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Abstract: The current paper analyzes a competition of the Cournot duopoly game whose players
(firms) are heterogeneous in a market with isoelastic demand functions and linear costs. The first
firm adopts a rationally-based gradient mechanism while the second one chooses to share the market
with certain profit in order to update its production. It trades off between profit and market share
maximization. The equilibrium point of the proposed game is calculated and its stability conditions
are investigated. Our studies show that the equilibrium point becomes unstable through period
doubling and Neimark–Sacker bifurcation. Furthermore, the map describing the proposed game is
nonlinear and noninvertible which lead to several stable attractors. As in literature, we have provided
an analytical investigation of the map’s basins of attraction that includes lobes regions.
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1. Introduction

The history of literature has recorded several studies on the dynamic behavior of Cournot
duopoly games. Such games are usually represented by discrete dynamical systems whose dynamic
characteristics are of great important to mathematicians and economists. Studying those dynamics in
a global way has given more insights about the time evolution of maps describing such games
in the future. In duopoly games, there are only two competing firms, and due to the lack of
market information, those competitors adopt different mechanisms in order to update their outputs.
These mechanisms have included a gradient-based approach such as bounded rationality, and other
mechanisms such as local monopolistic approximation (LMA), adaptive mechanism and recently
profit-sharing mechanism.

Firms choosing the bounded rationality approach to play within the market do not have to know
complete information about demand and cost functions. They require only an estimation of their
marginal profits. In particular, this approach has been thoroughly used in many works and has
recently gained considerable popularity in literature. For instance, a Cournot duopoly game has been
introduced and discussed using the bounded rationality mechanism in [1]. This mechanism has also
been adopted in [2] to study a chaotic congestion game. The stability of equilibrium points of an R&D
competition has been analyzed for a model of duopoly based on the bounded rationality mechanism
in [3]. The influences of cost uncertainty of a duopoly game based on a concave demand function and
derived from bounded rationality have been investigated in [4]. The bounded rationality mechanism
has been used to construct and study a piecewise smooth map representing a remanufacturing
duopoly game in [5]. In [6], the mechanism has been adopted to investigate the complex characteristics
of a heterogeneous triopoly game. Based on the rationality mechanism, some complex dynamic
characteristics such as bifurcation, multistability and intermittent chaos of a two-stage Cournot game
have been analyzed in [7]. The constant elasticity of substitution (CES) production utility function
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has been recalled with the bounded rationality approach in [8] to investigate complex dynamic
characteristics of an oligopoly game. In [9], a duopoly Stackelberg game and its dynamic characteristics
have been formulated and studied based on the rationality mechanism. A duopoly game with price
competition based on bounded rationality applied to relative profit has been introduced and discussed
in [10]. For more information about this mechanism and others, readers are advised to see more works
in literature ([11–16]).

Heterogeneous mechanisms have been studied in several works in literature. For instance,
Leonard et al. [17], Tramontana [18], Agiza and Elsadany [19,20] and others in literature have concerned
duopoly games whose players adopted gradient-like and LMA mechanisms. In the current manuscript,
we consider a duopoly game that belongs to these works and whose players adopt the gradient-like
and a certain profit mechanism. The certain profit mechanism is a trade-off between profit and market
share maximization. It is worth highlighting that this mechanism has been used in [21,22] but the
analysis of the model based on that mechanism was improper as in those references the authors
had to handle their model as a piecewise smooth map. Proper usage of that mechanism has been
published in [5]. Our economic structure in this paper is similar to those introduced in [18,23] in
which an isoelastic demand function and linear costs have been assumed. In particular, our model
describing the duopoly game differs from those in the decisional mechanism adopted by the second
firm. The mechanism adopted by the second firm in our model is more general than those in [18]
and is more complicated than the one used by Cavalli et al. in [23]. The global analysis carried out
in this paper shows the destabilization of the equilibrium point due to two different routes to chaos.
These routes are formed because of the existence of period-doubling and Neimark–Sacker bifurcations
and a mixed scenario of them. The nonlinearity and noninvertibility of the game’s map show several
stable attractors (multi-stability). The phase plane of the game’s map is quite complicated and this is
because our investigations detect particular shapes known as lobes in the basins of attraction for some
attractive sets.

After the above introduction, we can now summarize the current paper. In Section 2, we introduce
the nonlinear map that describes the game at hand. In Section 3, we calculate the map’s fixed
points and study their conditions of stability. A rich local and global analysis of the complex dynamic
characteristics of the map such as bifurcations, period cycles, chaotic attractors and closed invariant sets
is given in Section 4. In Section 5, we study another important aspect of the map that is noninvertibility
and critical curves. In the last section, we give the conclusion.

2. The Model

We consider in this paper a duopoly game between two firms, firm 1 and firm 2. The demand
productions of each firm are denoted by x1 and x2, respectively. We recall the isoelastic demand
function derived from the Cobb–Douglas utility function [24].

p =
1
Q

=
1

x1 + x2
, (1)

where Q denotes the total supply. Suppose that both firms adopt linear cost functions given by,

Ci(xi) = cixi , i = 1, 2, (2)

and ∂Ci
∂xi

= ci refers to the marginal cost and is greater than zero. The profit of each firm becomes,

πi =
xi

∑2
i=1 xi

− cixi , i = 1, 2, (3)
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and then the marginal profits take the following form,

∂π1
∂x1

= x2

(∑2
i=1 xi)

2 − c1,

∂π2
∂x2

= x1

(∑2
i=1 xi)

2 − c2.
(4)

Now, we assume heterogeneous firms on which the two firms use different mechanisms in order
to update their outputs each period of time. The first firm adopts the so-called bounded rationality
mechanism introduced in [25]. So the first firm will update its production each time period according
to the following,

x1,t+1 = x1,t + αx1,t
∂π1

∂x1,t
, (5)

where α is a positive parameter named the speed of adjustment parameter. On the other hand,
the second firm chooses to share the market with a certain profit in order to update its production.
This may be done as follows. If it seeks a complete market share maximization, this gives π2 = 0 and
then the firm’s optimum output is given by,

x̄2 =
1
c2
− x1. (6)

That is positive provided that x1 < 1
c1

. However, if it completely seeks profit maximization,
its marginal profit will vanish and in that case the optimum output of the firm becomes,

x̂2 =

√
x1

c2
− x1. (7)

That is also positive provided that x1 < 1
c1

. So the firm will be traded off between profit and
market share according to the following,

x̃2 = ωx̄2 + (1−ω)x̂2

= ω
c2
− x1 + (1−ω)

√
x1
c2

, (8)

where ω ∈ (0, 1). When ω = 0 the second firm only seeks profit maximization and ω = 1 gives only
market share maximization. However, the firm is traded off between both, it updates its output each
period of time using the following adaptive mechanism.

x2,t+1 = (1− β)x2,t + βx̃2,t, (9)

where β ∈ (0, 1). Such adaptive mechanism shows that the second firm updates its next period output
based on some weights between the previous and optimum of the market share. Now, the duopoly
game is described by the following 2D nonlinear discrete dynamical system,

T(x1, x2) :


x1,t+1 = x1,t + αx1,t

(
x2,t

(∑2
i=1 xi,t)

2 − c1

)
,

x2,t+1 = x2,t + β
(

ω
c2
− x1,t − x2,t + (1−ω)

√
x1,t
c2

)
.

(10)

It should be noted that the map (10) is not defined at the origin (0, 0). Our proposed model is
similar to the models studied in [18,23]. Indeed, our model’s mechanism is similar to both mechanisms
adopted by the first firm in those models. The mechanism adopted by the second firm in our model
here is more general than the one adopted one by the second firm in [18]. In fact, if we put β = 1 and
ω = 0 in our model (10) one gets Tramontana’s model discussed in [18]. Regarding the model studied
in [23], the second firm uses a different mechanism than ours.
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3. The Fixed Points and Stability

In order to get the fixed points of the map (10), we set x1,t+1 = x1,t = x∗1 and x2,t+1 = x2,t = x∗2 in
(10). This gives the following points,

E1 = (0, ω
c2
),

E2 =
(
x∗1 , x∗2

)
,

(11)

where,

x∗1 =

(
(1−ω)(c2−2c1ω)+

√
c2[c2(1+ω)2−4c1ω2]

2c2[c2+(1−ω)2c1]

)2
,

x∗2 = c1
2c2

(
c2(1+ω4)+(1−ω)(1+ω2)

√
c2[c2(1+ω)2−4c1ω2]−2c1ω2(1−ω)2

[c2+(1−ω)2c1]
2

)
.

(12)

The boundary point E1 is considered as a monopoly point as it gives a situation of leaving the
market by the first firm and then it becomes dominated only by the second firm. Therefore, we have
only the second equation of map (10). It is easy to see that E1 is locally asymptotically stable under

the condition 0 < β < 2. It should be noted that the point E2 ∈ R2
+ under the condition c1

c2
<
(

1+ω
2ω

)2
.

For the stability of this interior equilibrium point E2, which is the equilibrium of the game, we recall
the Jacobian matrix at this point,

Jm =

 1− α

(
c1(x∗1+x∗2 )

3+(x∗1−x∗2 )x∗2
(x∗1+x∗2 )

3

)
αx∗1 (x∗1−x∗2 )
(x∗1+x∗2 )

3

β(1−ω−2
√

c2x∗1)
2
√

c2x∗1
1− β

 . (13)

The above matrix has λ2 − τλ + δ as its characteristic equation where τ and δ are the trace and
determinant of (13). They take the following forms at E2.

τ = 2− β− α

(
c1(x∗1+x∗2 )

3+(x∗1−x∗2 )x∗2
(x∗1+x∗2 )

3

)
,

δ =
√

c2[2(1−β)(1−αc1)(x∗1+x∗2 )
3+2α(x∗1−x∗2 )(βx∗1+(1−β)x∗2)]−αβ(1−ω)(x∗1−x∗2 )

2
√

c2(x∗1+x∗2 )
3 .

(14)

Therefore, the stability conditions for E2 are,

1− τ + δ > 0,
1 + τ + δ > 0,
1− δ > 0.

(15)

The next section gives whether the conditions (15) are satisfied or which types of bifurcations
make E2 unstable.

4. Bifurcations

In this section, we analyze the complex dynamic behavior of the map (10). We show that there are
two types of bifurcations by which routes to chaos coexist. Those types are the period-doubling
and Neimark–Sacker bifurcations. Our analysis begins with assuming the parameter values,
c1 = 0.3, c2 = 0.9, ω = 0.5 and β = 0.45. Here, we take α as the bifurcation parameter and keep all
the other parameters fixed. We assume the symmetric case of the second firm, which means that
ω = 0.5 follows an average preference between profit and market share. At this set of values, we have
a positive equilibrium point, E2 = (0.6983990501, 0.2976105167). Let us take α = 4, then the Jacobian
matrix (13) becomes,

Jm =

[
−0.6828731121 1.133152573
−0.3081009632 0.55

]
,
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whose eigenvalues are λ1 = 0.1092581464 and λ2 = −0.2421312585. They are real and their absolute
values lie within the open circle and hence E2 is locally asymptotically stable. In addition, it is easy to
see that the conditions of stability (15) are satisfied. The numerical experiments show that E2 is stable
for the values of α ≤ 5.387. At α ≈ 5.388 the period two-cycle is born. Figure 1a presents the kind
of bifurcation by which the equilibrium point becomes unstable. It is a period-doubling bifurcation.
As one can see, increasing the parameter α gives rise to period 4-cycle, 8-cycle and other higher period
cycles, then routes to chaotic behaviors of the map arise around equilibrium point. Globally, at α = 5
and the other parameter values are kept fixed as previously, we get only the stable equilibrium point.
It is plotted with its basin of attraction in Figure 1b, where the grey color denotes divergent and
unfeasible trajectories. Increasing α further gives a quite complicated phase plane. The stable period
2-cycle continues to appear as α increases and then the period 4-cycle arises at α ≈ 5.57. Figure 1c
shows the basin of this 4-cycle (represented by squares) with the equilibrium point (represented by
circle). The yellow and orange colors characterize the basin of attraction of this cycle. As α increases the
basin becomes more complicated. The nonlinearity of map (10) gives a consequence of multistability
and hence the basin becomes complicated. Keeping the other parameter values fixed and take α = 5.58
a stable period 8-cycle and its basin emerged with the equilibrium point in Figure 1d. Higher periodic
cycles appear as α increases and then at α ≈ 5.63 chaotic attractors are born. Figure 1e,f show two-piece
chaotic attractors of the map (10) around the equilibrium point and the time series for both variables,
respectively.

On the other hand, other routes to chaos are born at the parameter values c1 = 0.15, c2 = 0.9,
ω = 0.5 and β = 0.95. It occurs for low values for the cost c1 and high values of both c2 and β. At this
set of values we also have a positive equilibrium point, E2 = (0.8856979217, 0.1658689243). Let us take
α = 2.2, then the Jacobian matrix (13) becomes,

Jm =

[
0.4441051182 1.206221288
−0.6839890304 0.05

]
,

whose eigenvalues are λ1,2 = 0.247± 0.88665i. They are complex conjugate and their absolute values
lie within the open circle and hence E2 is locally asymptotically stable. In addition, it is easy to see
that the conditions of stability (15) are satisfied. As α varies a Neimark–Sacker bifurcation takes place.
It starts above the value 2.506, and quasi-periodic motions continue to appear until α = 3.045 where
those motions are replaced by periodic one, specifically a period 9-cycle emerges. In Figure 2a,b,
we show Neimark–Sacker bifurcation on varying α. Figure 2c depicts the quasi-periodic motion and
the stable period 9-cycle at α = 3.044 and α = 3.045, respectively. In Figure 2d, we give a consequence
of stable spirals due to Neimark–Sacker bifurcation when α takes the values, 2.58, 2.60, 2.61, 2.62 and
the other parameter values are fixed. As α continues to increase, the spiral around the equilibrium
point is converted into an invariant attracting closed curve that is given in Figure 2e for different
values of α. This closed curve implies the coexistence of quasi-periodic motion as reported above.
The quasi-periodic motion refers to a predictable macroeconomic behavior of the map’s output.
As in [18], the dynamic of the map (10) changes from quasi-periodic motion to a period 9-cycle
that has some iterations with negative demand outputs. The basins of attraction of this cycle are
quite complicated as shown in Figure 2f, where the grey colors denote the divergent and unfeasible
trajectories. It should be noted that all the parameter values are fixed at c1 = 0.15, c2 = 0.9, ω = 0.5 and
β = 0.95 in Figure 2. It can be seen from Figure 2a that after Neimark–Sacker bifurcation there are open
windows that give rise to periodic, instead of quasi-periodic, cycles. It is obvious that the period 9-cycle
is followed by a period 18-cycle that has some negative iteration. It is formed due to period-doubling
bifurcation inside the open windows. Figure 3a shows the basin of the period 18-cycle where the grey
colors refer to divergent and unfeasible trajectories. Increasing α to 3.14, a 9-piece chaotic attractor
is born that gathers into one piece chaotic attractor at α = 3.145 as given in Figure 3b,c, respectively.
Increasing α further reports an unconnected 9-piece chaotic attractor which starts gathering to one
piece when α approaches 3.145. This one piece continues to appear and is converted into a period
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5-cycle with some negative iterations at α = 3.18 as shown in Figure 3d. Increasing this parameter
further, a period 10-cycle with negative iterations exists in Figure 3e. Finally, any other increase in the
bifurcation parameter α makes the map’s dynamics become increasingly chaotic as in Figure 3f.
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Figure 1. (a) Period doubling bifurcation and Lyapunov exponent with respect to α; (b) Basins
of attraction of the point E2; (c) Basins of attraction of period 4-cycle; (d) Basins of attraction of
period 8-cycle; (e) Phase plane for two chaotic attractors; (f) Time series for the decision variables.
Other parameters values are c1 = 0.3, c2 = 0.9, ω = 0.5 and β = 0.45.
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Figure 2. (a,b) Bifurcation diagrams on varying α with respect to x1 and x2; (c) Time series for
quasi-periodic and period 9-cycle; (d,e) Spiral and closed invariant curve; (f) Basins of attraction for
period 9-cycle at α = 3.045. Keeping fixed the other parameters’ values at: c1 = 0.15, c2 = 0.9, ω = 0.5
and β = 0.95.
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Figure 3. (a) Basins of attraction of period 18-cycle; (b) Phase space of 9-piece chaotic attractor; (c) Phase
space of one piece chaotic attractor; (d) Basins of attraction of period 5-cycle; (e) Basins of attraction
of period 10-cycle; (f) Some chaotic behaviors for the map. Other parameters values are c1 = 0.15,
c2 = 0.9, ω = 0.5 and β = 0.95.

From the previous discussion, we remark that the main feature of the map (10) is that its dynamic
becomes complicated due to two different types of bifurcations. Those types are period-doubling and
Neimark–Sacker bifurcation. Because the map has five parameters and the equilibrium point has a
complicated expression, it is hard to put a clear form for the stability conditions (15). Instead, we have
performed some numerical simulation which has provided some insights about the map’s dynamics.
We have observed that the bifurcation parameter α yielded chaotic behavior of the map due to
period-doubling bifurcation when we took small values of the first firm’s cost c1, compared with those
by the other firm (c2), besides the small value of β. Indeed, the second equation of (10) contains three
important parameters that are c2, ω and β. In the previous discussion, we have kept those parameter
values fixed and studied the influences of α. It shows that the map’s equilibrium point E2 becomes
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unstable due to Neimark–Sacker bifurcation when c1 << c2 as shown before. Furthermore, a mixed
scenario is detected for the map’s dynamic which is due to the two types of bifurcations. It is observed
above that after the Neimark–Sacker bifurcation, there were some periodic windows which lead the
map’s dynamics to change from quasi-periodic motion to periodic motion. We conclude this section
by giving the impact of the other parameters β and ω on the map’s dynamics in the following figure.
Figure 4 shows that the map’s fixed point becomes unstable because of Neimark–Sacker bifurcation on
varying the parameters β and ω keeping the other parameters’ values at c1 = 0.15, c2 = 0.9 and α = 3.
The discussion carried out so far reveals that the map’s dynamic are quite complicated. This is clear
from the shape of basins of attraction and the corresponding trajectories obtained above. Therefore,
getting more insights into the map’s trajectories lets us take into consideration two important features
of the map (10). The first one is that the map is a noninvertible map, as will be discussed in the next
section. Secondly, the map has one of its components (the denominator of the first equation in (10))
vanishing at x1 = −x2.
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Figure 4. Bifurcation diagrams on varying the parameters β and ω at the parameters’ values, c1 = 0.15,
c2 = 0.9 and α = 3.

5. Non-Invertibility and Critical Curves

Suppose that the time evolution for the behavior of the two firms is formed by an iteration of the
map T : (x1, x2)→ (x́1, x́2) defined by,

T :


x́1 = x1 + αx1

(
x2

(x1+x2)
2 − c1

)
,

x́2 = x2 + β
(

ω
c2
− x1 − x2 + (1−ω)

√
x1
c2

) (16)

where we set x1,t+1 = x́1 and x2,t+1 = x́2 in (10). The map defined in (16) is a noninvertible map as
for a given point (x́1, x́2) ∈ R2 the number of solutions of the algebraic system (16) on the variables
x1 and x2 may be zero, 2, or 4. According to those solutions, we can subdivide the phase plane into
zones, Zi and the index i denotes the number of rank-1 preimages. These preimage points characterize
points in the corresponding zone in the phase plane. As we can see from Figure 5 that the phase plane
is quite complicated. In order to identify those zones, we should calculate the preimage points in the
phase plane.
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Figure 5. (a–d) Phase plane at the parameters’ values, c1 = 0.3, c2 = 0.9, ω = 0.5, β = 0.45 and α = 5.5.
The grey color indicates divergent and unfeasible trajectories. The white color indicates non-convergent
trajectories. The other two colors indicate the basins of attraction of the period 2-cycle appearing with
the equilibrium point E2.

It is reported in [26,27] that any two contiguous zones are different in the number of real preimages
by two. It is also reported that there may be two or more identical preimages on the critical curve
indicated by LC. As our map is a noninvertible map and does not permit us to calculate inverse points
of the phase plane, we instead calculate the set LC−1 containing all the points at which the determinant
of Jacobian of (16) vanishes,

LC−1 =
{
(x1, x2) ∈ R2 : det J(x1, x2) = 0

}
, (17)

and then LC = T(LC−1). For the same set of parameters’ values used in Figure 5a, we only depict in
Figure 5b the numerical computation of LC−1 as it is hard to plot LC.

Proposition 1. The number of real preimages of the point (x́1, x́2) = (0, x̊2) ∈ R2
+ are:

• only one that is
(

0, c2 x̊2−ωβ
c2(1−β)

)
,

• 2 or 4 under the condition αc1 ≥ 1.

Proof. Substituting (x́1, x́2) = (0, x̊2) in (16) we get,

0 = x1

(
1− αc1 +

αx2
(x1+x2)

2

)
,

x̊2 = x2 + β
(

ω
c2
− x1 − x2 + (1−ω)

√
x1
c2

)
.

(18)
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The first equation in (18) represents a product equalling zero if at least one of its factors becomes
zero. So we consider the following two cases:

• Case 1: x1 = 0. Substituting this case in the second equation of (18) and solving algebraically with
respect to x2 we get only one preimage point that is

(
0, c2 x̊2−ωβ

c2(1−β)

)
.

• Case 2: 1− αc1 +
αx2

(x1+x2)
2 = 0. This condition can be rewritten as

(x1 + x2)
2 =

αx2

αc1 − 1
, (19)

which must be positive under the condition, αc1 ≥ 1. Substituting (19) in the second equation of
(18) and solving algebraically with respect to x2 we get

x̊2 = x2 +
βω

c2
− β

√
αx2

αc1 − 1
+

β(1−ω)√
c2

√√
αx2

αc1 − 1
− x2. (20)

Equation (20) is a nonlinear algebraic equation that can not be explicitly solved with respect to x2.
Instead we can solve it numerically at the parameter’s values, c1 = 0.3, c2 = 0.9, ω = 0.5, β = 0.45
and α = 5.5. It is clear that at those values the condition αc1 ≥ 1 is satisfied. Furthermore,
the numerical calculations show that if 0.102 < x̊2 < 0.282 we get four real preimages while
0 ≤ x̊2 ≤ 0.102 or x̊2 ≥ 0.282 we get only two real preimages. For example, assume x̊2 = 0.282 the
two preimages are (6.156847367, 1.034232630) and (8.563457131, 2.407033129).

It is worth mentioning here that the map (16) belongs to the family of maps defined in ([28–30]).
Those maps are defined in the form (x́1, x́2) =

(
N(x1,x2)
D(x1,x2)

, G(x1, x2)
)

. This family of maps is defined

in every point in the phase plane except the points (x1, x2) ∈ R2 such that the denominator vanishes
(D(x1, x2) = 0) and their preimages of any rank. Our map takes the form 0/0 because N(x1, x2) = 0
and D(x1, x2) = 0 at only one point which is the origin Q = (0, 0). This point is called a focal point [28].
As in [23], all the points satisfying the condition D(x1, x2) = 0 form a set of non-definition points and
is denoted by ξS and in our paper it is represented by the line, ξS =

{
(x1, x2) ∈ R2 : x2 = −x1

}
and

its prefocal set is defined by ξQ : x2 = 0. For more properties of this focal point and the emergence of
lobes in the suggested map, the readers are advised to see [23].

6. Conclusions

In the current work, we have introduced a Cournot duopoly game between two competed firms
adopting different mechanisms for updating their outputs. As in [18,23] the first firm has chosen
to behave rationally based on a gradient-based mechanism while the second firm has entered the
competition with certain profit. Our current model is more general than the one studied in [18] and
differs from the other discussed in [23], however, they are similar in the mechanism adopted by the
first competed firm. Our discussion has shown that the game’s equilibrium can lose its stability via two
different routes of chaotic dynamics. Those routes are formed due to the coexistence of period-doubling
and Neimark–Sacker bifurcation. Since our game’s map includes many parameters, this has given rise
to a variety of dynamic behavior of the map such as converging to the equilibrium points, periodic
cycles, chaotic dynamics and closed invariant curves. We have also investigated some global properties
that have given more insights into the evolution of the game. Furthermore, the noninvertibility of the
map has been discussed and the appearance of lobes due to the focal point has been reported.

Our motivation in this paper is that the adoption of different mechanisms than those used
in [18,23] which has made our game’s map more complicated. In addition, our model has generalized
the other model discussed in [18] beside the rich analysis given for the global analysis. Our future
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works are to apply the suggested mechanism in this paper in a sequential quantity competition, such as
one given by Stackelberg games.
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