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Abstract: In this paper, we study a class of constrained variational-hemivariational inequality problems
with nonconvex sets which are star-shaped with respect to a certain ball in a reflexive Banach space.
The inequality is a fully nonconvex counterpart of the variational-hemivariational inequality of elliptic
type since it contains both, a convex potential and a locally Lipschitz one. Two new results on the
existence of a solution are proved by a penalty method applied to a variational-hemivariational inequality
penalized by the generalized directional derivative of the distance function of the constraint set. In the
first existence theorem, the strong monotonicity of the governing operator and a relaxed monotonicity
condition of the Clarke subgradient are assumed. In the second existence result, these two hypotheses
are relaxed and a suitable hypothesis on the upper semicontinuity of the operator is adopted. In both
results, the penalized problems are solved by using the Knaster, Kuratowski, and Mazurkiewicz (KKM)
lemma. For a suffciently small penalty parameter, the solution to the penalized problem solves also the
original one. Finally, we work out an example on the interior and boundary semipermeability problem
that ilustrate the applicability of our results.

Keywords: variational inequality; hemivariational inequality; pseudomonotone operator; KKM theorem;
generalized gradient; Clarke’s tangent cone

MSC: 47J35; 47J20; 47J22; 35K86

1. Introduction

In this paper, we are initially motivated by the investigation of the class of variational-hemivariational
inequalities considered in [1]. Let V be a reflexive Banach space. Consider an operator A : V → V∗,
functions ϕ : V → R, j : V → R and a set K ⊂ V. The constrained variational-hemivariational inequality
studied in the paper reads as follows: find an element u ∈ K such that

〈Au, v− u〉+ ϕ(v)− ϕ(u) + j0(u; v− u) ≥ 〈 f , v− u〉 for all v ∈ K. (1)

Particular forms of problem (1) contain various formulations investigated in the literature:
the elliptic variational inequalities of the first and second kind, see [2–5], the elliptic hemivariational
inequalities, see [6–9], and the elliptic equations, see [6,10,11]. Moreover, the quasi-variational inequalities
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corresponding to problem (1) and its variants can be treated by a fixed point technique, see [1,5]. In all
aforementioned papers, the usual hypotheses for existence (and uniqueness) of a solution involve the
function ϕ, which is supposed to be convex, the function j which is locally Lipschitz and in general
nonconvex, the operator A pseudomonotone and strongly monotone, and a nonempty, closed and convex
set of constraints K.

In the current paper, we treat the counterpart of problem (1) where the set K represents a set of
admissible constraints which is star-shaped with respect to a certain ball in V. Note that for this class of
nonconvex sets, some particular versions have been studied earlier in Section 7.4 of [8] if j = 0, in Section 7.3
of [8,12] if ϕ = 0, and Section 7.2 of [8] when ϕ = j = 0. The first novelty of our contribution is to study
the class of fully variational-hemivariational inequalities involving nonconvex constraints. In contrast to
contributions in [8,12,13] which are based on surjectivity methods for the multivalued pseudomonotone
operators for the existence proof of the penalized problem, in this paper we employ another method based
on the Knaster, Kuratowski, and Mazurkiewicz (KKM) theory for the penalized problem. The second
novelty is to study the constrained variational-hemivariational inequality on star-shaped sets without
hypothesis on the strong monotonicity of the operator and without the relaxed monotonicity condition of
the generalized subgradient. To the best of our knowledge, it is a new approach in the examination of
this class of variational-hemivariational inequalities. We will use the celebrated lemma by Fan which is a
milestone in the KKM theory and it is sufficient for our purpose.

For related results on variational-hemivariational equalities on nonconvex star-shaped constraint sets,
we refer to [12,13] for stationary problems, and to [14,15] for evolution problems. Numerous applications of
variational-hemivariational inequalities to problems of nonsmooth contact mechanics, economics, etc. can
be found in classical monographs [8,9,16], and in two recent books [17,18], and the references therein.
A unified method, based on the hemivariational inequality formulation, to study contact problems of
viscoelasticity is given in [19], the abstract elliptic variational-hemivariational inequalities in reflexive
Banach spaces with applications can be found in [1], and the variational-hemivariational inqualities
which model fluid flow in mechanics were treated in [20,21] and very recently in [22,23]. Other recent
developments on variational methods in the study of existence and multiplicity of solutions, see [24,25].

The paper is structured as follows. Notations, basic definitions and preliminaries are provided in
Section 2. Section 3 contains problem formulation with the first existence result, Theorem 1, whose proof is
provided in Section 4. Finally, the second existence theorem is proved in Section 5.

2. Basic Material

In this part of the paper we recall the standard notations and definitions from [10,17,26,27].
Let (X, ‖ · ‖X) be a Banach space. By (X∗, ‖ · ‖X∗) we denote its dual space while the symbol 〈·, ·〉X∗×X

stands for the duality pairing between X∗ and X.

Nonlinear operators and the KKM lemma. Let X be a reflexive Banach space and T : X → 2X∗ be
a multivalued mapping. A mapping T : X → 2X∗ is called bounded if the image of each bounded set in
X remains in a bounded subset of X∗. A mapping T : X → 2X∗ is called pseudomonotone, provided the
following conditions are satisfied

(i) T has nonempty, bounded, closed and convex values.
(ii) T is upper semicontinuous (u.s.c.) from each finite dimensional subspace of X into X∗ equipped with

its weak topology.
(iii) if un ∈ X, un → u weakly in X, u∗n ∈ Tun and lim sup 〈u∗n, un − u〉X∗×X ≤ 0, then to each y ∈ X,

there exists u∗(y) ∈ Tu such that 〈u∗(y), u− y〉X∗×X ≤ lim inf 〈u∗n, un − y〉X∗×X .
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A mapping T : X → 2X∗ is called generalized pseudomonotone, if for each sequences {un} ⊂ X,
un → u weakly in X, {u∗n} ⊂ X∗, u∗n → u∗ weakly in X∗, u∗n ∈ Tun and lim sup 〈u∗n, un − u〉X∗×X ≤ 0,
we have u∗ ∈ Tu and 〈u∗n, un〉X∗×X → 〈u∗, u〉X∗×X .

The following relations concern the classes of pseudomonotone and generalized pseudomonotone
mappings, see Propositions 1.3.65 and 1.3.68 in [10]. If T : X → 2X∗ is a pseudomonotone mapping, then it
is also generalized pseudomonotone. If T : X → 2X∗ is a bounded, generalized pseudomonotone mapping
with nonempty, closed and convex values, then T is pseudomonotone.

A single-valued mapping A : X → X∗ is said to be pseudomonotone, provided it is bounded and if
un → u weakly in X with lim sup〈Aun, un − u〉X∗×X ≤ 0 imply 〈Au, u − v〉X∗×X ≤ lim inf〈Aun, un −
v〉X∗×X for all v ∈ X. Equivalently, see Proposition 3.66 in [17], a single-valued mapping A is
pseudomonotone, if and only if it is bounded and un → u weakly in X with lim sup 〈Aun, un − u〉X∗×X ≤ 0
imply lim 〈Aun, un − u〉X∗×X = 0 and Aun → Au weakly in X∗. A mapping A : X → X∗ is
demicontinuous, if it is continuous as a map from X to X∗ furnished with the weak topology.

We recall below the KKM lemma in a version stated by Fan in Lemma 1 of [28]. For various extensions
to the Fan-KKM theorem, we refer to [29] and the references therein.

Lemma 1. Let X be a subset of a Haussdorf topological vector space Y. For any x ∈ X, let a set F(x) in Y be given
such that:

(a) for every x ∈ X, F(x) is a closed set in Y,
(b) convex hull of any finite set {x1, . . . , xr} of X is contained in

⋃r
i=1 F(xi),

(c) F(x) is a compact set at least for one x ∈ X.

Then
⋂

x∈X F(x) 6= ∅.

The Clarke generalized subgradient and tangent cones. Let X be a Banach space, h : X → R be a
locally Lipschitz function, and x, v ∈ X. The Clarke generalized directional derivative of h at x in the
direction v is given by

h0(x; v) = lim sup
y→x, λ↓0

h(y + λv)− h(y)
λ

.

The Clarke generalized subgradient of h at x is defined by

∂h(x) = { ζ ∈ X∗ | h0(x; v) ≥ 〈ζ, v〉X∗×X for all v ∈ X }.

It is well known that
h0(x; v) = max{〈ζ, v〉 | ζ ∈ ∂h(x)}. (2)

Let B(u0, $) be the closed ball in a normed space E with centre u0 ∈ E and radius $ > 0. A nonempty
set K ⊂ E is called star-shaped with respect to a ball B(u0, $), if tv + (1 − t)w ∈ K for all v ∈ K,
w ∈ B(u0, $), t ∈ [0, 1]. When a set K is star-shaped with respect to a closed ball, we just say that K is
star-shaped. Next, we denote by d : E→ R the distance function of K defined by

d(u) = inf
v∈K
‖v− u‖E for all u ∈ E.

The Clarke generalized directional derivative of the function d is well defined since d is a Lipschitz
continuous. Recall that for a star-shaped set, the Clarke directional derivative of the function d enjoys the
following discontinuity property, see Lemma 7.2, p. 224 in [8].
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Lemma 2. Let E be a reflexive Banach space and K ⊂ E be a closed set which is star-shaped with respect to a ball
B(u0, $) with some u0 ∈ K and $ > 0. Then

d0(u, u0 − u) ≤ −d(u)− $ for all u /∈ K,

d0(u, u0 − u) = 0 for all u ∈ K.

Finally, we shortly recall a material on tangent cones needed in what follows. Let K ⊂ E be a set of a
Banach space E and u ∈ K. The Bouligand (contingent) cone to K at the point u is defined by

KK(u) = {v ∈ E | lim inf
t↓0

d(u + tv)
t

= 0}

and the (Clarke) tangent cone to K at u is given by

TK(u) = {v ∈ E | d0(u; v) = 0} = {v ∈ E | d0(u; v) ≤ 0}.

It is well-known that TK(u) ⊂ KK(u). The set K is said to be regular at u ∈ K when TK(u) = KK(u).
We also know that if K is closed, convex and u ∈ K, then K is regular at u, see Theorem 10.39 in [30].
Further, it follows from Proposition 2.9 in [30] that if K is a convex set in E and u ∈ K, then KK(u) is a
convex cone and

K ⊂ u + KK(u). (3)

Equivalent definitions and properties of these and other cones can be found in [26,30] and
Section 5.7 of [27].

3. Formulation of the Problem

In this section we consider the constrained problem in which the set of admissible elements is
nonconvex. The main goal is to prove the existence of solution.

Let (V, ‖ · ‖V) be a reflexive Banach space which is continuously and compactly embedded in a
Hilbert space (H, ‖ · ‖H). The duality pairing between V∗ and V is denoted by 〈·, ·〉, and 〈·, ·〉H stands for
the inner product in H. Let K0 be nonempty, closed, star-shaped with respect to a closed ball B(u0, $) in H,
where u0 ∈ V and $ > 0. Let K and TK(u) for u ∈ K denote the realization of K0 and TK0(u) in V, i.e.,

K := K0 ∩V, TK(u) := TK0(u) ∩V,

where TK0(u) stands for the Clarke tangent cone of K0 at u.

Problem 1. Find an element u ∈ K such that

〈Au− f , v− u〉+ j0(u; v− u) + ϕ(v)− ϕ(u) ≥ 0 for all v ∈ u + TK(u).

The hypotheses on the data of Problem 1 are as follows.

H(A): A : V → V∗ is a mapping such that

(a) A is pseudomonotone,
(b) A is strongly monotone with constant mA > 0, i.e.,

〈Av1 − Av2, v1 − v2〉 ≥ mA‖v1 − v2‖2
V for all v1, v2 ∈ V.



Mathematics 2020, 8, 1824 5 of 18

H(j): j : V → R is a mapping such that

(a) j is locally Lipschitz,
(b) ‖∂j(v)‖V∗ ≤ c0 + c1 ‖v‖V for all v ∈ V with c0, c1 ≥ 0,
(c) there exists αj ≥ 0 such that

j0(v1; v2 − v1) + j0(v2; v1 − v2) ≤ αj ‖v1 − v2‖2
V for all v1, v2 ∈ V.

H(ϕ): ϕ : V → R is a convex and lower semicontinuous function.
H(K): K is a nonempty, closed and star-shaped in V.
H( f ): f ∈ V∗.

In hypothesis H(j), the notation j0 and ∂j stand for the Clarke generalized directional derivative and
the Clarke generalized subgradient, respectively, of the function j. We write ‖∂j(v)‖V∗ = sup{‖v∗‖V∗ |
v∗ ∈ ∂j(v)}. Condition H(j)–(c) is known in the literature as a relaxed monotonicity condition, it holds with
αj = 0 when j is a convex function, see [1,7,17,18] and the references therein. Examples of functions j that
satisfy H(j)–(c) with single-valued and multivalued generalized subgradient can be found in Section 7.4
of [17] and Examples 16 and 17 in [1].

A sufficient condition for hypothesis H(K) reads as follows, see Theorem 7.4 of [8] and [12,13]. Let Ki,
i = 1, . . . , k, be nonempty, closed, convex subsets of V such that there is u0 ∈

⋂k
i=1 intKi. Then the set

K :=
⋃k

i=1 is star-shaped with respect to a certain ball with center at u0.

We state below our first existence result.

Theorem 1. Let the hypotheses H(A), H(j), H(ϕ), H(K), and H( f ) hold, and assume the following
smallness condition

mA > αj. (4)

Then, Problem 1 admits a solution u ∈ K.

The proof of this theorem will be given in the next section. The motivation to study Problem 1 is
given in the remark below.

Remark 1. If K is a nonempty, closed and convex set, then any solution to Problem 1 is a solution to the classical
variational-hemivariational inequality:{

find an element u ∈ K such that

〈Au− f , v− u〉+ j0(u; v− u) + ϕ(v)− ϕ(u) ≥ 0 for all v ∈ K.
(5)

In fact, let u ∈ K solve Problem 1 and v ∈ K. The set K is regular, being convex, and by (3), we have

K ⊂ u + KK(u) = u + TK(u).

Therefore, we deduce that v ∈ u + TK(u). Then, u ∈ K is a solution to problem (5).

4. Proof of Theorem 1

In this section, we assume the hypotheses of Theorem 1. The proof is based on the penalty method,
where the penalty parameter is taken to be small and does not necessary tend to zero. Let d ≡ dK0 : H → R
be the distance function of the set K0 defined by dK0(v) = inf{‖v− w‖H | w ∈ K0}. Let λ > 0 represent a
penalty parameter. Consider the penalized problem corresponding to Problem 1:
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Problem 2. Find an element uλ ∈ V such that

〈Auλ − f , v− uλ〉+ j0(uλ; v− uλ) + ϕ(v)− ϕ(uλ) +
1
λ

d0(uλ; v− uλ) ≥ 0 for all v ∈ V.

We formulate a result on the generalized pseudomonotonicity property of a multivalued mapping.

Lemma 3. Under the assumptions of Theorem 1, the multivalued mapping A + ∂j + 1
λ ∂d : V → 2V∗ is generalized

pseudomonotone.

Proof. Let {wn} ⊂ V, {w∗n} ⊂ V∗ with w∗n ∈ Awn + ∂j(wn) +
1
λ ∂d(wn), wn → w weakly in V, w∗n → w∗

weakly in V∗ and
lim sup〈w∗n, wn − w〉 ≤ 0. (6)

We need to show that w∗ ∈ Aw + ∂j(w) + 1
λ ∂d(w) and 〈w∗n, wn〉 → 〈w∗, w〉.

We have w∗n = Awn + ξn +
1
λ ηn with ξn ∈ ∂j(wn) and ηn ∈ ∂d(wn). From hypothesis H(j)–(b) and

the estimate ‖∂d(v)‖H ≤ 1 for all v ∈ V, we infer that

ξn → ξ weakly in V∗ and ηn → η weakly in H, (7)

where ξ ∈ V∗ and η ∈ H. Since the embedding V ⊂ H is compact, we get

wn → w in H. (8)

Moreover, by the closedness of the graph of ∂d : H → 2H in H × (w–H)-topology,
see Proposition 3.23(v) in [17], we deduce that

η ∈ ∂d(w).

Subsequently, using the relation

〈Awn + ∂j(wn)− (Aw + ∂j(w)), wn − w〉+ 1
λ
〈∂d(wn)− ∂d(w), wn − w〉H

= 〈Awn + ∂j(wn) +
1
λ

∂d(wn)− (Aw + ∂j(w) +
1
λ

∂d(w)), wn − w〉,

we have

(mA − αj)‖wn − w‖2
V +

1
λ
〈ηn − η, wn − w〉H

≤ 〈w∗n, wn − w〉 − 〈Aw + ∂j(w) +
1
λ

∂d(w), wn − w〉.

Take the upper limit of both sides,

(mA − αj) lim sup
n
‖wn − w‖2

V +
1
λ

lim
n
〈ηn − η, wn − w〉H

≤ lim sup
n
〈w∗n, wn − w〉 − lim

n
〈Aw + ∂j(w) +

1
λ

∂d(w), wn − w〉.
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Exploiting (6)–(8), the boundeness of the mapping A + ∂j + 1
λ ∂d, and the smallness condition (4),

we deduce
wn → w in V. (9)

Since every single-valued pseudomonotone operator is demicontinuous, see Theorem 3.69(ii) in [17],
we infer Awn → Aw weakly in V∗. From the convergences (7) and (9), we have ξ ∈ ∂j(w). Hence, taking
the limit in the equality w∗n = Awn + ξn +

1
λ ηn, we get

w∗ = Aw + ξ +
1
λ

η ∈ Aw + ∂j(w) +
1
λ

∂d(w).

Further, by (9), it is obvious that 〈w∗n, wn〉 → 〈w∗, w〉, which completes the proof.

We continue the proof with three main steps.
Step 1. We show the existence of solution to Problem 2, for every λ > 0 fixed. For simplicity, we skip

λ in this part of the proof. We define the multivalued mapping F : V → 2V by

F(v) = { u ∈ V | Mv(u) ≥ 0 } for v ∈ V (10)

and
Mv(u) := 〈Au− f , v− u〉+ j0(u; v− u) + ϕ(v)− ϕ(u) +

1
λ

d0(u; v− u)

for v ∈ V. We note that

u ∈ V solves Problem 2 ⇐⇒ u ∈ V satisfies Mv(u) ≥ 0 for all v ∈ V

⇐⇒ u ∈ F(u) for all v ∈ V ⇐⇒ u ∈
⋂

v∈V
F(v).

Now, we prove that
⋂

v∈V F(v) 6= ∅. We will apply the KKM lemma, see Lemma 1, with the space V
endowed with the weak topology. We shall verify that the mapping F defined by (10) enjoys the properties:

(a) for every v ∈ V, the set F(v) is closed in V,
(b) for any finite set {v1, . . . , vr} ⊂ V, we have co{v1, . . . , vr} ⊂

⋃r
i=1 F(vi),

(c) there is v0 ∈ V such that F(v0) is compact in V.

We show that the set F(v) in bounded in V for all v ∈ V. Let v ∈ V and u ∈ F(v). Thus

〈Au− f , v− u〉+ j0(u; v− u) + ϕ(v)− ϕ(u) +
1
λ

d0(u; v− u) ≥ 0. (11)

We show that u stays in a bounded subset of V. First, by hypothesis H(j)–(b), (c), we have

j0(u; v− u) = j0(u; v− u) + j0(v; u− v)− j0(v, u− v) (12)

≤ αj‖u− v‖2
V + |〈∂j(v), u− v〉|

≤ αj‖u− v‖2
V + (c0 + c1‖v‖V)‖u− v‖V .

Next, using H(ϕ) and Proposition 5.2.25 in [27], it follows that ϕ admits an affine minorant, that is,
we can find l ∈ V∗ and b ∈ R such that ϕ(v) ≥ 〈l, v〉+ b for all v ∈ V. Hence

− ϕ(u) ≤ −〈l, u〉 − b. (13)
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We employ the strong monotonicity of the mapping A, (11)–(13) to deduce

mA ‖u− v‖2
V ≤ 〈Au− Av, u− v〉 = 〈Au, u− v〉 − 〈Av, u− v〉

≤ j0(u; v− u) + ϕ(v)− ϕ(u) + 〈 f , u− v〉+ 1
λ

d0(u; v− u)− 〈Av, u− v〉

≤ αj‖u− v‖2
V + (c0 + c1‖v‖V)‖u− v‖V + |ϕ(v)|+ ‖l‖V∗‖u‖V

+|b|+ ‖ f − Av‖V∗‖u− v‖V +
1
λ

d0(u; v− u).

We exploit the global Lipschitz property of the function d, see Lemma 2.1 in [14], to infer that
‖∂d(v)‖H ≤ 1 for all v ∈ V. Hence

d0(u; v− u) ≤ ‖u− v‖H ≤ ce‖u− v‖V for all u, v ∈ V, (14)

where ce > 0 denotes the embedding constant V ⊂ H. Using (14) in the estimate, we obtain

(mA − αj) ‖u− v‖2
V ≤ (c0 + c1‖v‖V)‖u− v‖V + |ϕ(v)|+ ‖l‖V∗‖u‖V (15)

+|b|+ ‖ f − Av‖V∗‖u− v‖V +
ce

λ
‖u− v‖V .

By the smallness condition (4), since λ > 0 is fixed, we know that ‖u− v‖V is bounded, and thus
‖u‖V is also bounded. This completes the proof that F(v) is a bounded subset of V.

First, we establish the property (a). Let λ > 0 and v ∈ V be fixed. It is enough to prove that the set
F(v) is sequentially weakly closed in V. Let {uk} ⊂ F(v) and uk → u weakly in V, as k → ∞. We prove
that u ∈ F(v). We have Mv(uk) ≥ 0 for all v ∈ V, that is,

0 ≤ 〈Auk − f , v− uk〉+ j0(uk; v− uk) + ϕ(v)− ϕ(uk) +
1
λ

d0(uk; v− uk). (16)

From Proposition 3.23(ii) in [17], there are ξk ∈ V, ηk ∈ H such that ξk ∈ ∂j(uk), ηk ∈ ∂d(uk) with

j0(uk; v− uk) = 〈ξk, v− uk〉 and d0(uk; v− uk) = 〈ηk, v− uk〉H = 〈ηk, v− uk〉.

Subsequently, by (16), it follows

〈Auk + ξk +
1
λ

ηk, uk − v〉 ≤ 〈 f , uk − v〉+ ϕ(v)− ϕ(uk) for all v ∈ V

and
lim sup

k
〈Auk + ξk +

1
λ

ηk, uk − v〉 ≤ 〈 f , u− v〉+ ϕ(v)− ϕ(u) for all v ∈ V. (17)

Here, we have used the fact that ϕ is weakly sequentially l.s.c. (being convex and sequentially l.s.c.
by H(ϕ)). Take v = u in (17) to get

lim sup
k
〈Auk + ξk +

1
λ

ηk, uk − u〉 ≤ 0. (18)
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Let u∗k = Auk + ξk +
1
λ ηk ∈ Auk + ∂j(uk) +

1
λ ∂d(uk). By the boundedness of the mapping A + ∂j +

1
λ ∂d, we may assume that

u∗k → u∗ weakly in V∗

for some u∗ ∈ V∗. Summing up, we obtain{
{uk} ⊂ V, {u∗k} ⊂ V∗, u∗k = Auk + ξk +

1
λ ηk ∈ Auk + ∂j(uk) +

1
λ ∂d(uk),

uk → u weakly in V, u∗k → u∗ weakly in V∗ and lim supk〈u∗k , uk − u〉 ≤ 0.

Hence, by the generalized pseudomonotonicity of the mapping A + ∂j + 1
λ ∂d, see Lemma 3, we have

u∗ ∈ Au + ∂j(u) +
1
λ

∂d(u), (19)

〈u∗k , uk〉 → 〈u∗, u〉. (20)

By (19), we know that u∗ = Au + ξ0 +
1
λ η0 with some ξ0 ∈ ∂j(u), η0 ∈ ∂d(u) and

〈ξ0, v− u〉 ≤ j0(u; v− u), 〈η0, v− u〉 ≤ d0(u; v− u) for all v ∈ V. (21)

From (20), it follows
〈u∗k , uk − v〉 → 〈u∗, u− v〉.

Using the latter, we can pass to the limit in inequality (17) to get

〈Au + ξ0 +
1
λ

η0, u− v〉 ≤ 〈 f , u− v〉+ ϕ(v)− ϕ(u) for all v ∈ V. (22)

Hence and by (21) implies that u ∈ V satisfies

0 ≤ 〈Au− f , v− u〉+ j0(u; v− u) + ϕ(v)− ϕ(u) +
1
λ

d0(u; v− u) for all v ∈ V.

This means that 0 ≤ Mv(u) for all v ∈ V, that is, u ∈ F(v) for all v ∈ V. Thus, the set F(v) is
sequentially weakly closed in V.

Second, we show the property (b), that is, F : V → 2V is a KKM map. Let r ∈ N, {z1, . . . , zr} ⊂ V be
an arbitrary finite set. Let z = ∑r

i=1 λizi with λi ∈ (0, 1) and ∑r
i=1 λi = 1. We suppose by contradiction that

z /∈
r⋃

i=1

F(zi).

Then, for all i = 1, . . . , r, we have z /∈ F(zi). So, for all i = 1, . . . , r, it holds Mzi (z) < 0. By this
inequality and the convexity of the function z 7→ Mz(u) for all u ∈ V, we have

0 = Mz(z) = M∑r
i=1 λizi

(z) ≤
r

∑
i=1

λi Mzi (z) < 0

which is a contradiction. This proves (b).
We show property (c): the set F(v) is weakly compact in V for all v ∈ V. Let v ∈ V and {wn} ⊂ V,

wn ∈ F(v). Since the sequence {‖wn‖V} is bounded in V by a constant independent of n ∈ N, by the
reflexivity of V, it is clear that there is a subsequence {wnk} ⊂ {wn} such that wnk → w0 weakly in V,
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with w0 ∈ V. Because F(v) is sequentially weakly closed in V, see property (a), we have w0 ∈ F(v).
Therefore, F(v) is weakly compact in V for all v ∈ V.

Having verified properties (a)–(c), for any λ > 0 fixed, by the KKM lemma, we get that
⋂

v∈V F(v) 6= ∅.
This means that, for any λ > 0 fixed, there exists uλ ∈ V solution to problem (2). This finishes Step 1.

Step 2. We show that the solution uλ ∈ V to Problem 2 obtained in Step 1 satisfies uλ ∈ K for λ > 0
sufficiently small. We claim that there is a constant M > 0 such that ‖uλ‖V ≤ M for all λ > 0. In fact,
to obtain the uniform estimate of {uλ}λ>0 in V, we choose v := u0 in Problem 2, where u0 ∈ V is the
center of the ball B(u0, $) to get

〈Auλ − f , u0 − uλ〉+ j0(uλ; u0 − uλ) + ϕ(u0)− ϕ(uλ) +
1
λ

d0(uλ; u0 − uλ) ≥ 0.

Analogously as in estimate (15), we have

(mA − αj) ‖uλ − u0‖2
V ≤ (c0 + c1‖u0‖V)‖uλ − u0‖V + |ϕ(u0)|+ ‖l‖V∗‖uλ‖V

+|b|+ ‖ f − Au0‖V∗‖uλ − u0‖V +
1
λ

d0(uλ; u0 − uλ).

Hence
(mA − αj) ‖uλ‖2

V ≤ d1‖uλ‖V + d2 +
2
λ

d0(uλ; u0 − uλ), (23)

where

d1 = 2 ((c0 + c1‖u0‖V) + ‖l‖V∗ + ‖ f − Au0‖V∗) ,

d2 = 2((c0 + c1‖u0‖V)‖u0‖V + |b|+ |ϕ(u0)|

+‖ f − Au0‖V∗‖u0‖V + (mA − αj) ‖u0‖V).

By Lemma 2, it follows that d0(uλ; u0 − uλ) ≤ 0, so we can skip the last term in estimate (23).
We deduce that ‖uλ‖V ≤ M with M > 0 independent of λ > 0.

Let λ0 := 2ρ
d1 M+d2

. We claim that for all λ ∈ (0, λ0), it holds uλ ∈ K. We continue by contradiction and
assume that

∃ λ ∈ (0, λ0) such that uλ /∈ K.

Since uλ /∈ K, by Lemma 2, we have

d0(uλ; u0 − uλ) ≤ −d(uλ)− ρ ≤ −ρ.

Again, by (23), we infer that

0 ≤ d1M + d2 −
2
λ

ρ,

which implies

λ ≥ 2ρ

d1M + d2
,

a contradiction with the choice of λ. Hence

uλ ∈ K for all λ ∈ (0, λ0),

which proves the claim.



Mathematics 2020, 8, 1824 11 of 18

Step 3. Fix λ ∈ (0, λ0) with λ0 defined in Step 2. We will show that u := uλ solves Problem 1.
From Step 1 we know that uλ ∈ V is a solution to Problem 2, and by Step 2, it is obvious that uλ ∈ K.
Thus u = uλ ∈ K satisfies

〈Au− f , v− u〉+ j0(u; v− u) + ϕ(v)− ϕ(u) +
1
λ

d0(u; v− u) ≥ 0 for all v ∈ V.

We choose v ∈ u+ TK(u) as the test function in the latter. Since v− u ∈ TK(u), we have d0(u; v− u) =
0. Hence

〈Au− f , v− u〉+ j0(u; v− u) + ϕ(v)− ϕ(u) ≥ 0 for all v ∈ u + TK(u).

Finally, u ∈ K is a solution to Problem 1. This finishes the proof. �

5. Second Existence Result

In this section we deliver an existence result for Problem 1 under hypotheses different than the ones
of Section 3. We do not assume the strong monotonicity of the mapping A, the relaxed monotonicity of the
generalized subgradient ∂j, and consider the nonconvex star-shaped admissible set of constraints.

We admit the following assumptions.

H(A)1: A : V → V∗ is a mapping such that

(a) for all v ∈ V, V 3 u 7→ 〈Au, v− u〉 ∈ R is weakly upper semicontinuous,
(b) for any v ∈ V, there exists mv > 0 such that 〈Au, u− v〉 ≥ αA‖u‖2 for

all ‖u‖ ≥ mv, where αA > 0.
H(j)1: j : V → R is a mapping such that

(a) j is locally Lipschitz,
(b) ‖∂j(v)‖V∗ ≤ c0 + c1 ‖v‖V for all v ∈ V with c0, c1 ≥ 0,
(c) lim sup j0(un; v− un) ≤ j0(u; v− u) for all v ∈ V and un → u weakly in V.

The following example provides a sufficient condition for H(j)1–(c). Let Y be a reflexive Banach
space, ψ : Y → R be a locally Lipschitz function such that ψ or −ψ is regular, and M : V → Y be given by
Mv = Lv + v0, where L : V → Y represents a linear, compact operator and v0 ∈ Y is fixed. In this situation,
the function j : V → R defined by j(v) = ψ(Mv) for v ∈ V satisfies H(j)1–(c). In applications, M is a
compact trace operator or a compact embedding operator, see, for instance, Section 6.

We obtain the second existence result by employing the approach used in Theorem 1.

Theorem 2. Under hypotheses H(A)1, H(j)1, H(ϕ), H(K), H( f ) and the smallness condition

αA > c1, (24)

Problem 1 has a solution u ∈ K.

Proof. We use the notation of Section 4 and treat Problem 1 by the penalized inequality stated in Problem 2.
We follow the three steps in the proof of Theorem 1. We only indicate below the new ingredients of
the proof.



Mathematics 2020, 8, 1824 12 of 18

(i) We prove that the set F(v) in bounded in V for all v ∈ V, where the multivalued mapping
F : V → 2V is given by (10). Let v ∈ V and u ∈ F(v). Hence

〈Au, u− v〉 ≤ 〈 f , u− v〉+ j0(u; v− u) + ϕ(v)− ϕ(u) +
1
λ

d0(u; v− u). (25)

From this inequality, we use H(J)1–(b), (13) and (14) to obtain

〈Au, u− v〉 ≤ ‖ f ‖V∗‖u‖V + ‖ f ‖V∗‖v‖V + (c0 + c1‖u‖V)‖u‖V (26)

+ (c0 + c1‖u‖V)‖v‖V + |ϕ(v)|+ ‖l‖V∗‖u‖V + |b|+ ce

λ
‖u‖V +

ce

λ
‖v‖V .

By the condition H(A)1–(a) and the smallness condition (24), we deduce that ‖u‖V is bounded by a
constant which depends on v but is independent of u. This completes the proof that F(v) is a bounded set
in V.

(ii) We prove that for λ > 0 and v ∈ V fixed, the set F(v) is sequentially weakly closed in V.
Let {uk} ⊂ F(v) and uk → u weakly in V, as k→ ∞. This means that Mv(uk) ≥ 0 for all v ∈ V, and

0 ≤ 〈Auk − f , v− uk〉+ j0(uk; v− uk) + ϕ(v)− ϕ(uk) +
1
λ

d0(uk; v− uk). (27)

We show that Mv(·) : V → R is sequentially weakly upper semicontinuous, that is,

lim sup Mv(uk) ≤ Mv(u).

We take upper limit in (27) to get

0 ≤ lim sup〈Auk, v− uk〉 − lim〈 f , v− uk〉+ lim sup j0(uk; v− uk) (28)

+ϕ(v) + lim sup(−ϕ(uk)) +
1
λ

lim sup d0(uk; v− uk).

Again, by the compactness of the embedding V ⊂ H, we apply Proposition 3.23(ii) in [17] to deduce

lim sup d0(uk; v− uk) ≤ d0(u; v− u). (29)

We use H(A)1–(a), H(j)1–(c), H(ϕ) and (29) in (28) to obtain

0 ≤ 〈Au− f , v− u〉+ j0(u; v− u) + ϕ(v)− ϕ(u) +
1
λ

d0(u; v− u).

Hence 0 ≤ Mv(u) and u ∈ F(v). This completes this proof.
(iii) We show that the solution uλ ∈ V to Problem 2 satisfies ‖uλ‖V ≤ M1 for all λ > 0 with M1 > 0

independent of λ. We take v := u0 in the penalized Problem 2, where, recall, u0 ∈ V is the center of the
ball B(u0, $). We have

0 ≤ 〈Auλ − f , u0 − uλ〉+ j0(uλ; u0 − uλ) + ϕ(u0)− ϕ(uλ) +
1
λ

d0(uλ; u0 − uλ).
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Simarily as in (30), we infer that

〈Auλ, uλ − v〉 ≤ ‖ f ‖V∗‖uλ‖V + ‖ f ‖V∗‖v‖V + (c0 + c1‖uλ‖V)‖uλ‖V (30)

+ (c0 + c1‖uλ‖V)‖v‖V + |ϕ(v)|+ ‖l‖V∗‖uλ‖V + |b|+ ce

λ
‖uλ‖V +

ce

λ
‖v‖V .

Again, by the condition H(A)1–(a) and the smallness condition (24), we deduce that ‖uλ‖V is bounded
by a constant M1 > 0 which is independent of λ.

The remaining parts of the proof follow the lines in the proof of Theorem 1.

From Remark 1 and Theorem 2, the deduce the following result on the existence of solution to the
variational-hemivariational inequality with the convex constraint set.

Corollary 1. Assume hypotheses H(A)1, H(j)1, H(ϕ), H( f ) and the smallness condition (24). If K is a nonempty,
closed and convex set, then Problem 5 has a solution u ∈ K.

We conclude the section with comments on the assumptions H(A)–(a) and H(A)1–(a).
(1) If A : V → V∗ is monotone, bounded and (w–V) × (w–V∗) continuous, then H(A)–(a) holds.

This follows by an observation that every (w–V)× (w–V∗) continuous operator is demicontinuous. Then,
the notions of demicontinuity and hemicontinuity coincide for monotone operators, see Exercise VI.9
in [10]. Finally, by Theorem 3.69(i) in [17], a bounded, monotone and hemicontinuous mapping is
pseudomonotone, that is, H(A)–(a) holds. Note that linear and bounded operators, and most quasilinear
differential operators are weakly-weakly continuous, see e.g., [11].

(2) If A : V → V∗ is monotone and (w–V)× (w–V∗) continuous, then H(A)1–(a) holds. To prove this,
first, we observe that if A is monotone, then for all un → u weakly in V, we have lim sup〈Aun, u− un〉 ≤ 0.
Indeed, we proceed by contradiction. Suppose that there are {wn} ⊂ V, w ∈ V such that wn → w weakly
in V and lim sup〈Awn, w− wn〉 > 0. The latter is equivalent to lim inf〈Awn, wn − w〉 < 0. On the other
hand by the monotonicity of A, we have

〈Aw, wn − w〉 ≤ 〈Awn, wn − w〉.

We take lower limit in this inequality, and deduce

0 = lim inf〈Aw, wn − w〉 ≤ lim inf〈Awn, wn − w〉 < 0,

which is a contradiction. Second, to prove H(A)1–(a), let v ∈ V, un → u weakly in V. Then, Aun → Au
weakly in V∗ and

lim sup〈Aun, v− un〉 ≤ lim sup(〈Aun, v− u〉+ 〈Aun, u− un〉)

≤ lim sup〈Aun, v− u〉+ lim sup〈Aun, u− un〉 ≤ 〈Au, v− u〉,

where we have used the inequality lim sup〈Aun, u− un〉 ≤ 0. Hence, H(A)1–(a) is verified.

(3) It is clear that if the mapping A is strongly monotone with constant mA > 0, see H(A)–(b), then A
is coercive in the sense that

〈Au, u〉 ≥ mA‖u‖2
V − ‖A0‖V∗‖u‖V for all u ∈ V,
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and
〈Au, u− v〉 ≥ mA‖u− v‖2

V − ‖Av‖V∗‖u− v‖V for all u, v ∈ V,

compare with H(A)1–(b).

6. Semipermeability Model

In this section we provide an illustrative model which weak formulation leads to a constrained
variational-hemivariational inequality. Based on this model, we justify the nature of operator M which
may appear in applications.

Consider the following semipermeability model for the stationary heat conduction problem. Let Ω ⊂
Rd be a bounded domain with the regular boundary Γ which consists of three mutually disjoint and
relatively open subsets Γ1, Γ2 and Γ3 with Γ = Γ1 ∪ Γ2 ∪ Γ3 and m(Γ1) > 0. Consider the following
boundary value problem.

Problem 3. Find a temperature u : Ω→ R such that u ∈ U and

Au + ∂j1(u) + ∂g1(u) 3 f1 in Ω

u = 0 on Γ1
∂u

∂νA
+ ∂j2(u) 3 f2 on Γ2

∂u
∂νA

+ ∂g2(u) 3 f3 on Γ3,

where A : V → V∗ is a given linear mapping, ν denotes the outward normal on the boundary, and ∂u
∂νA

is the
conormal derivative with respect to A and represents the heat flux through a part of the boundary. Further, U ⊂ V
is a nonempty, closed set of constraints which can be convex or nonconvex, and V = {v ∈ H1(Ω) | v = 0 on Γ1}.
We denote by i : V → L2(Ω) the embedding operator and by γ : V → L2(Γ) the trace operator. It is well known
that both operators are linear and compact.

Problem 3 is motivated by several kinds of semipermeability relations which arise in several
situations in hydraulics, flow problems through porous media and electrostatics, the solution can
represent temperature, pressure and the electric potential Chapter I in [31] (where the monotone
semipermeability relations were considered with convex potentials), and Chapter 5.5.3 of [8,16] (where
nonmonotone subdifferential conditions were treated). Mappings g1 and j1 describe the interior
semipermeability phenomena while g2 and j2 provide the boundary semipermeability relations in
the subdifferential form. Additional constraints for the temperature (or the pressure of the fluid in
a fluid flow model) are represented by the condition u ∈ U. The set U can be employed to introduce
a bilateral obstacle which means that we look for the temperature within prescribed bounds in the
domain Ω. The function f1 corresponds to the density of heat sources in the domain. The multivalued
subdifferential boundary conditions on Γ2 (and Γ3) describe the nonmonotone (and monotone, respectively)
behavior of a semipermeable membrane (a wall) of finite thickness, and appear in a temperature control
problem, see [32].

We need the following hypotheses on the data.

H(A)2 : A : V → V∗ is a mapping such that A = −∑d
i,j=1 Di

(
aij(x)Dj

)
, and

(i) aij ∈ L∞(Ω) for i, j = 1, . . . , d.

(ii) ∑d
i,j=1 aij(x)ξiξ j ≥ α0‖ξ‖2 for all ξ ∈ Rd, a.e. x ∈ Ω with α0 > 0.
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H(j1) : j1 : R→ R is such that

(i) j1 is locally Lipschitz.

(ii) |∂j1(r)| ≤ c0j + c1j|r| for all r ∈ R with c0j, c1j ≥ 0.

(iii) (∂j1(r1)− ∂j1(r2))(r1 − r2) ≥ −β1j|r1 − r2|2 all r1, r2 ∈ R with β1j ≥ 0.

H(j2) : j2 : R→ R is such that

(i) j2 is locally Lipschitz.

(ii) |∂j2(r)| ≤ c2j + c3j|r| for all r ∈ R with c2j, c3j ≥ 0.

(iii) (∂j2(r1)− ∂j2(r2))(r1 − r2) ≥ −β2j|r1 − r2|2 all r1, r2 ∈ R with β2j ≥ 0.

H(g1) : g1 : R→ R is such that

(i) g1 is convex and l.s.c.

(ii) |∂g1(r)| ≤ c0g + c1g|r| for all r ∈ R with c0g, c1g ≥ 0.

H(g2) : g2 : ×R→ R is such that

(i) g2 is convex and l.s.c.

(ii) |∂g2(r)| ≤ c2g + c3g|r| for all r ∈ R with c2g, c3g ≥ 0.

H( f ) : f1 ∈ L2(Ω), f2 ∈ L2(Γ2), fb ∈ L2(Γ3).

(H0) : α0 > β1j‖i‖2 + β2j‖γ‖2.

Assume that U is a convex set. Under the hypotheses above, by a standard procedure, we obtain the
following weak formulation of Problem 3.

Problem 4. Find u ∈ U such that

〈Au− f , v− u〉+
∫

Ω
j01(iu; iv− iu) dx +

∫
Γ2

j02(γu; γv− γu) dΓ

+
∫

Ω
(g1(iv)− g1(iu)) dx +

∫
Γ3

(g2(γv)− g2(γu)) dΓ ≥ 0 for all v ∈ U,

where f ∈ V∗ is given by

〈 f , v〉 =
∫

Ω
f1iv dx +

∫
Γ2

f2γv dΓ +
∫

Γ3

f3γv dΓ for v ∈ V.

We introduce the functionals G1, G2, J1, J2 : V → R defined by

G1(v) =
∫

Ω
g1(iv) dx, G2(v) =

∫
Γ3

g2(γv) dΓ,

J1(v) =
∫

Ω
j1(iv) dx, J2(v) =

∫
Γ2

j2(γv) dΓ
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for v ∈ V. Let ϕ = G1 + G2 and j = J1 + J2. We observe that from Propositions 3.37(i) and 3.46(iv) in [17],
we get

j0(u; v− u) ≤ J0
1 (u; v− u) + J0

2 (u; v− u)

≤
∫

Ω
j01(iu; iv− iv) dx +

∫
Γ2

j02(γu; γv− γu) dΓ for all u, v ∈ V.

Using the last inequality, definitions of the convex subdifferential and the Clarke subgradient,
we easily deduce that if u ∈ U solves the problem: find an element u ∈ U such that

〈Au− f , v− u〉+ ϕ(v)− ϕ(u) + j0(u; v− u) ≥ 0 for all v ∈ U,

then u is a solution to Problem 4.
If the set of constraints U is a nonempty, closed and nonconvex subset of V, we can derive a weak

formulation as in Problem 4. Then, Theorems 1 and 2 can be applied in this situation.

7. Conclusions

In this paper, we have given some sufficient conditions for the existence of solution to a class of
variational-hemivariational inequality problems involving the Clarke tangent cone of the constraint set in
a reflexive Banach space. The main feature of this class is the nonconvexity of the constraint set, and the
presence of two potential which are convex and locally Lipschitz, respectively. In the proofs, we have
employed the well-known KKM lemma combined with the penalty method without making the small
parameter tend to zero.

It is an intersting open problem to establish existence results without the smallness hypotheses (4)
and (24). The results will find important applications to model the semipermeable media, contact problems
in solid and fluid mechanics, etc. Moreover, it would be desirable to extend the results with nonconvex
constraints sets to second order evolution problems motivated by dynamic contact models in viscoelasticity,
thermoviscoelasticty, see [17,19], and nonstationary fluid models, see [20,21].
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