 2,
are operators acting as follows:

Y11 : Rn → ACn; Y12 : Rν → ACn; Y21 : Rn → Rνµ; Y22 : Rν → Rνµ;

C11 : Ln → ACn; C12 : Rνµ → ACn; C21 : Ln → Rνµ; C22 : Rνµ → Rνµ.

It should be noted that, with respect to the continuous time component x(t), we restrict ourselves to
the case x ∈ ACn and so ignore the impulsive component of the solution [25].

The general results on the solvability of (51)–(53) from Reference [8] are based on the following
approach. The representation of the linear bounded vector-functional ` : ACn × FDν → RN has the form

`(x, z) = Ψx(0) +
∫ T

0
Φ(s)ẋ(s) ds +

µ

∑
i=0

Γiz(ti), (55)

where (N × n)-matrix Ψ and (N × ν)-matrices Γi, i = 0, . . . , µ are constant, and (N × n)-matrix Φ(s) have
measurable and essentially bounded elements. The general form of ` covers many various special cases
used while studying applied problems (see, for instance, Reference [26]). Here we restrict ourselves to the
following example of (53):

∫ T

0
exp(−λ1t) F1 x(t) dt +

µ

∑
i=0

exp(−λ2ti) F2z(ti) = β.

For this case we have

Ψ =
1

λ1
(1− exp(−λ1T))F1; Φ(s) =

1
λ1

(exp(−λ1s)− exp(−λ1T))F1; Γi = exp(−λ2ti)F2, i = 0, . . . , µ.

Using the representation (55) and the description of the set of all trajectories to the system
under control

y =

(
x
z

)
= Y

(
x(0)
z(0)

)
+ C

(
f
g

)
+ CFu, (56)

we can express the on-target conditions (53) in the form that is explicit with respect to the control u ∈ Lr
2:

`(x, z) = `(Ycol(α, δ) + Cq) + `CFu = β, (57)

or, denoting
β0 = `(Ycol(α, δ) + Cq),

as the system
`CFu = β1 = β− β0 (58)

with respect to u. The solvability of (58) means the controlability of the hybrid system (51) with respect to
the on-target vector-functional `. In the case we consider, (58) may be reduced to the form

∫ T

0
M(s)u(s) ds = β1, (59)

where (N × r)-matrix M(·) is called the moment matrix to the problems (51)–(53). The justification of
all transformations from (58) to (59) with an explicit form of M(·) requires the deep study of the Cauchy
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operator properties which is done in Reference [25]. The system (59) opens a way to construct controls
that provide the solutions to (51)–(53). In particular, a control can be found in the form

u(t) = M′(t)d

with a constant N-vector d ( (·)′ stands for transposition). In such a case, we obtain the linear algebraic
system with respect to d:

Wd = β1,

where

W =
∫ T

0
M(s)M′(s) ds.

Thus we obtain the condition
detW 6= 0

for the solvability of (51)–(53). This condition is well known for many special classes of dynamic models
with continuous and discrete times as applied to the very specific kind of the on-target vector-functional
` when `(x, z) = col(x(T), z(T)). General results on the controlability of hybrid models with sufficient
conditions and description of the programming control bringing the prescribed values β are presented in
Reference [8]. It should be noted that possible constraints with respect to control, which are met in real
world economic dynamics problems, are ignored in the formulation (51)–(53). Thus the results mentioned
relate to the problems with unconstrained control. For a class of hybrid models, the case of constrained
control where constraints are defined by a finite system of inequalities is considered in the next subsection.

4.2. Constrained Control of Hybrid Systems with Discrete Memory

In applied control problems with prescribed on-target indexes, a central place is occupied by
constraints with respect to control. The rigidness of constraints impacts essentially onto the solvability of
the problem that is the existence a control such that the trajectory generated by it brings the prescribed
targeted values. Description of all values attainable under the action of controls with fixed constraints is one
of the key problems in the frames of various control theory divisions (see, for instance, References [27–31]),
including questions of the attainability set structure under various classes of constraints [32,33],
their asymptotic [34] and statistical characteristics [35,36]. Therewith, as a rule, the attainability is
understood with respect to the state of the system at a given instant. In control problems for economic
systems, a more general point of view takes place when on-target indexes are given as integral
characteristics and multipoint ones. Here we set the on-target indexes with the use of linear functionals
having the general form that covers above mentioned cases. The system dynamics is described by the
union of differential equations with delay and difference equations with discrete time. Such a description
turns out to be urgent as applied to economic dynamics processes with interactions of variables having
disparate kinds of changes, namely, continuous (say for production process) and discrete (say investment
or financing). We pay the most attention to the external estimates of attainability sets with corresponding
relationships and algorithms. The results are based on the general theory of functional differential
equations [7] in terms of the solvability conditions and the representation of solutions, as well as on some
of our previous results [25,26,37,38]. Here we recall some results on estimating attainability sets and
propose estimates of switch points number to programming control for systems with discrete memory.

We consider the economic-mathematical model of interaction of the production subsystem

ẋ(t) = ∑
i:ti<t

Ai(t)x(ti) + ∑
i:ti<t

Bi(t)z(ti) +
∫ t

0
F(t, s)u(s) ds + f (t), t ∈ [0, T], (60)
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and the financial subsystem

z(ti) = ∑
j<i

Djx(tj) + ∑
j<i

Hjz(tj) +
∫ ti

0
Gi(s)v(s) ds + g(ti), i = 1, ..., µ (61)

with summable (n× n)-matrices Ai(t), (n× ν)-matrices Bi(t) and constant (ν× n)-matrices Dj, (ν× ν)-
matrices Hj.

For definiteness, we consider x = col(x1, . . . , xn) in (60) as indexes (state variables) of functioning of
a multiproduct productive system that change in continuous time t ∈ [0, T]. The rate of change depends
on the productive accumulation at fixed points in time, ti, i = 0, . . . , µ, ti > ti−1, t0 = 0, tµ = T, with a
given effectiveness (by elements of Ai(t)). In addition, there are used investments z(ti), z = col(z1, . . . , zν)

governed by (61). The integral term in (60) simulates the direct control u(t), u : [0, T]→ Rr1 of the indexes
dynamics of x(t) with an effectiveness defined by the kernel F(t, s). The right-hand side of (61) includes at
each ti the previous investment values z(tj), j < i, the productive accumulation, as a part of x(tj), j < i,
and the control v(t), v : [0, T] → Rr2 as a financial flow density. Therewith the integral term takes into
account financial resources accumulated at ti. The effectiveness of the use to all above factors is given by
the matrix coefficients Hj, Dj, Gj. The functions f (t) and g(ti) can be interpreted as external actions or
disturbances, say, unforeseen lost or modeling errors. It should be noted that the specific kind of delay
in (60) is of considerable current use as applied to dynamic economic models [39]. As in the general case,
the initial state of (60) and (61) is assumed to be fixed:

x(0) = α, z(0) = δ. (62)

Using (55), we define the aim of control by the equality

`(x, z) = β, β ∈ RN , (63)

where β is a given vector of on-target values.
The problem of getting the values prescribed by (63) is considered with the constraints

concerning control:

Λ

(
u(t)
v(t)

)
≤ γ ∈ RN1 , t ∈ [0, T], (64)

where Λ is a given constant (N1 × (r1 + r2))-matrix. The set of solutions to the linear inequalities system

Λ

(
u
v

)
≤ γ is denoted by V and assumed to be nonempty and bounded.

As is noted in the previous subsection, we reduce the problems (61)–(64) to the moment problem

∫ T

0
M(s)w(s) ds = β1, (65)

Λw ≤ γ, (66)

where w(s) = col(u(s), v(s), with the polyhedral constraints (66).
Having in mind that the Cauchy operator C to (61) and (62) can be found in the explicit

form [38], we give here the representation of the moment matrix M(s) in the terms of components
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Cij, i, j = 1, 2. To do this, we shall use the representation of the solution to (61) and (62) in the case
x(0) = 0, z(0) = 0, f = 0, g = 0:

x(t) =
∫ t

0
C11(t, s)

∫ s

0
F(s, τ)u(τ) dτ ds + ∑

i: i≥1; ti≤t
C i

12(t)
∫ ti

0
Gi(s)v(s) ds, t ∈ [0, T],

z(ti) = ∑
j≤i
C i

21

∫ tj

0
F(ti, s)u(s) ds + ∑

j≤i
C i

22

∫ tj

0
Gj(s)v(s) ds, i = 1, . . . , µ. (67)

Next we obtain the expression for ẋ, taking into account the properties of the kernel C11(t, s):

ẋ(t) =
∫ t

0

∂

∂t
C11(t, s)

∫ s

0
F(s, τ)u(τ) dτ ds +

∫ t

0
F(t, s)u(s) ds

+ ∑
i: i≥1; ti≤t

d
dt
C i

12(t)
∫ ti

0
Gi(s)v(s) ds, t ∈ [0, T], (68)

or, after some evident transformations,

ẋ(t) =
∫ t

0
θ1(t, s) u(s) ds +

∫ t

0
θ2(t, s) v(s) ds, (69)

where

θ1(t, s) = F(t, s) +
∫ t

s

∂

∂t
C11(t, τ)F(τ, s) dτ,

θ2(t, s) = ∑
i: i≥1; ti≤t

d
dt
C i

12(t) χ[0,ti ]
(s) Gi(s).

Finally, after substitution of the right-hand sides of (67) and (69) into the representation of `(x, z) we
arrived at the representation of the matrices M1(s), M2(s), that form M(s) = (M1(s), M2(s), ):

M1(s) =
∫ T

s
Φ(τ)θ1(τ, s) dτ +

µ

∑
i=1

∑
j≤ i

ΓiC
j
21χ[0,tj ]

(s)F(tj, s),

M2(s) =
∫ T

s
Φ(τ)θ2(τ, s) dτ +

µ

∑
i=1

∑
j≤ i

ΓiC
j
22χ[0,tj ]

(s)Gj(s).

Let us recall the results on estimates of the `-attainability sets from Reference [37].
For any λ ∈ RN , define w(t, λ) by the equality

w(t, λ) = argmax(λ′ ·M(t) · w : w ∈ W). (70)

In the case that the extremal value in (70) is reached at a number m of angle points wi(t, λ) of the
polyhedronW , we understand w(t, λ) as 1

m ∑m
i=1 wi(t, λ). By Theorem 1 [37], the set of all attainable β1 in

(65) and (66) is the set of all ρ ∈ RN such that the inequality

λ′ · ρ ≤
∫ T

0
λ′ ·M(t) · w(t, λ) dt (71)

holds for any λ ∈ RN .



Mathematics 2020, 8, 1832 20 of 30

Let us describe a way to obtain an internal estimate of the set of all attainable β1 in (65) and (66).
Fix a collection {λk ∈ RN , k = 1, 2, ..., K} and a collection {t∗j ∈ [0, T], j = 1, 2, ..., J}, t∗j < t∗j+1. Define the
control wk(t) by the equality

wk(t) =
J+1

∑
j=1

w(t∗j , λk)χ[t∗j−1,t∗j )
(t), t ∈ [0, T], (72)

where t∗0 = 0, t∗J+1 = T. There takes place the following assertion.

Theorem 10. Let the elements of the moment matrix M(t) be piecewise continuous. Put

ρk =
∫ T

0
M(t)wk(t) dt, k = 1, 2, . . . , K.

Then the convex hull of {ρ1, . . . , ρK} is a subset of the set of all attainable β1 in (65) and (66).

Proof. By construction of the controls wk(t), k = 1, 2, . . . , K those are admissible, and their convex hull
is a subset to the set of all admissible controls. Any ρk is attainable by the control wk : [0, T] → Rr1+r2 .
Let ρ∗ = ∑K

k=1 ωkρk, where ωk ≥ 0, ∑K
k=1 ωk = 1. Then we have

ρ∗ =
K

∑
k=1

ωk

∫ T

0
M(t)wk(t) dt =

∫ T

0
M(t)

K

∑
k=1

ωkwk(t) dt, (73)

and, hence, ρ∗ is attainable by the control

w∗(t) =
K

∑
k=1

ωkwk(t). (74)

This completes the proof.

In applied problems, the question of a switch points number to the control bringing the prescribed
on-target indexes is of special interest. A true number of switch points is defined by (70) and (71) and does
depend onW and M(t). An illustration is given in the next subsection.

4.3. An Example

Consider the system under control

ẋ(t) = 0.2x(0) + 0.1tχ(1,4](t)x(1) + 0.1cos(t)χ(2,4](t)x(2) + 0.1t2χ(3,4](t)x(3)

−0.15z(0)− 0.1tχ(1,4](t)z(1) + 0.1t2χ(2,4](t)z(2)− 0.15χ(3,4](t)z(3) + 0.7
∫ t

0
u(s) ds, t ∈ [0, 4],

z(i) = 0.3x(0) + 0.2χ(1,4](i)x(1) + 0.3χ(2,4](i)x(2) + 0.2χ(3,4](i)x(3)

+0.2z(0) + 0.2χ(1,4](i)z(1) + 0.1χ(2,4](i)z(i) + 0.4χ(3,4](i)z(3) +
1

1 + i

∫ i

0
v(s) ds, i = 1, . . . , 4,

with the initial conditions
x(0) = 0, z(0) = 0,
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the constraints with respect to control

0 ≤ u(t) ≤ 1; 0 ≤ v(t) ≤ 1; v(t) ≤ 2u(t); v(t) ≤ 2− 2u(t); t ∈ [0, 4],

and the on-target conditions

`1(x, z) ≡ 0.2
∫ 4

0
x(t) dt + 0.1z(3) = 0.6, `2(x, z) ≡ x(4) + z(4) = 8.0.

With the use of the results [25] on the Cauchy operator we construct the moment matrix M(t) =

(mij(t))i,j=1,2 that corresponds to the on-target functional:

m11(t) = (0.483301− 0.321150t)χ[0,1](t) + (0.246135− 0.083984t)χ(1,2](t)

+(0.234500− 0.078167t)χ(2,3](t);

m12(t) = 0.263258χ[0,1](t) + 0.287194χ(1,2](t) + 0.123083χ(2,3](t);

m21(t) = (9.110666− 5.600451t)χ[0,1](t) + (5.487099− 1.976883t)χ(1,2](t)

+(4.60000− 1.533333t)χ(2,3](t);

m22(t) = 1.867111χ[0,1](t)χ(1,2](t) + 2.134306χ(1,2](t) + 1.040417χ(2,3](t)

+0.200000χ(3,4](t).

Here the numerical coefficients are displayed to six places of decimals.
In this case we find the following three points:

P1 = (0, 0), P2 = (0.812625, 11, 329384), P3 = (0.889121, 9.617857)

forming the triangle that is a subset of the attainability set and contains the given point P0 = (0.6, 8.) from
the on-target conditions. That point is the convex linear combination of the above three points with the
coefficients 0.594579, 0.274021, 0.131399 respectively. Having in mind that the controls bringing P2 and P3
has two switch points t = 0.8 and t = 2.8, and P1is attainable by u(t) = 0, v(t) = 0, we conclude that the
problem under consideration may be solved by the control with two switch points.

5. Stability and Asymptotic Behavior of Solutions

The currently constructed theory [7] permits the clear description of main properties of FDEs,
among them the stability properties of solutions [40], whereas many relevant classes of HFDEs are
not encompassed by the constructed theory and are beyond the attention of experts employing systems
with aftereffect while modelling real-world processes. Hybrid analogs of the main statements of the FDEs
theory concerning stability questions are proposed below.

5.1. The Scheme of N. V. Azbelev’s W-Method as Applied to Hybrid Models

Let us first consider the case when one equation is a linear functional differential equation with
aftereffect on the semi-axis, and the other is a linear difference equation, and describe for this case the
scheme of N. V. Azbelev’s W-method.



Mathematics 2020, 8, 1832 22 of 30

Introduce the space L as the space of locally summable functions f : [0, ∞)→ Rn with semi-norms
|| f ||L[0,T] =

∫ T
0 | f (t)|n dt for all and the space locally absolutely continuous functions x : [0, ∞) → Rn

with semi-norms ||x||AC[0,T] = ||ẋ||L[0,T] + |x(0)|n for all T > 0. Denote by

z = {z(−1), z(0), z(1), . . . , z(N), . . . }

the infinite matrix with the ν-columns z(-1), z(0), z(1), . . . , z(N), . . . and, analogously,

g = {g(0), g(1), . . . , g(N), . . .}

will stand for the infinite matrix with the ν-columns g(0), g(1), . . . , g(N), . . . . By any z we define the
function z(t):

z(t) = z(−1)χ[−1,0)(t) + z(0)χ[0,1)(t) + z(1)χ[1,2)(t) + · · ·+ z(N)χ[N,N+1)(t) + . . . , t ∈ [−1, ∞),

and by any g define the function g(t):

g(t) = g(0)χ[0,1)(t) + g(1)χ[1,2)(t) + · · ·+ g(N)χ[N,N+1)(t) + . . . , t ∈ [0, ∞).

In the sequel we denote z[t] = z([t]) and g[t] = g([t]) where [t] is the integer part of t. Let `0 be the
space of functions z[·] with semi-norms ||z||`0T = ∑T

i=−1 |z(i)|ν for all integer T ≥ −1, and ` be the space
of functions g[·] with semi-norms ||g||`T = ∑T

i=0 |g(i)|ν for all integer T ≥ 0.
Further, define (∆z)(t) = z[t]− z[t− 1], t ∈ [1, ∞), (∆z)(t) = z[t] = z(0), t ∈ [0, 1).
Consider the hybrid functional differential system

ẋ = T11x + T12z + f ,
∆z = T21x + T22z + g.

(75)

For convenience, let us introduce operators Lij, i, j = 1, 2:

L11x = ẋ − T11x, L12z = −T12z, L21x = T21x, L22z = ∆z − T22z.

The operators L11, T11 : AC → L, L12, T12 : `0 → L, L21, T21 : AC → `, L22, T22 : `0 → ` are

assumed to be linear continuous and Volterra. Denote L =

(
L11 L12

L21 L22

)
. Then (75) takes the form

L(x, z) = col( f , g).
Let

ẋ = T 0
11x + T 0

12z + u, ∆z = T 0
21x + T 0

22z + v

be a model system such that, for any x(0) ∈ Rn and z(−1) ∈ Rν, the Cauchy problem be uniquely solvable
(as for operators T 0

ij , we save the same assumptions as to Tij). The model system may be written in the
form L0(x, z) = col(u, v). Its solution has the representation(

x
z

)
=

(
U11 U12

U21 U22

) (
x(0)

z(−1)

)
+

(
W11 W12

W21 W22

) (
u
v

)
,



Mathematics 2020, 8, 1832 23 of 30

whereW : L× ` → AC× `0 is the Cauchy operator,W =

(
W11 W12

W21 W22

)
; U : Rn × Rν → AC× `0 is

the fundamental matrix, U =

(
U11 U12

U21 U22

)
.

If elements col(x, z) : [0, ∞)× [−1.∞) → Rn × Rν constitute a Banach space D×M0 ∼= (B× Rn)×
((B× Rν) (D ⊂ AC, M0 ∼= (M⊕ Rν ⊂ `0), B ⊂ L, M ⊂ `, B, M are Banach spaces) and possess certain
specific properties, say, sup

t≥0
|x(t)|n + sup

k=−1,0,1,...
|z(k)|ν < ∞ and the Cauchy problem for an equation

L(x, z) = col( f , g) with a linear bounded operator L : D×M0 → B×M is uniquely solvable, then its
solutions have the same asymptotic properties. This follows from the following theorem [41].

Theorem 11. Let W : B ×M → D ×M0 be the bounded Cauchy operator to a model problem L0(x, z) =

col( f , g) with L0 : D×M0 → B×M, and U : Rn × Rν → AC× `0 is the fundamental matrix to L0(x, z) =

col(0, 0). Let, further, a linear operator L : D ×M0 → B ×M be bounded, C is the Cauchy operator to
L(x, z) = col( f , g) , and X is its fundamental matrix. Then the equality

W{B, M} ⊕ U{Rn, Rν} = C{B, M} ⊕ X{Rn, Rν} (76)

holds if and only if the operator LW has the bounded inverse (LW)−1 : B×M→ B×M.

Corollary 2 ([41]). If an operatorL : B×M0 → B×M is bounded and the inequality ||(L−L0)W||B×M→B×M <

1 holds, then the equality (76) takes place.

In the case of equality (76) (the coincidence of the solution space of the model and the studied
equations), we say that the equation L(x, z) = col( f , g) has the property D×M0 or, for short: the equation
is D ×M0-stable. We note the connection of the concept of D ×M0-stability with the monograph by
J. L. Massera and J. J. Schaffer on the admissibility of pairs of spaces [42], and with the monograph by
E. A. Barbashin on preserving the properties of solutions when perturbations accumulate [43]. Let the
model equation [7,44–46] L11 = u and the Banach space B with elements from the space L (recall that
B ⊂ L and this embedding is continuous) be chosen so that the solutions of this equation have the
asymptotic properties that are of interest to us.

For example, let sup
t≥0
|x(t)|n < ∞ be hold. Then, putting L11x ≡ ẋ + x = u, we take as B the

Banach space L∞ of measurable and essentially bounded functions u : [0, ∞ → Rn) with the norm
||u||L∞ = vrai sup

t≥0
|u(t)|n < ∞. The space AC(L11, L∞) generated by the model equation consists of

the solutions

x(t) = (W11u)(t) + (U11α)(t) =
∫ t

0
e−(t−s)u(s) ds + αe−t (α ∈ Rn, z ∈ L∞)

that are bounded (sup
t≥0
|x(t)|n < ∞ ) and have the derivative ẋ = −x + u from L∞.

All these solutions form the Banach space equipped by the norm

||x||AC(L11,L∞) = vrai sup
t≥0
|ẋ(t) + x(t)|n + |x(0)|n < ∞.
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This space is isomorphic to the Sobolev space W(1)
∞ [0, ∞) with the norm

||x||
W(1)

∞ [0,∞)
= sup

t≥0
|x(t)|n + vrai sup

t≥0
|ẋ(t)|n.

In the sequel we denote this space by WL∞ , note that WL∞ ⊂ AC and the embedding is continuous.
Similarly, introduce the space AC(L11, B), B ⊂ L, with the norm

||x||AC(L11,B) = ||ẋ + x||B + |x(0)|n.

Under natural conditions [40,44–46], the space AC(L11, B) is isomorphic to the Sobolev space
W(1)

B [0, ∞) with the norm
||x||

W(1)
B
[0, ∞) = ||ẋ||B + ||x||B,

which we denote by WB.
The equation L11x = u with an operator L11 : WB → B is AC(L11, B)-stable if and only if it is strictly

B-stable, namely, for any u ∈ B, every solution x to this equation possesses the property: x ∈ B and
ẋ ∈ B [40,45].

5.2. The Case of Two Scalar Equations

Let us apply the scheme of Section 5.1 to the case of two scalar Equation (75). The operators L11 :
AC → L, L12 : `0 → L, L21 : AC → `, L22 : `0 → ` are considered as operators of reducing to the pairs
(WB, B), (M0, B), (WB, M), and (M0, M), under the assumption that the operators are linear bounded
and Volterra and the general solution of the equation L22z = g, where , g ∈ M belongs to the space M0

and has the representation

z[t] = Z22[t] z(−1) +
[t]

∑
s=0

C22[t, s] g[s],

where C22[t, s] = C22([t], [s]).
Denote

(C22g)[t] =
[t]

∑
s=0

C22[t, s]g[s], (Z22z(−1))[t] = Z22[t]z(−1).

Then every solution z to the second equation in (75) may be written in the form

z = −C22L21x + Z22z(−1) + C22g.

After substitution this expression into the first equation of (75) we obtain

L11x + L12z = L11x − L12C22L21x + L12Z22z(−1) + L12C22g = f ,

or
L11x − L12C22L21x = f1 = f − L12Z22z(−1) − L12C22g.

Now, putting L = L11 − L12C22L21, rewrite this equation in the form Lx = f1. In the case when
the Volterra operator L : (WB)

0 → B is invertible and the inverse is Volterra too we have that, for any
{ f , g} ∈ B×M, the corresponding solution {x, z} of (75) is from the space WB.
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Example 1. Consider the equations

ẋ(t) + a(1− 0.5sin(t))x(t) + bz[t] = f (t), t ∈ [0, ∞),
z[t] − dz[t− 1] + cx[t] = g[t], t ∈ [0, ∞),

(77)

assuming that
z(0) − dz(−1) + cx(0) = g(0).

Introduce the spaces

`∞0 = {z ∈ `0 : ||z||`0 = sup
k=−1,0,1,...

|z(k)|ν < +∞},

`∞ = {g ∈ `0 : ||g||`∞ = sup
k=0,1,...

|g(k)|ν < +∞}.

Define the operator S by the equalities (Sz)(t) = dz(t− 1), t ≥ 1; (Sz)(t) = 0, t ∈ [0, 1), then the second
equation takes the form

z(t)− (Sz)(t) + cx(t) = g1(t) = g(t) + d z[t− 1], t ∈ [0, 1),

z(t)− (Sz)(t) + cx(t) = g(t), t ∈ [1, ∞).

As is known, the operator (I − S) : `∞ → `∞ has the bounded inverse if and only if the spectral radius ρ`∞(S)
is less than one, or, which is the same, the inequality |d| < 1 holds. Let

(L11x)(t) = ẋ(t) + a(1− 0.5sin(t))x(t), t ≥ 0,

(L12z)(t) = bz[t], t ≥ 0,

(L21x)[t] = cx[t], t ≥ 0,

(L22z)[t] = z[t]− (Sz)[t], t ≥ 0.

Construct the Cauchy function C22 and the fundamental solution Z22 to the equation z[t]− dz[t− 1 = g[t] :
d[t]+1z(−1) + ∑

[t]
s=0 g[s]d[t]−s = Z22[t]z(−1) + (C22g)[t]. Now express z[t] from the second equation of (77):

z[t] = Z22z(−1) + (C22(g− cx))[t].

After substitution this into the first formula of (75) we obtain

(L11x)(t) + (L12z)(t) = ẋ(t) + a(1− 0.5 sin(t))x(t) + bd[t]+1z(−1) + b
[t]

∑
s=0

(g[s)− cx[s])d[t]−s = f (t).

Further we have

(Lx)(t) = ((L11 −L12C22L21)x)(t) = ẋ(t) + a(1− 0.5sin(t))x(t)− bc
[t]

∑
s=0

x[s])d[t]−s = f1(t)

= f (t)− bd[t]+1z(−1)− b
[t]

∑
s=0

g[s])d[t]−s.
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It is clear that f1 ∈ L∞ if |d| < 1. Write the Cauchy formula as applied to the equation (L11x)(t) =

bc ∑
[t]
s=0 x[s])d[t]−s + f1(t) :

x(t) = X11x(0) +
∫ t

0
C11(t, s) (bc

[s]

∑
i=0

x[i])d[s]−i + f1(s)) ds.

Here we have X11(t) = e−a(t+0.5cos(t)), C11(t, s) = e−a(t+0.5 cos(t)) · ea(s+0.5cos(s)). For the case of a positive
a, the estimates

sup
t≥0
|
∫ t

0
C11bc

[s]

∑
i=0

x[i]d[s]−i ds| ≤ |bc| · 1
1− |d| · sup

t≥0
(e−a(t+0.5cos(t))

∫ t

0
ea(s+0.5cos(s)) ds) · ||x||L∞

≤ 2
a
· |bc| · 1

1− |d| · ||x||L∞

hold. Therefore, the norm of bC11cC22 is less than 1 if |bc| < a
2 (1− |d|), and under this condition we have that,

for any f1 ∈ L∞ , the solution x of Lx = f1 belongs to the space L∞ together with its derivative ẋ. Thus it is
established that, for any f1 ∈ L∞ , solution x to Lx = f1 belongs to the space WL∞ . Therefore, for Equation (77),
we obtain the conditions

|d| < 1, |bc| < a
2
(1− |d|), (78)

under which, for any { f , g} ∈ L∞ × `∞, solution of it belongs to the space D ∼= WL∞ × `∞0.

5.3. A Case of Periodic Parameters: Direct Study of Asymptotic Behavior

The case of economic dynamic models with periodic parameters is of special interest [47].
Here we consider a hybrid model with short discrete memory and demonstrate a way to study

asymptotic behavior of solutions, namely, the existence of a finite limit state of the system as t→ ∞.
Consider the system

ẋ(t) = A(t)x[t− 1] + B(t)z[t− 1] + f (t), t ∈ [1, ∞),
z[t] = Dx[t− 1] + Hz[t− 1] + g[t], t ∈ [1, ∞),

(79)

with 1-periodic matrices A(t) and B(t) of the dimensions n× n and n× ν respectively, constant matrices
D and H of the dimensions ν× n and ν× ν, respectively, 1-periodic functions f , g and a given initial state:

x(0) = α, z(0) = β. (80)

Define the constant matrices P, Q by the equalities

P =
∫ 1

0
A(s) ds, Q =

∫ 1

0
B(s) ds, φ =

∫ 1

0
f (s) ds,

and the (n + ν)× (n + ν)-matrix F by the equality

F =

(
En + P Q

D H

)
,

where En is the identity (n× n)-matrix.
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Theorem 12. Let the spectral radius of F be less than 1. Then there exists a vector y = col(γ, δ) with finite
components such that the solution y = col(x(t), z[t]) of the problems (79) and (80) possesses the property

X(N)→ γ, z(N)→ δ as integer N → +∞.

Proof. Let us integrate the first equation of (13) from [t− 1] to [t], t ∈ [1, ∞):

x([t]) = x([t− 1]) +
∫ [t]

[t−1]
A(s) ds x([t− 1]) +

∫ [t]

[t−1]
B(s) ds z[t− 1] +

∫ [t]

[t−1]
f (s) ds .

Put yi = col(x(i), z(i)), then we have

yi = F yi−1 + ψ, i = 1, 2, . . . , (81)

where ψ = col(φ, g(1)). By the assumptions, the successive approximations (81) converge to y being the
solution of the system yi = F y + ψ, : y = (En+ν − F )−1 ψ.

Example 2. Consider the system

ẋ = 0.05(1 + sin(2πt))x[t− 1]− 0.5(1− cos(2πt))z[t− 1] + f (t), t ∈ [1, ∞),

z[t] = 0.3x[t− 1]− 0.5z[t− 1] + g[t], t ∈ [1, ∞),

where f (t) = 0.2t, t ∈ [0, 1), g(i) = 0.2, I = 1, 2, . . . , with the initial state defined by the equalities x(0) =

2, z(0) = 1.

For the case, we have F =

(
1 + 0.05 −0.5

0.3 −0.5

)
, ρ(F ) < 0.94628608. As for the limit state y,

its approximate value after 50 iterations is col(0.740251217, 0.281930151) (the components are displayed to
nine decimals).

6. Discussion

In this paper we have presented the results concerning three types of problem with respect to
trajectories of continuous-discrete dynamic models used in Mathematical Economics.

For boundary value problems with periodic boundary conditions, the conditions of the solvability
and conditions of the insolvability are obtained which can be applied to the problem of existence/lack
of business-cycles. A feature of these results is the possibility for taking into account both current and
future states of economic system. The results improve known conditions even in the case of continuous
problems. Note, the obtained solvability conditions are results of applying original approach developed
in Reference [20] and not connected with fixed points principles at all. As for a direction to future work,
we plan to extend our method [20–22] to other boundary value problems for hybrid objects including the
case of multidimensional (in the continuous part) models.

The results on the control problems with constrained control are based on the construction of
the Cauchy operator to hybrid dynamic models and allow one to give a constructive description of
attainability sets for a wide class of on-target conditions. The next steps in this direction can be thought of
as computer-aided implementation of constructions and algorithms with the use of reliable computing [48].

The conditions for the stability of solutions to the models under consideration are established on
the base of the elementary models technique that demonstrates the efficiency of the approach proposed
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and provides the researcher with a way to encompass more and more wide classes of models. For entire
collection of elementary models we refer to References [49–51].
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