
mathematics

Article

On Singular Distributions With Statistical Structure

Paul Popescu 1 , Vladimir Rovenski 2,* and Sergey Stepanov 3

1 Department of Applied Mathematics, University of Craiova, Str. Al. Cuza, No, 13, 200585 Craiova, Romania;
paul_p_popescu@yahoo.com

2 Department of Mathematics, University of Haifa, Mount Carmel, Haifa 31905, Israel
3 Department of Mathematics, Finance University, 49-55, Leningradsky Prospect, 125468 Moscow, Russia;

s.e.stepanov@mail.ru
* Correspondence: vrovenski@univ.haifa.ac.il

Received: 10 September 2020; Accepted: 13 October 2020; Published: 17 October 2020
����������
�������

Abstract: In this paper, we extend our previous study regarding a Riemannian manifold endowed
with a singular (or regular) distribution, generalizing Bochner’s technique and a statistical structure.
Following the construction of an almost Lie algebroid, we define the central concept of the paper:
The Weitzenböck type curvature operator on tensors, prove the Bochner–Weitzenböck type formula
and obtain some vanishing results about the null space of the Hodge type Laplacian on a distribution.

Keywords: Riemannian manifold; almost Lie algebroid; singular distribution; statistical structure;
Weitzenböck curvature operator; harmonic differential form

MSC: 53C15; 53C21

1. Introduction

Distributions (subbundles of the tangent bundle) on a manifold are used to build up notions of
integrability, and specifically, of a foliation, e.g., [1–3]. There is definite interest of pure and applied
mathematicians to singular distributions and foliations, i.e., having varying dimension, e.g., [4,5].
Another popular mathematical concept is a statistical structure, i.e., a Riemannian manifold endowed
with a torsionless linear connection ∇̃ such that the tensor ∇̃g is symmetric in all its entries, e.g., [6–12].
The theory of affine hypersurfaces in Rn+1 is a natural source of such manifolds; they also find
applications in theory of probability and statistics as well as in information geometry.

Recall (e.g., [13]) that a singular distribution D on a manifold M assigns to each point x ∈ M
a linear subspace Dx of the tangent space Tx M in such a way that, for any v ∈ Dx, there exists a
smooth vector field V defined in a neighborhood U of x and such that V(x) = v and V(y) ∈ Dy for
all y of U. A priori, the dimension of Dx is not constant and depends on x ∈ M. If dimDx = const,
then D is regular.Singular foliations are defined as families of maximal integral submanifolds (leaves)
of integrable singular distributions (certainly, regular foliations correspond to integrable regular
distributions). Singular distributions also arise when considering irregular mappings of manifolds,
since at the point where the rank of the mapping is less than the dimension of the manifold—the
inverse image, the kernel of the mapping arises. Its dimension can vary from point to point. Therefore,
the theory presented in the article has applications to differential topology and mathematical analysis.

Let M be a connected smooth n-dimensional manifold, TM—the tangent bundle, XM—the Lie
algebra of smooth vector fields on M, and End(TM)—the space of all smooth endomorphisms of TM.
Let g = 〈·, ·〉 be a Riemannian metric on M and ∇—the Levi–Civita connection of g.

In this paper, we apply the almost Lie algebroid structure (see a short survey in Section 8) to
singular distributions on M, and in the rest of paper assume E = TM and ρ = P ∈ End(TM).
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Definition 1 (see [14]). An image D = P(TM) of TM under a smooth endomorphism P ∈ End(TM) will
be called a generalized vector subbundle of TM or a singular distribution.

Example 1. (a) Let P ∈ End(TM) on (M, g) be of constant rank, 0 < r(P) < dim M, satisfying

P2 = P, P∗ = P,

where P∗ is adjoint endomorphism to P, i.e., 〈P∗X, Y〉 = 〈X, PY〉, then we have an almost product structure
on (M, g), see [3]. In this case, P and H = id−P are orthoprojectors onto vertical distribution P(TM)

and horizontal distribution H(TM), which are complementary orthogonal and regular, but none of which is
in general integrable. Many popular geometrical structures belong to the case of almost product structure,
e.g., f -structure (i.e., f 3 + f = 0) and para- f -structure (i.e., f 3 − f = 0); such structures on singular
distributions were considered in [13]. Almost product structures on statistical manifolds (M, g, ∇̃) were studied
in [11,12].

(b) Let F be a singular Riemannian foliation of (M, g), i.e., the leaves are smooth, connected, locally
equidistant submanifolds of M. e.g., [5]. Then TF is a singular distribution parameterized by the orthoprojector
P : TM→ TF .

In this article, we generalize Bochner’s technique to a Riemannian manifold endowed with
a singular (or regular) distribution and a statistical type connection, continue our study [13–18]
and generalize some results of other authors in [9]. Recall that the Bochner technique works for
skew-symmetric tensors lying in the kernel of the Hodge Laplacian ∆H = d δ + δ d on a closed
manifold: using maximum principles, one proves that such tensors are parallel, e.g., [19]. Here d is
the exterior differential operator, and δ is its adjoint operator for the L2 inner product. The elliptic
differential operator ∆H can be decomposed into two terms,

∆H = ∇∗∇+<, (1)

one is the Bochner Laplacian∇∗∇, and the second term (depends linearly on the Riemannian curvature
tensor) is called the Weitzenböck curvature operator on (0, k)-tensors S,e.g., [19].

< (S)(X1, . . . , Xk) = ∑k
a=1 ∑n

i=1(R ei ,Xa S)(X1, . . . , ei︸ ︷︷ ︸
a

, . . . , Xk). (2)

Here {ei} is a local orthonormal frame on (M, g) and ∇∗ is the L2-adjoint of the Levi–Civita
connection ∇. Note that < reduces to Ric when evaluated on (0,1)-tensors, i.e., k = 1. According to
the well-known formula (RZ,Y S)(X1, . . . , Xk) = −∑ i S(X1, . . . RZ,YXi, . . . , Xk) for the action of the
curvature tensor R on (0, k)-tensors, for k ≥ 2 the formula from (2) has the form

<(S)(X1, . . . , Xk) = −2 ∑ i,j,a;b<a R(ei, Xa, ej, Xb) · S(X1, . . . , ej︸ ︷︷ ︸
b

, . . . , ei︸ ︷︷ ︸
a−b

, . . . , Xk)

+ ∑ i,a Ric(ei, Xa) · S(X1, . . . , ei︸ ︷︷ ︸
a

, . . . , Xk),

or, in coordinates, <(S)i1,...,ik = −2 ∑ a<b R j ia p ib S j p
i1 ... ... ... ik

+ ∑ a Ric ia j S j
i1 ... ... ik

. The Weitzenböck
decomposition Formula (1) allows us to extend the Hodge Laplacian to arbitrary tensors and is
important in the study of interactions between the geometry and topology of manifolds.

Our work has an Introduction section and eight subsequent sections, the References include
25 items. In Section 3, we generalize the notion of statistical structure for the case of distributions.
In Sections 2, 4 and 5, following an almost Lie algebroid construction (Section 8 with Appendix)
we define the derivatives ∇ P and d P, the modified divergence and their L2 adjoint operators on
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tensors, and modified Laplacians on tensors and forms. In Section 6, making some assumptions about
P (which are trivial when P = id TM), we define the curvature type operator R P of ∇ P. In Section 7,
we define the Weitzenböck type curvature operator on tensors, prove the Bochner–Weitzenböck type
formula and obtain vanishing results. The assumptions that we use are reasonable, as illustrated
by examples.

2. The Modified Covariant Derivative and Bracket

Here, we define the map∇ P : XM ×XM → XM satisfying Koszul conditions, see (48) in Section 8,

∇ P
X Y = ∇PX Y + KXY, (3)

called a P-connection, which depends on P and a (1, 2)-tensor K (called contorsion tensor), but generally
is not a linear connection on M. Set ∇ P

X f = (PX) f for f ∈ C1(M) (the P-gradient of f ). In particular,
for K = 0, we have the P-connection ∇P defined in [13] by

∇P
X Y = ∇PXY, (4)

which plays, in our study, the same role as the Levi–Civita connection in metric-affine geometry.
Using ∇ P, we construct the P-derivative of (s, k)-tensor S, where s = 0, 1, as (s, k + 1)-tensor ∇ PS:

(∇ PS)(Y, X1, . . . , Xk) = ∇ P
Y(S(X1, . . . , Xk))−∑k

i=1 S(X1, . . . ,∇ P
YXi, . . . , Xk). (5)

We use the standard notation ∇ P
Y S = ∇ PS(Y, . . .). A tensor S is called P-parallel if ∇ PS = 0.

A linear connection ∇̃ = ∇+ K on a Riemannian manifold (M, g) is metric if ∇̃g = 0, e.g., [7];
in this case, K∗X = −KX, where K∗X is adjoint to KX with respect to g. This concept of metric-affine
geometry can be applied for our P-connections. Recall that ∇ P is metric, see [13].

Proposition 1. The P-connection has a metric property, i.e.,∇ Pg = 0, if and only if the map KX ∈ End(TM),
see (3), is skew-symmetric for any X ∈ TM, that is 〈KXY, Z〉 = −〈KXZ, Y〉.

Proof. We calculate using (5),

(∇ P
X g)(Y, Z) = (∇PX g)(Y, Z)− 〈KXY, Z〉 − 〈KXZ, Y〉. (6)

Since ∇ has the metric property, then ∇PX g = 0, and the claim follows.

Using (3), define a skew-symmetric P-bracket [·, ·]P : XM ×XM → XM by

[X, Y]P = ∇ P
X Y−∇ P

Y X. (7)

By (7) and according to definition (49), first formula, in Section 8, the P-connection ∇ P is torsion
free. According to (47) in Section 8, we use the bracket (7) to define the following operator:

D P(X, Y) = [PX, PY]− P[X, Y]P.

Note that the equality D P = 0 corresponds to (46), third formula, with ρ = P of a skew-symmetric
bracket. The following result generalizes Proposition 3 in [16].

Proposition 2. Condition D P = 0 is equivalent to the symmetry on covariant components of the (1, 2)-tensor
A(X, Y) = (∇PXP)(Y)− P(KXY), where ∇ is the Levi–Civita connection of g, that is

(∇PXP)(Y)− P(KXY) = (∇PYP)(X)− P(KYX). (8)
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Proof. Using (7), we have

[X, Y]P = ∇PXY−∇PYX + KXY− KYX. (9)

Thus,

D P(X, Y) = ∇PXPY− P∇PXY− P(KXY)−∇PYPX + P∇PYX + P(KYX)

= ∇PXPY−∇PYPX− P(∇ P
X Y) + P(∇ P

Y X) = A(X, Y)−A(Y, X),

and the conclusion follows.

Theorem 1. If (8) holds for a P-connection (3), then the endomorphism P and the bracket [·, ·]P given in (7)
define an almost algebroid structure on TM.

Proof. This follows from Proposition 2, according to Definition 7 in Section 8.

Example 2. If NP = 0 (the Nijenhuis tensor of P) and K = c∇P (where c ∈ R and ∇ is the Levi–Civita
connection of g), then the tensor A (given in Proposition 2) is symmetric, thus the condition (8) holds.

3. The Statistical P-Structure

A linear connection ∇̃ on a Riemannian manifold (M, g) is called statistical if it is torsionless and
tensor ∇̃g is symmetric in all its entries, e.g., [6,9]. Such a pair (g, ∇̃) is called a statistical structure on
M. In this case,

K∗X = KX , KXY = KYX (X, Y ∈ TM), (10)

equivalently, the statistical cubic form A(X, Y, Z) = 〈KXY, Z〉 is symmetric. We generalize this concept
for singular distributions.

Definition 2. A P-connection ∇ P on (M, g) will be called statistical if the statistical cubic form A(X, Y, Z)
is symmetric, or, equivalently, (10) holds. In this case, the pair (g,∇ P) is called a statistical P-structure on M.

Proposition 3. If ∇ P is a statistical P-connection for g then the (3,0)-tensor ∇ Pg is symmetric in all its
entries, i.e., the following Codazzi type condition holds:

(∇ P
X g)(Y, Z) = (∇ P

Y g)(X, Z) = (∇ P
X g)(Z, Y). (11)

Proof. The theory of Codazzi tensors is well described in [7]. By (6), (10) and the property ∇g = 0,
we have (∇ P

X g)(Y, Z) = −2A(X, Y, Z), thus all three terms in (11) are equal.

Since ∇PX g = 0 for the Levi–Civita connection ∇, condition (11) does not impose restrictions on
P and it is equivalent to the property “the cubic form A is symmetric".

By (9) and (10), the P-bracket of a statistical P-structure does not depend on K:

[X, Y]P = ∇PXY−∇PYX. (12)

If ∇ P is statistical then ∇P
X , see (4), has the same P-bracket and D P = D P. Proposition 2 yields

the following result for a statistical P-structure.

Corollary 1. For a statistical P-structure, condition D P = 0, see (8), is equivalent to

(∇PXP)(Y) = (∇PYP)(X), X, Y ∈ XM, (13)

Proof. We can put A(X, Y) = (∇P)(PX, Y) and reduce (8) to a simpler view (13).
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The notion of conjugate connection is important for statistical manifolds, see [9,20].

Definition 3. For a P-connection ∇ P on (M, g), its conjugate P-connection ∇̆ P is defined by the
following equality:

PX〈Y, Z〉 = 〈∇ P
XY, Z〉+ 〈Y, ∇̆ P

XZ〉.

One may show that ∇̆ P
X = ∇P

X − K∗X holds in general, thus, for a statistical P-connection ∇ P

the conjugate connection ∇̆ P is given by ∇̆ P
X = ∇P

X − KX . In turn, the statistical P-connection ∇ P is
conjugate to ∇̆ P. Note that ∇ P + ∇̆ P = 2∇P.

Remark 1. For a conjugate statistical P-connection ∇̆ P, we can define the P-bracket by
^

[X, Y]P = ∇̆ P
X Y− ∇̆ P

Y X and the tensor D̆P(X, Y) = [PX, PY]− P
^

[X, Y]P. By (10), we have

^
[· , · ]P = [· , · ]P, Ă = A, D̆P = D P.

From Proposition 3, using Remark 1, we obtain the following corollaries.

Corollary 2. The pairs (g,∇ P) and (g, ∇̆ P) are simultaneously statistical P-structures on M.

Corollary 3. A statistical P-structure on (M, g) and its conjugate simultaneously define almost algebroid
structures (see definition in Section 8) on TM.

To simplify the calculations, for the rest of this article we will restrict ourselves to statistical
P-structures, see (10), and to use the concept of almost Lie algebroid, assume (13).

Define the vector field E = ∑ i Kei ei. Using (10), we get

〈E, X〉 = trg KX , X ∈ XM.

For any (k + 1)-form ω, set

(KY ω)(X1, X2, . . . , Xk) = −∑ i ω(X1, . . . , KYXi, . . . , Xk).

Throughout the paper, we use also the operator of contraction ι Y: if ω is a k-form and Y is a vector
field, then ι Y ω is a (k− 1)-form given by ι Y ω(X1, . . . , Xk−1) = ω(Y, X1, . . . , Xk−1), where Xi ∈ XM.

Lemma 1 (see Lemmas 6.2 and 6.3 in [9]). For any local orthonormal frame {ei} and any k-form ω we have

∑ i(Kei ω)(ei, X2, . . . , Xk) = −ι E ω(X1, . . . , Xk), (14)

and for any (k + 1)-form, k ≥ 1, and an index a ∈ {1, . . . , k} be fixed, we have

∑ i ω(ei, X1, . . . , Kei Xa, . . . , Xk) = 0. (15)

4. The Modified Divergence

Define the P-divergence of a vector field X on (M, g) using a local orthonormal frame {ei} by

divPX = trace(Y→∇ P
Y X) = ∑ i〈∇

P
ei

X, ei〉. (16)

The following result on the Stokes Theorem for distributions generalizes Lemma 1 in [13].
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Lemma 2. On a Riemannian manifold (M, g) with a statistical P-structure, the condition

(div P)(X) = trg KX , X ∈ XM (17)

is equivalent to the following equality:

divP X = div(PX), X ∈ XM. (18)

Proof. Note that

∑ i〈∇Pei X, ei〉 = ∑ i,j〈Pei, ej〉〈∇ej X, ei〉 = ∑ i,j〈ei, P∗ej〉〈∇ej X, ei〉

= ∑ j〈∇ej X, P∗ej〉 = ∑ j〈P∇ej X, ej〉 = div(PX)− (div P)(X).

Using this, definition (3) and (10), we have

divPX = ∑ i 〈∇Pei X + Kei X, ei〉 = div(PX)− (div P)(X) + trg KX .

From this and (10) the claim follows.

The following theorem is a direct consequence of Lemma 2.

Theorem 2. Let there be a statistical P-structure on a compact Riemannian manifold (M, g) with boundary
satisfies (17). Then for any X ∈ XM we have∫

M
(divPX)d volg =

∫
∂M
〈X, P(ν)〉 dω,

where, as in the classical case, ν is the unit inner normal to ∂M. In particular, on a Riemannian manifold (M, g)
without boundary, for any X ∈ XM with compact support, we have

∫
M(divPX)d volg = 0.

Example 3. For the tensor KXY = (div P)(Y) · X where X, Y ∈ TM, the property (17) follows from
div P = 0. The same holds for a more general (1,2)-tensor K = c∇P with any c ∈ R.

The following pointwise inner products and norms for (0, k)-tensors are used:

〈S1, S2〉 = ∑ i1,..., ik
S1(ei1 , . . . , eik ) S2(ei1 , . . . , eik ), ‖S‖ =

√
〈S, S〉

while, for k-forms, we set

〈ω1, ω2〉 = ∑ i1<...<ik
ω1(ei1 , . . . , eik )ω2(ei1 , . . . , eik ).

For L2-product of compactly supported tensors on a Riemannian manifold, we set

(S1, S2)L2 =
∫

M
〈S1, S2〉d volg .

The following ∇ ∗P maps (s, k + 1)-tensor, where s = 0, 1, to (s, k)-tensor:

(∇ ∗PS)(X1, . . . , Xk) = −∑ i(∇
P
ei

S)(ei, X1, . . . , Xk),

and similarly for ∇̆∗P and ∇∗P. Using (15), we relate ∇ ∗P and ∇∗P for any k-form ω:

∇ ∗Pω = ∇∗Pω + ιE ω, ∇̆∗Pω = ∇∗Pω− ιE ω. (19)

Thus, ∇̆∗Pω = ∇ ∗Pω− 2 ιE ω.
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The “musical" isomorphisms ] : T∗M→ TM and [ : TM→ T∗M are used for rank one tensors,
e.g., if ω ∈ T1

0 (M) is a 1-form and X ∈ XM then ω(X) = 〈ω], X〉 = 〈ω, X[〉 = X[(ω]).
The ∇ ∗P is related to the P-divergence (16) of X ∈ XM by

divP X = −∇ ∗PX[. (20)

To simplify the calculations and use the results of [13] with ∇ P, we will also consider statistical
P-structures with stronger conditions than (17),

a) div P = 0, b) E = 0. (21)

In Example 4 in [14] we showed that (21)(a) is reasonable: div P = 0 with P = f f ∗ holds for an
f -structure with parallelizable kernel if and only if both distributions f (TM) and ker f are harmonic.

The next result generalizes Proposition 1 in [13] and shows that ∇̆∗P is L2-adjoint to ∇ P

on k-forms.

Proposition 4. If conditions (21) hold for a statistical P-connection ∇ P, then for any compactly supported
k-form ω1 and k + 1-form ω2, we have

(∇̆∗Pω2, ω1)L2 = (ω2, ∇ Pω1)L2 . (22)

Proof. Define a compactly supported 1-form ω by

ω(Y) = 〈ι Y ω2, ω1〉, Y ∈ XM.

It was shown in Proposition 1 in [13] using assumption div P = 0 that

−∇ ∗Pω = −〈∇ ∗Pω2, ω1〉+ 〈ω2, ∇ Pω1〉. (23)

To simplify further calculations, assume that k = 1. Then, using (19) and (23), we obtain

−∇ ∗Pω = −〈∇̆∗Pω2, ω1〉+ 〈ω2, ∇ Pω1〉+ ∑ i 6=j〈ω2(ei, ej), ω1(Kei ej)〉, (24)

where (ei) is a local orthonormal frame on M. By symmetry of K and skew-symmetry of ω2, the last
term in (24) vanishes. By (24), (20) and Theorem 2 with X[ = ω, we obtain (22).

The differential operator ∇̆∗P∇ P is called the P-Bochner Laplacian for a statistical P-structure. The
following maximum principle generalizes Proposition 2 in [13].

Proposition 5. Let condition (17) hold for a statistical P-connection ∇ P on a closed Riemannian manifold
(M, g). Suppose that ω is a k-form such that 〈∇̆∗P∇ Pω, ω〉 ≤ 0. Then, ω is P-parallel.

Proof. We apply formula (22),

0 ≥ (∇̆∗P∇ Pω, ω)L2 = (∇ Pω, ∇ Pω)L2 ≥ 0;

hence, ∇ Pω = 0.

5. The Modified Hodge Laplacian

Using a statistical P-connection ∇ P, we define the exterior P-derivative of a differential form
ω ∈ Λk(M) by

d Pω(X0, . . . , Xk) = ∑ i(−1)i(∇ P
Xi

ω)(X0, . . . , Xi−1, Xi+1, . . . Xk). (25)
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For a k-form ωp, the (k + 1)-form ∇ Pω, see (5),

(∇ Pω)(Y, X1, . . . , Xk) = PY(ω(X1, . . . , Xk))−∑k
i=1 ω(X1, . . . ,∇ P

YXi, . . . , Xk)

is not skew-symmetric, but the form d Pω is skew-symmetric. For a function f on M, we have
d P f = ∇ P f and d̆ P f = ∇̆ P f .

The next proposition (see also Remark 1) generalizes Proposition 5 in [13] and shows that d̆ P = d P.

Proposition 6. The d P : Ωk(M)→ Ωk+1(M) is a 1-degree derivation, see Section 8, that is

d Pω(X0, . . . , Xk) = ∑k
i=0(−1)iPXi(ω(X0, . . . , Xi−1, Xi+1, . . . , Xk))

+ ∑0≤i<j≤k(−1)i+jω
(
[X, Y]P, X0, . . . , Xi−1, Xi+1, . . . , Xj−1, Xj+1, . . . , Xk

)
. (26)

Proof. This is similar to the proof of Proposition 5 in [13]. For the convenience of a reader we give it
here. Using (5) and (25) with s = 0, we obtain

d Pω(X0, . . . , Xk) = ∑k
i=0(−1)iPXi(ω(X0, . . . , Xi−1, Xi+1, . . . , Xk))

+ ∑k
i=0(−1)i

(
∑i−1

j=0 ω(X0, . . . ,∇ P
Xi

Xj, . . . , Xi−1, Xi+1, . . . , Xk)

+ ∑k
j=i+1 ω(X0, . . . , Xi−1, Xi+1, . . . ,∇ P

Xi
Xj, . . . , Xk)

)
= ∑k

i=0(−1)iPXi(ω(X0, . . . , Xi−1, Xi+1, . . . , Xk))

+ ∑0≤i<j≤k(−1)i+jω
(
∇ P

Xi
Xj −∇ P

Xj
Xi, X0, . . . , Xi−1, Xi+1, . . . , Xj−1, Xj+1, . . . , Xk

)
.

Using (7), we complete the proof of (26).

Put δ P = ∇ ∗P for the P-codifferential δ P : Λk(TM)→ Λk−1(TM). Similarly, we define

δ̆ Pω(X2, . . . , Xk) = −∑ i(∇̆
P
ei

ω)(ei, X2, . . . , Xk).

Proposition 7. On a closed (M, g) with a statistical P-structure, the P-codifferential δ̆ P is L2-adjoint to d P,
i.e., for any differential forms ω1 ∈ Λk(TM) and ω2 ∈ Λk+1(TM) we have

(δ̆ Pω2, ω1)L2 = (ω2, d Pω1)L2 . (27)

Proof. We derive

〈d Pω1, ω2〉 = ∑k
u=0(−1)i∇ P

∂iu
ω1(∂i1 , . . . , ∂iu , . . . , ∂ik )gi0 j0 . . . gik jk ω2(∂i1 , . . . , ∂ik )

= (k + 1)
(
∇ P

∂i0
ω1(∂i1 , . . . , ∂ik )

)
gi0 j0 . . . gik jk ω2(∂j0 , . . . , ∂jk ) = 〈∇

Pω1, ω2〉,

as in the classical case. It appears as a (k + 1) factor, that finally is absorbed in the definition of d P.
Using this and (22), which requires (17), we obtain (27).

Definition 4. Define the Hodge type Laplacians ∆P
H and ∆̆P

H for differential forms ω by

∆P
H ω = d P δ̆ Pω + δ̆ Pd Pω, ∆̆P

H ω = d Pδ Pω + δ Pd Pω. (28)

A differential form ω is said to be P-harmonic if ∆P
H ω = 0 and ‖ω‖L2 < ∞ (similarly for P̆).
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Remark 2. The P-harmonic forms have similar properties as in the classical case, e.g., (Lemma 9.1.1 in [19]).
Let condition (17) hold on a closed (M, g). For ω ∈ Λk(TM), using Proposition 7 and (28), we have

(∆ P
H ω, ω)L2 = (d Pω, d Pω)L2 + (δ̆ Pω, δ̆ Pω)L2 ,

thus, ω is P-harmonic (and similarly for P̆-harmonic) if and only if d Pω = 0 and δ̆ Pω = 0. Observe that,
if ∆ P

H ω = 0 and ω = d P θ, then δ̆ Pd Pθ = δ̆ Pω = 0. It follows that

(ω, ω)L2 = (d Pθ, d Pθ)L2 = (θ, δ̆ Pd Pθ)L2 = (θ, δ̆ Pω)L2 = 0.

Thus, if ω ∈ Λk(TM) is P-harmonic and ω = d P θ for some θ ∈ Λk−1(TM), then ω = 0.

We also consider the Hodge type Laplacian related to ∇P, defined in [13] by

∆P
H = δ P d P + d P δ P,

where

d Pω(X0, . . . , Xk) = ∑ i(−1)i(∇PXi ω)(X0, . . . , Xi−1, Xi+1, . . . Xk),

δ Pω(X2, . . . , Xk) = −∑ i(∇Pei ω)(ei, X2, . . . , Xk).

Similarly to Equations (58) and (59) in [9], we can state the following

Lemma 3. For a statistical P-structure the following equalities are satisfied:

a) d P = d P = d̆P,

b) δ P = δ P − ι E = δ̆P + ι E,

c) ∆P
H = ∆ P

H + LP
E = ∆̆P

H −LP
E, (29)

where LP := d P ι− ι d P is the modified Lie derivative.

Proof. From (12) and (26) we get equalities (29) (a). Next, we obtain

δ Pω = −∑ i∇
P
ei

ιei ω = −∑ i∇
P
ei

ιei ω−∑ i Kei ιei ω = δ Pω + ι E ω.

For the second term, we have used (14). From this and ∇̆P = ∇P − K the equalities (29) (b) follow.
Finally, we calculate the following:

∆ P
H = d P δ̆ P + δ̆ P d P = d P(δ P − ι E) + (δ P − ι E)d P = ∆ P −LP

E.

From this and ∇̆P = ∇P − K equalities (29) (c) follow.

The following proposition extends result for regular case, P = id TM and K = 0 in [21].

Proposition 8. Let (M, g) be a complete non-compact Riemannian manifold endowed with a vector field X such
that divP X ≥ 0 (or divP X ≤ 0), where P ∈ End(TM) such that conditions (17) and ‖PX‖g ∈ L1(M, g)
hold. Then, divP X ≡ 0.

Proof. Let ω be the (n− 1)-form in M given by ω = ιPX d volg, i.e., the contraction of the volume
form d volg in the direction of PX. If {e1, . . . , en} is an orthonormal frame on an open set U ⊂ M with
coframe ω1, . . . , ωn, then

ιPX d volg = ∑n
i=1(−1)i−1〈PX, ei〉ω1 ∧ . . . ∧ωi−1 ∧ωi+1 ∧ . . . ∧ωn.
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Since the (n− 1)-forms ω1 ∧ . . . ∧ ωi−1 ∧ ωi+1 ∧ . . . ∧ ωn are orthonormal in Ωn−1(M), we get
‖ω‖2

g = ∑n
i=1〈PX, ei〉2 = ‖PX‖2

g. Thus, ‖ω‖g ∈ L1(M, g) and

dω = d(ιPX d volg) = (divP X) d volg,

see (18). There exists a sequence of domains Bi on M such that M =
⋃

i≥1 Bi, Bi ⊂ Bi+1 and
lim i→∞

∫
Bi

dω = 0, see [22]. Then

∫
Bi

(divP X) d volg
(18)
=
∫

Bi

div(PX) d volg =
∫

Bi

dω → 0.

But since divP X ≥ 0 on M, it follows that divP X = 0 on M.

We call ∆ P f = divP(∇ P f ) the P-Laplacian for functions. Using (3), we have

∆ P f = ∆ P f + (PE)( f ), (30)

that generalizes Lemma 6.1 in [9] for regular case, P = id TM.

Consider the following system of singular distributions on a smooth manifold M: D1 = D,
D2 = D1 + [D,D1], etc. The distribution D is said to be bracket-generating of the step r ∈ N if Dr = TM,
e.g., [2]. Note that integrable distributions, i.e., [X, Y] ∈ XD (X, Y ∈ XD), are not bracket-generating.
The condition ∇ P f = 0 means that f ∈ C2(M) is constant along the (integral curves of) D; moreover,
if D is bracket-generating then f = const on M.

The next theorem extends the well-known classical result on subharmonic functions and
generalizes Theorem 1 in [13] (see also [21] for P = id TM and K = 0).

Theorem 3. Let conditions (17) hold for a statistical P-connection ∇ P, and let f ∈ C2(M) satisfy either
∆ P f ≥ 0 or ∆ P f ≤ 0. Suppose that any of the following conditions hold:

(a) (M, g) is closed;
(b) (M, g) is complete non-compact, ‖P∇ P f ‖ and ‖ f P∇ P f ‖ belong to L1(M, g).
Then, ∇ P f = 0; moreover, if P(TM) is bracket-generating, then f = const.

Proof. This is as for Theorem 1 in [13]. Set X = ∇ P f , then ∆ P f = divPX.
(a) Using Theorem 2, we get ∆ P f ≡ 0. By the equality with Y = ∇ P f ,

divP( f ·Y) = f · divP Y + 〈∇ P f , Y〉 (31)

and again Theorem 2 with X = f∇ P f , we get (∇ P f , ∇ P f )L2 = 0, hence ∇ P f = 0.
(b) By Proposition 8 with X = ∇ P f and condition ‖P∇ P f ‖ ∈ L1(M, g), we get ∆ P f ≡ 0.

Using (31) with Y = ∇ P f , Proposition 8 with X = f∇ P f and condition ‖ f P∇ P f ‖ ∈ L1(M, g), we get
(∇ P f , ∇ P f )L2 = 0, hence ∇ P f = 0. If the distribution P(TM) is bracket-generating, then using
Chow’s theorem [23] completes the proof for both cases.

6. The Modified Curvature Tensor

Definition 5. Define the second P-derivative of an (s, k)-tensor S as the (s, k + 2)-tensor

(∇ P)2
X,Y S = ∇ P

X (∇ P
Y S)−∇ P

∇ P
XY S .

Define the P-curvature tensor of ∇ P by

R P
X,Y Z = (∇ P)2

X,Y Z− (∇ P)2
Y,X Z

= ∇P
X∇ P

Y Z−∇ P
Y∇ P

X Z−∇ P
[X,Y]P

Z, X, Y, Z ∈ XM,



Mathematics 2020, 8, 1825 11 of 20

see (49), second formula, with ρ = P, and set

R P(X, Y, Z, W) = 〈R P
X,Y Z, W〉, X, Y, Z, W ∈ XM. (32)

The P-Ricci curvature tensor of ∇ P is defined by the standard way:

Ric P(X) = ∑ i R P
X,ei

ei, Ric P(X, Y) = ∑ i R P(X, ei, ei, Y). (33)

The formula of the action of R P on (0, k)-tensor fields is similar to the formula of the action of R
(mentioned in the Introduction),

(R P
X,Y S)(X1, . . . , Xk) = D P(X, Y)(S(X1, . . . , Xk))−∑ i S(X1, . . . R P

X,Y Xi, . . . , Xk). (34)

To simplify the calculations, in the rest of the article we assume that the tensor K satisfies the
following Codazzi type condition:

(∇PX K)YZ = (∇PY K)XZ, X, Y, Z ∈ XM. (35)

Here, (∇PX K)Y Z = ∇PX(KYZ)− K∇PXY Z− KY(∇PX Z). Note that [KX, KY] : TM → TM is a
skew-symmetric endomorphism for a statistical P-structure.

The following result generalizes Proposition 6 in [16].

Proposition 9. For a statistical P-structure, we have

1. R P
X,Y Z = R PX,PY Z + [KX , KY](Z); (R P

X,Y ω)(Z) = −ω(R P
X,Y Z− [KX , KY](Z));

hence, 〈R P
X,Y Z, W〉 = −〈R P

X,Y W, Z〉,
2. R P

X,Y f = 0 for any f ∈ C2(M); R P
X,Y g = 0;

3. for every (1, k)-tensor S we have

(R P
X,Y S)(Z1, . . . , Zk) = (R PX,PY S)(Z1, . . . , Zk)

+ [KX , KY](S(Z1, . . . , Zk))−∑ i S(Z1, . . . [KX , KY](Zi), . . . , Zk).

4. R P(X, Y, Z, W) = R(PX, PY, Z, W) + 〈[KX , KY](Z), W〉;
5. R P(X, Y, Z, W) = −R P(Y, X, Z, W) = −R P(X, Y, W, Z), where X, Y, Z, W ∈ XM, ω ∈ Λ1(TM)

and f ∈ C2(M).

Proof. 1. Since P[X, Y]P = [PX, PY], see definition of D P, we have

R P
X,Y Z = R PX,PYZ + (∇PX K)Y Z− (∇PY K)XZ + [KX , KY](Z),

(R P
X,Y ω)(Z) = −ω(R PX,PY Z) + ω((∇PX K)YZ− (∇PY K)XZ + [KX , KY](Z)).

From this and (35) the first claim follows. Since [KX, KY] : TM → TM is skew-symmetric,
then R P

X,Y is also skew-symmetric.
2. We calculate

R P
X,Y f = PX(PY( f ))− PY(PX( f ))− (P[X, Y]P) f = D P(X, Y) f = 0.

Next, using 1. we obtain

〈R P
X,Y Z, W〉 = 〈R PX,PY Z, W〉+ 〈[KX , KY](Z), W〉.
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Similarly, 〈R P
X,Y W, Z〉 = 〈R PX,PY W, Z〉+ 〈[KX , KY](W), Z〉 . By this and (34), we get

(R P
X,Y g)(Z, W) = −〈R P

X,Y Z, W〉 − 〈Z, R P
X,Y W〉

= (R PX,PY g)(Z, W)− 〈[KX , KY](Z), W〉 − 〈[KX , KY](W), Z〉
= (R PX,PY g)(Z, W).

Using R PX,PY g = 0 and the property (10), we obtain R P
X,Y g = 0.

3. From the above and (34) the claim follows.
4. The equality follows from (32) and 1.
5. Since R P

X,Y Z = −R P
Y,X Z, see 1., the first equality follows. For the second one, we use 2:

0 = (R P
X,Y g)(Z, Z) = −2〈R P

X,YZ, Z〉;

thus, the claim follows from the equality 〈R P
X,Y(Z + W), Z + W〉 = 0.

Similarly, we define the P-curvature tensor of the conjugate P-connection ∇̆ P,

R̆P
X,Y Z = ∇̆P

X ∇̆ P
Y Z− ∇̆ P

Y ∇̆ P
X Z− ∇̆ P

^
[X,Y]P

Z, X, Y, Z ∈ XM.

The following curvature type tensor (depending on P only) has been introduced in [13]:

R P
X,Y Z = ∇PX∇PY Z−∇PY∇PX Z−∇ P[X,Y]P

Z, X, Y, Z ∈ XM,

Since we assume D P = 0 then R P
X,Y = R PX,PY holds. By the above,

R P
X,Y = R P

X,Y + [KX , KY], R̆P
X,Y = R P

X,Y − [KX , KY].

Thus,
R P

X,Y + R̆P
X,Y = 2 R P

X,Y, 〈R P
X,Y Z, W〉 = −〈R̆P

X,Y W, Z〉,

and
^
Ric

P
(X, Y) = Ric P(X, Y) when (35) holds. The Ricci tensor of ∇P was defined in [13] by

RicP(X, Y) = ∑ i R(PX, Pei, ei, Y).

Proposition 10. For a statistical P-structure, we have

Ric P(X, Y) = RicP(X, Y) + 〈KXY, E〉 − 〈KX , KY〉. (36)

Thus, Ric P is symmetric if and only if RicP is symmetric.

Proof. Using symmetry of K, we have

Ric P(X, Y) = ∑ i R P(X, ei, ei, Y) = ∑ i

(
R(PX, Pei, ei, Y) + 〈[KX , Kei ](ei), Y〉

)
= RicP(X, Y) + ∑ i〈[KX , Kei ](ei), Y〉 = RicP(X, Y) + 〈KXY, E〉 − 〈KX , KY〉.

From the above the claim follows.

The endomorphism P of TM induces endomorphisms P and its adjoint P∗ of Λ2(TM):

P(X ∧Y) = PX ∧ PY, P∗(X ∧Y) = P∗X ∧ P∗Y,

see [13]. The curvature tensor RX,Y can be seen as a self-adjoint linear operatorR on the space Λ2(TM)

of bivectors, called the curvature operator, e.g., [7,19]. Similarly, we consider R P
X,Y = R PX,PY + [KX , KY]
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as a linear operator or as a corresponding bilinear form on Λ2(TM). For this, using skew-symmetry of
[KX , KY] for a statistical P-connection, define a linear operator K on Λ2(TM) by

〈K(X ∧Y), Z ∧W〉 = 〈[KX , KY](Z), W〉,

and observe K∗ = K (symmetry). PutR P = RP +K and R̆P = RP −K, i.e.,

R P(X ∧Y) = RP(X ∧Y) +K(X ∧Y) = R(PX ∧ PY) +K(X ∧Y),

R P(X ∧Y, Z ∧W) = 〈R P(X ∧Y), Z ∧W〉,
R̆P(X ∧Y) = RP(X ∧Y)−K(X ∧Y) = R(PX ∧ PY)−K(X ∧Y),

R̆P(X ∧Y, Z ∧W) = 〈R̆ P(X ∧Y), Z ∧W〉.

The aboveR P generalizesR P = RP , having the properties, see [13],

R P(X ∧Y) = RP(X ∧Y) = R(PX ∧ PY),

R P(X ∧Y, Z ∧W) = 〈R P(X ∧Y), Z ∧W〉,
〈R P(X ∧Y), Z ∧W〉 = 〈R(PX ∧ PY), Z ∧W〉 = R P(X, Y, W, Z).

Using known properties ofR and property 4. of R P, we have

〈R P(X ∧Y), Z ∧W〉 = 〈R(PX ∧ PY) +K(X ∧Y), Z ∧W〉 = R P(X, Y, W, Z),

〈 R̆P(X ∧Y), Z ∧W〉 = 〈R(PX ∧ PY)−K(X ∧Y), Z ∧W〉 = R̆P(X, Y, W, Z).

Note that if P∗R 6= RP thenR P on Λ2(TM) is not self-adjoint:

(R P)∗ = (RP +K)∗ = P∗R+K 6= RP +K = R P.

7. The Weitzenb öck Type Curvature Operator

Here, we use the P-connection ∇ P to introduce the central concept of the paper: the Weitzenböck
type curvature operator on tensors. We generalize the Weitzenböck curvature operator (2), (see also [9]
for statistical manifolds when P = id TM, and [13] for distributions when K = 0) for the case of
distributions with statistical structure.

Definition 6. Define the P-Weitzenböck curvature operator on (0, k)-tensors S over (M, g) by

< P(S)(X1, . . . , Xk) = ∑k
a=1 ∑ i(R P

ei ,Xa
S)(X1, . . . , ei︸ ︷︷ ︸

a

, . . . , Xk). (37)

The operators <̆ P and <P are defined similarly using P-connections ∇̆ P and ∇P.

For a differential form ω, the < P(ω) is skew-symmetric. Note that < P reduces to Ric P when
evaluated on (0,1)-tensors, i.e., k = 1. For k ≥ 2 using (34), the formula from (37) reads as

< P(S)(X1, . . . , Xk) = −2 ∑ i,j,a;b<a R P(ei, Xa, ej, Xb) · S(X1, . . . , ej︸ ︷︷ ︸
b

, . . . , ei︸ ︷︷ ︸
a−b

, . . . , Xk)

+ ∑ i,a Ric P(ei, Xa) · S(X1, . . . , ei︸ ︷︷ ︸
a

, . . . , Xk), (38)

or, in coordinates, < P(S)i1,...,ik = −2 ∑ a<b R P
j ia p ib

S j p
i1 ... ... ... ik

+ ∑ a Ric P
ia j S j

i1 ... ... ik
.

The following lemma represents < P using < P and K.
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Lemma 4. For a statistical P-structure, let (21) hold. Then we have

< P = < P − K, (39)

where the operator K acts on k-forms ω over (M, g) by

(Kω)(X1, . . . , Xk) = ∑k
a=1 ∑ j〈KXa , Kej〉ω(X1, . . . , ej︸ ︷︷ ︸

a

, . . . , Xk)

+ 2 ∑ i,j,b<a

(
〈KXa ej, KXb ei〉 − 〈Kei ej, KXa Xb〉

)
ω(X1, . . . , ej︸ ︷︷ ︸

b

, . . . , ei︸ ︷︷ ︸
a−b

. . . , Xk), (40)

when k ≥ 2, and (Kω)(X) = ∑ j〈KX , Kej〉ω(ej) when k = 1.

Proof. Using 1. of Proposition 9 and (36), we have

R P(ei, Xa, ej, Xb) = RP(ei, Xa, ej, Xb) + 〈[Kei , KXa ](ej), Xb〉,
Ric P(ei, Xa) = Ric P(ei, Xa) + 〈Kei Xa, E〉 − 〈Kei , KXa〉.

Substituting the above equalities in (37) (and using linearity in the curvature) yields (39) with

(Kω)(X1, . . . , Xk) = ∑ i,a

(
〈KXa , Kej〉 − 〈KXa ej, E〉

)
ω(X1, . . . , ei︸ ︷︷ ︸

a

, . . . , Xk)

+ 2 ∑ i,j; b<a

(
〈KXa ej, KXb ei〉 − 〈Kei ej, KXa Xb〉

)
ω(X1, . . . , ej︸ ︷︷ ︸

b

, . . . , ei︸ ︷︷ ︸
a−b

. . . , Xk),

that is (40) when E = 0.

The following theorem generalizes (1) to the case of distributions and Theorem 2 in [13] to the
case of statistical P-structure.

Theorem 4. For a statistical P-structure, let (21) hold. Then, the following Weitzenböck type decomposition
formula is valid for any k-form ω:

∆ P
H ω = ∇̆∗P∇ P ω +< P(ω). (41)

Proof. Similarly to the proof of Theorem 9.4.1 in [19] for ω ∈ Λk(TM), or Theorem 2 in [13], we find

d P δ̆ Pω(X1, . . . , Xk) = −∑ j d P ∇̆ P
ej

ω(ej, X1, . . . , Xk)

= −∑ j d P(∇ P
ej
− 2Kj)ω(ej, X1, . . . , Xk)

= −∑ j d P∇ P
ej

ω(ej, X1, . . . , Xk)− 2(d Pι E ω)(X1, . . . , Xk)

= ∑ j ∑
k−1
a=0(−1)a∇ P

Xa+1
∇ P

ej
ω(ej, X1, . . . Xa, Xa+2 . . . , Xk)− 2(d Pι E ω)(X1, . . . , Xk)

= −∑ j ∑
k−1
a=0∇

P
Xa+1
∇P

ej
ω
(
X1, . . . ej︸ ︷︷ ︸

a+1

, . . . , Xk
)
− 2(d Pι E ω)(X1, . . . , Xk)

= −∑ j,a((∇
P)2

Xa+1,ej
ω)
(
X1, . . . ej︸ ︷︷ ︸

a+1

, . . . , Xk
)
− 2(d Pι E ω)(X1, . . . , Xk),
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where E = ∑ i Kei ei (see Section 3), and

δ̆ P d Pω(X1, . . . , Xk) = ∇̆∗P d Pω(X1, . . . , Xk) = (∇ ∗P − 2 ι E)d Pω(X1, . . . , Xk)

= ∇ ∗P(d Pω)(X1, . . . , Xk)− 2 ι E d Pω(X1, . . . , Xk)

= −∑ j∇
P
ej
(d Pω)(ej, X1, . . . , Xk)− 2 ι E(d Pω)(X1, . . . , Xk)

= −∑ j∇
P
ej
∇ P

ej
ω(X1, . . . , Xk)

+∑ j ∑
k−1
a=0(−1)a∇ P

ej
∇ P

Xa+1
ω(ej, X1, . . . , Xa, Xa+2, . . . , Xk)− 2 ι E(d Pω)(X1, . . . , Xk)

= (∇ ∗P∇ Pω)(X1, . . . , Xk) + ∑ j,a((∇
P)2

ej ,Xa+1
ω)(X1, . . . , Xk)− 2 ι E(d Pω)(X1, . . . , Xk).

Thus, if (17) is assumed, then using ∇ ∗P∇ P = (∇̆∗P + 2 ι E)∇ P = ∇̆∗P∇ P + 2∇ P
E, we have

∆ P
H ω = ∇̆∗P∇ Pω +< Pω− 2LE ω + 2∇P

E ω. (42)

Using assumption E = 0, we reduce (42) to a shorter form (41).

Next, we extend the well-known Bochner–Weitzenböck formula (and generalize Proposition 7
in [13] where K = 0) to the case of distributions with a statistical P-structure.

Proposition 11. For a statistical P-structure, let (21) hold. Then the following modified Bochner–Weitzenböck
formula for k-forms is valid:

1
2

∆ P( ‖ω‖2) = −〈∆ P
H ω, ω〉+ 〈< P(ω), ω〉+ ‖(∇ P − K)ω ‖2 + 〈Kω, ω〉. (43)

Proof. Applying Proposition 7 in [13], (29) (c) and (30), we find

1
2

∆ P(‖ω‖2)− (PE)(‖ω‖2) =
1
2

∆ P(‖ω‖2)

= −〈∆ P
H ω, ω〉+ 〈< P(ω), ω〉+ ‖∇ Pω ‖2

= −〈(∆ P
H + LP

E)ω, ω〉+ 〈(< P + K)ω, ω〉+ ‖(∇ P − K)ω ‖2.

Using assumption E = 0, we reduce the above to a shorter form (43).

Remark 3. (a) For k = 1, we have (Kω)(X) = ∑i〈KX , Kei 〉ω(ei). Thus,

〈Kω, ω〉 = ∑ i,j〈Kei , Kej〉ω(ei)ω(ej) = ‖Kω]‖2 ≥ 0,

where ω] = ∑i ω(ei)ei for any ω ∈ Λ1(M).
(b) If ω is a P-harmonic k-form on a closed manifold M and 〈(< P + K)(ω), ω〉 ≥ 0,

then ∆ P( ‖ω‖2) = 0, (∇ P − K)ω = 0 and (< P + K)ω = 0, see (43). By Theorem 3, ∇ P‖ω‖ = 0;
moreover, if P(TM) is bracket-generating, then ‖ω‖ = const on M.

Example 4. For vector fields and 1-forms, < P reduces to the kind of usual Ricci curvature, see (33) and (38).
We have < P(ω)(X) = ω(Ric P(X)) for any ω ∈ Λ1(M); thus, (41) reads as

∆ P
H ω = ∇̆∗P∇ Pω + Ric P(ω]).

For every bivector X ∧Y ∈ Λ2(TM), we build a mapR P(X ∧Y) : XM → XM, given by

〈R P(X ∧Y)Z, W〉 = 〈R P(X ∧Y), W ∧ Z〉 = R P(X, Y, Z, W)

= R(PX, PY, Z, W) + 〈[KX , KY](Z), W〉.
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Since bivectors are generators of the vector space Λ2(TM), we obtain in this way a mapR P(ξ) :
XM → XM (similarly to algebraic curvature operatorR(ξ)).

The following lemma generalizes Lemma 3 in [13].

Lemma 5. The mapR P(ξ), where ξ ∈ Λ2(TM), is skew-symmetric:

〈R P(ξ)W, Z〉 = −〈R P(ξ)Z, W〉.

Proof. It suffices to check the statement for the generators. We have, using Proposition 9,

〈R P(X ∧Y)Z, W〉 = R(PX, PY, Z, W) + 〈[KX , KY](Z), W〉
= −R(PX, PY, W, Z)− 〈[KX , KY](W), Z〉 = −〈R P(X ∧Y)W, Z〉.

Thus, the statement follows.

The associated P-curvature operator is given by

〈R P(X ∧Y), Z ∧W〉 = R(PX, PY, W, Z)− 〈[KX , KY](Z), W〉.

To simplify calculations, we assume that so(TM) is endowed with metric induced from Λ2(TM),
e.g., [13]. If L ∈ so(TM), then

(L S)(X1, . . . , Xk) = −∑ i S(X1, . . . , L(Xi), . . . , Xk). (44)

Let {ξa} be an orthonormal base of skew-symmetric transformations such that (ξa)x ∈ so(Tx M)

for x in an open set U ⊂ M. By (44), for any (0, k)-tensor S,

(ξαS)(X1, . . . , Xk) = −∑ i S(X1, . . . , ξα(Xi), . . . , Xk);

TheR P(X ∧Y) on Λ2(TM) can be decomposed using {ξa}.

Lemma 6 (see Lemma 4 in [13] where K = 0). We have

R P(X ∧Y) = −∑ α

(
〈P∗R(ξα)X, Y〉+ 〈K(X ∧Y), ξα〉

)
ξα

= −∑ α

(
〈R(ξα)PX, PY〉+ 〈K(X ∧Y), ξα〉

)
ξα.

Proof. Using (R P)∗ = P∗R and Lemma 5, we have:

R P(X ∧Y) = ∑ α
〈R P(X ∧Y), ξα〉 ξα

= ∑ α

(
〈P∗R(ξα), X ∧Y〉+ 〈K(X ∧Y), ξα〉

)
ξα

= −∑ α

(
〈R(ξα)PX, PY〉+ 〈K(X ∧Y), ξα〉

)
ξα. �

Lemma 6 allows us to rewrite the operator (37). The following result generalizes Proposition 8
in [13].

Proposition 12. If S is a (0, k)-tensor on (M, g), then

< P(S) = −∑ α
R P(ξa)(ξaS), (< P(S))∗ = < P∗(S).

In particular, if P is self-adjoint, then < P is self-adjoint too.



Mathematics 2020, 8, 1825 17 of 20

Proof. We follow similar arguments as in the proof of Lemma 9.3.3 in [19]:

< P(S)(X1, . . . , Xk) = ∑ i,j(R
P(ej ∧ Xi)S)(X1, . . . , ej︸ ︷︷ ︸

i

, . . . , Xk)

= −∑ i,j,α

(
〈P∗R(ξα)ej, Xi〉+ 〈K(ej ∧ Xi), ξα〉

)
(ξαS)(X1, . . . , ej, . . . , Xk)

= −∑ i,j,α(ξαS)(X1, . . . ,
(
〈P∗R(ξα)ej, Xi〉ej + 〈K(ej ∧ Xi), ξα〉

)
, . . . , Xk)

= −∑ i,j,α(ξαS)(X1, . . . , 〈ej,R P(ξα)Xi〉ej, . . . , Xk)

= −∑ i,α(ξαS)(X1, . . . ,R P(ξα)Xi, . . . , Xk) = −∑ α
(R P(ξα)(ξαS))(X1, . . . , Xk).

Thus, the first claim follows. Since R : Λ2(TM) → Λ2(TM) is self-adjoint, there is a local
orthonormal base {ξa} of Λ2(TM) such thatR(ξa) = λa ξa. Using this base, for any (0, k)-tensors S1

and S2, we get

〈< P(S2), S1〉 = −∑ α
〈R P(ξα)(ξαS2), S1〉 = −∑ α

〈 ξαS2, (R P)∗(ξα)S1〉
= ∑ α

〈 ξαS2, (P∗R+K)(ξα)(S1)〉
= ∑ α

λα〈 P(ξαS2), ξαS1〉+ ∑ α
〈 K(ξαS2), ξαS1〉, (45)

and, similarly, again using K∗ = K,

〈S2, < P∗(S1)〉 = ∑ α
λα〈 ξαS2, P∗(ξαS1)〉+ ∑ α

〈 ξαS2, K(ξαS1)〉
= ∑ α

λα〈 P(ξαS2), ξαS1〉+ ∑ α
〈 K(ξαS2), ξαS1〉.

Thus, the second claim follows.

The following result generalizes Corollary 9.3.4 in [19] and Proposition 10 in [13].

Proposition 13. Let (g,∇ P) be a statistical P-structure on a manifold M.
(a) If 〈R P(S), S〉 ≥ 0 for any (0, k)-tensor S, then 〈< P(S), S〉 ≥ 0.
(b) Moreover, if 〈R P(S), S〉 ≥ −ε ‖S‖2 for any (0, k)-tensor S, where ε > 0, then

〈< P(S), S〉 ≥ −ε C ‖S‖2,

where a constant C depends only on the type of S.

Proof. Using (45) and a local orthonormal base {ξα} of Λ2(TM) such thatR(ξα) = λαξα, we get

〈< P(S), S〉 = ∑ α
λα〈 P(ξαS), ξαS〉+ ∑ α

〈 K(ξαS), ξαS〉
= ∑ α

〈 P(ξαS), R(ξαS)〉+ ∑ α
〈 K(ξαS), ξαS〉

= ∑ α
〈R P(ξαS), ξαS〉.

By conditions, 〈R P(ξαS), ξαS〉 ≥ 0 for all α, thus, 〈< P(S), S〉 ≥ 0, and the first claim follows.
There is a constant C > 0 depending only on the type of the tensor and dim M such that
C‖S‖2 ≥ ∑ α ‖ξαS‖2, see Corollary 9.3.4 in [19]. By conditions, 〈R P(ξαS), ξαS 〉 ≥ −ε ‖ξαS‖2 for

all α. The above yields 〈R P(ξαS), ξαS〉 ≥ −ε C ‖S‖2 – thus, the second claim.

The following result extends Corollary 1 in [13].

Theorem 5. Let (21) be satisfied for a statistical P-structure on a closed manifold M and 〈R P(ω), ω〉 ≥ 0 for
any k-form ω. Then any P-harmonic k-form on M is ∇ P-parallel.
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Proof. By conditions and Proposition 13(a), 〈< P(ω), ω〉 ≥ 0. By (41), since ∆ P
H ω = 0, we get

〈∇̆ ∗P∇ Pω, ω〉 ≤ 0. By Proposition 5, we have ∇ Pω = 0.

The following result extends Theorem 3 with ∇ P and k = 1 in [13].

Theorem 6. Let (21) be satisfied for a statistical P-connection on a complete non-compact(M, g) and
‖KX‖ ≥ ε ‖X‖ for some ε > 0 and all X ∈ TM. Suppose that 〈R P(ω), ω〉 ≥ −(ε/C) ‖ω‖2 for any
1-form ω, where C is defined in Proposition 13(b). If ‖P∇ P(‖ω‖2)‖ ∈ L1(M, g) for a P-harmonic 1-form ω,
then ∇ P ω = 0.

Proof. By conditions, Remark 3 and Proposition 13(b),

〈< P(ω), ω〉 = 〈< P(ω), ω〉+ 〈K(ω), ω〉 ≥ −ε ‖ω‖2 + ‖Kω]‖2 ≥ 0.

By (43) with K = 0, since ∆P
H ω = ∆ P

H ω = 0, see (29), we get ∆ P(‖ω‖2) ≥ 0. By Proposition 8
with K = 0 and X = ∇ P(‖ω‖2), we get ∆P(‖ω‖2) = 0. Applying Theorem 3(b), we get∇ P ω = 0.

Notice that, if P(TM) in Theorems 5 and 6 is bracket-generating, then ‖ω‖ = const on M.

8. Appendix: The Almost Lie Algebroid Structure

Here, for the convenience of a reader, we briefly recall the construction of an almost Lie algebroid,
following Section 2 in [13] (see also [15,16]). Lie algebroids (and Lie groupoids) constitute an active field
of research in differential geometry. Roughly speaking, an (almost) Lie algebroid is a structure, where
one replaces the tangent bundle TM of a manifold M with a new smooth vector bundle πE : E → M of
rank k over M (i.e., a smooth fiber bundle with fiber Rk) with similar properties. Lie groupoids are
related to Lie algebroids similarly as Lie groups are related to Lie algebras, see [24]. Lie algebroids
deal with integrable distributions (foliations). Almost Lie algebroids are closely related to singular
distributions, e.g., [13,14].

Definition 7. An anchor on E is a morphism ρ : E → TM of vector bundles. A skew-symmetric bracket on E
is a map [·, ·]ρ : XE ×XE → XE such that

[Y, X]ρ = −[X, Y]ρ, [X, f Y]ρ = ρ(X)( f )Y + f [X, Y]ρ, ρ([X, Y]ρ) = [ρ(X), ρ(Y)] (46)

for all X, Y ∈ XE and f ∈ C∞(M). The anchor and the skew-symmetric bracket give an almost Lie algebroid
structure on E .

Note that axiom (46), third formula, is equivalent to vanishing of the following operator:

Dρ(X, Y) = [ρX, ρY]− ρ([X, Y]ρ). (47)

There is a bijection between almost Lie algebroids on E and the exterior differentials of the exterior
algebra Λ(E) = ⊕

k∈N Λk(E), [17]; here Λk(E) is the set of k-forms over E . The exterior differential dρ,
corresponding to the almost Lie algebroid structure (E , ρ, [·, ·]ρ), is given by

dρ ω(X0, . . . , Xk) = ∑k
i=0(−1)i(ρXi)(ω(X0, . . . , Xi−1, Xi+1, . . . , Xk))

+ ∑ 0≤i<j≤k (−1)i+jω([Xi, Xj]ρ, X0, . . . , Xi−1, Xi+1, . . . , Xj−1, Xj+1, . . . , Xk),

where X0, . . . , Xk ∈ XE and ω ∈ Λk(E) for k ≥ 0. For k = 0, we have dρ f (X) = (ρX)( f ), where X ∈ XE
and f ∈ C∞(M) = Λ0(E). Recall that a skew-symmetric bracket defines uniquely an exterior
differential dρ on Λ(TM), and it gives rise to

– an almost algebroid if and only if (dρ)2 f = 0 for f ∈ C∞(M);
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– a Lie algebroid if and only if (dρ)2 f = 0 and (dρ)2 ω = 0 for f ∈ C∞(M) and ω ∈ Λ1(TM).

Definition 8. A ρ-connection on (E , ρ) is a map ∇ρ : XE ×XE → XE satisfying Koszul conditions

∇ρ
X ( f Y + Z) = ρ(X)( f )Y + f∇ρ

X Y +∇ρ
X Z, ∇ρ

f X+Z Y = f∇ρ
X Y +∇ρ

Z Y. (48)

For a ρ-connection ∇ρ on E , they define the torsion Tρ : XE × XE → XE and the curvature
Rρ : XE ×XE ×XE → XE by standard formulas

Tρ(X, Y) = ∇ρ
X Y−∇ρ

Y X− [X, Y]ρ, Rρ
X,Y Z = ∇ρ

X∇
ρ
YZ−∇ρ

Y∇
ρ
XZ−∇ρ

[X,Y]ρ
Z. (49)

9. Conclusions

The main contribution of this paper is the further development of Bochner’s technique for a
regular or singular distribution parameterized by a smooth endomorphism P of the tangent bundle of a
Riemannian manifold with linear connection. In particular, the main results of this paper, Theorems 1–6
are proved. We introduce the concept of a statistical P-structure, i.e., a pair (g,∇ P) of a metric g
and P-connection ∇ P on M with a totally symmetric contorsion tensor K, see (10), and assume (13)
for P to use the concept of almost Lie algebroids. To generalize some geometrical analysis tools for
distributions, we assume the additional conditions (21) and (35) for tensors P and K. We introduce
and study a Weitzenböck type curvature operator on tensors and prove vanishing theorems on the
null space of the Hodge type Laplacian on a distribution with a statistical type connection.

We delegate the following for further study: (a) generalize some constructions in the paper,
e.g., statistical P-structures, divergence results, to more general almost algebroids or Lie algebroids;
(b) use less restrictive conditions on K; (c) find more applications in geometry and physics.
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