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Abstract: Multi-objective optimization problems (MOPs) naturally arise in many applications.
Since for such problems one can expect an entire set of optimal solutions, a common task in set based
multi-objective optimization is to compute N solutions along the Pareto set/front of a given MOP.
In this work, we propose and discuss the set based Newton methods for the performance indicators
Generational Distance (GD), Inverted Generational Distance (IGD), and the averaged Hausdorff
distance ∆p for reference set problems for unconstrained MOPs. The methods hence directly utilize
the set based scalarization problems that are induced by these indicators and manipulate all N
candidate solutions in each iteration. We demonstrate the applicability of the methods on several
benchmark problems, and also show how the reference set approach can be used in a bootstrap
manner to compute Pareto front approximations in certain cases.

Keywords: multi-objective optimization; Newton method; performance indicator ∆p; generational
distance; inverted generational distance; set based optimization

1. Introduction

Multi-objective optimization problems (MOPs), i.e., problems where multiple incommensurable
and conflicting objectives have to be optimized concurrently, arise in many fields such as engineering
and finance (e.g., [1–5]). One important characteristic is that there is typically not one single solution
to be expected for such problems (as it is the case for “classical” scalar optimization problems (SOPs)),
but rather an entire set of solutions. More precisely, if the MOP contains k conflicting objectives, one can
expect the solution set (the Pareto set respectively its image, the Pareto front) to form at least locally a
manifold of dimension k− 1 [6]. Many numerical methods take this fact into account and generate an
entire (finite) set of candidate solutions so that the decision maker (DM) obtains an overview of the
possible realizations of his/her project. For such set based multi-objective optimization algorithms
a natural question that arises is the goodness of the obtained solution set A (i.e., the relation of A
to the Pareto set/front of the underlying MOP). For this, several performance indicators have been
proposed over the last decades such as the Hypervolume indicator (HV, [7]), the Generational Distance
(GD, [8]), the Inverted Generational Distance (IGD, [9]), R2 [10], DOA [11], and the averaged Hausdorff
distance ∆p [12,13]. Each such indicator assigns to a given set of candidate solutions an indicator value
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according to the given MOP. Hence, if the MOP and the size of the candidate solution set are fixed,
the detection of the “best” candidate solution can be expressed by the problem

min
A⊂Q
|A|=N

I(A), (1)

where I denotes the chosen performance indicator (to be minimized), Q ⊂ Rn the domain of the
objective functions, and N the size of the candidate solution set. Since A ⊂ Rn contains N elements,
it is also a vector in RN·n. Problem (1) can hence be regarded as a SOP with N · n decision variables.

A popular and actively researched class of set based multi-objective algorithms is given
by specialized evolutionary algorithms, called multi-objective evolutionary algorithms (MOEAs,
e.g., [14–17]). MOEAs evolve entire sets of candidate solutions (called populations or archives) and are
hence capable of computing finite size approximations of the entire Pareto set/front in one single run
of the algorithm. Further, they are of global nature, very robust, and require only minimal assumptions
on the model (e.g., no differentiability on the objective or constraint functions). MOEAs have caught
the interest of many reseachers and practitioners during the last decades, and have been applied to
solve many real-world problems coming from science and engineering. It is also known, however,
that none of the existing MOEAs converges in the mathematical sence which indicates that they are not
yet tapping their full potential. In [18], it has been shown that for any strategy where λ < µ children
are chosen from µ parents, there is no guarantee for convergence w.r.t. the HV indicator. Studies
coming from mathematical programming (MP) indicate similar results for any performance indicator
(e.g., [19,20]) since λ < µ strategies in evolutionary algorithms are equivalent to what is called cyclic
search in MP.

In this work, we propose the set based Newton method for Problem (1), where we will address
the averaged Hausdorff distance ∆p as indicator. Since ∆p is defined via GD and IGD, we will also
consider the respective set based GD and IGD Newton methods. To this end, we will first derive
the (set based) gradients and Hessians for all indicators, and based on this define and discuss the
resulting set based Newton methods for unconstrained MOPs. Numerical results on some benchmark
test problems indicate that the method indeed yields local quadratic convergence on the entire set
of candidate solutions in certain cases. The Newton methods are tested on aspiration set problems
(i.e., the problem to minimize the distance of a set of solutions toward a given utopian reference set
Z and the given unconstrained MOP). Further, we will show how the ∆p Newton method can be
used in a bootstrap manner to compute finite size approximations of the entire Pareto front of a given
problem in certain cases. The method can hence in principle be used as standalone algorithm for
the treatment of unconstrained MOPs. On the other hand, the results also show that the Newton
methods—as all Newton variants—are of local nature and require good initial solutions. In order
to obtain a fast and reliable solver a hybridization with a global strategy—e.g., with MOEAs since
the proposed Newton methods can be viewed as particular “λ = µ” strategies—seems to be most
promising which is, however, beyond the scope of this work.

The remainder of this work is organized as follows: In Section 2, we will briefly present the
required background needed for the understanding of this work. In Sections 3–5, we will present
and discuss the set based GD, IGD and ∆p Newton methods, respectively. Finally, we will draw our
conclusions and will give possible paths for future work in Section 6.

2. Background and Related Work

Continuous unconstrained multi-objective optimization problems are expressed as

min
x

F(x), (2)

where F : Rn → Rk, F(x) = ( f1(x), . . . , fk(x))T denotes the map that is composed of the individual
objectives fi : Rn → R, i = 1, . . . , k, which are to be minimized simultaneously.
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If k = 2 objectives are considered, the resulting problem is termed a bi-objective optimization
problem (BOP).

For the definition of optimality in multi-objective optimization, the notion of dominance is widely
used: for two vectors a, b ∈ Rk we say that a is less than b (in short: a <p b), if ai < bi for all
i ∈ {1, . . . , k}. The definition of ≤p is analog. Let x, y ∈ Rn, then we say that x dominates y (x ≺ y)
w.r.t (2) if F(x) ≤p F(y) and F(x) 6= F(y). Else, we say that y is non-dominated by x. Now we are
in the position to define optimality of a MOP. A point x∗ ∈ Rn is called Pareto optimal (or simply
optimal) w.r.t. (2) if there exists no y ∈ Rn that dominates x∗. We denote by P the set of all optimal
solutions, also called Pareto set. Its image F(P) is called the Pareto front. Under mild conditions on the
MOP one can expect that both sets form at least locally objects of dimension k− 1 [6].

The averaged Hausdorff distance ∆p for discrete or discretized sets is defined as follows:
let A = {a1, . . . , aN} and B = {b1, . . . , bM}, where A, B ⊂ Rn, be finite sets. The values GDp(A, B) and
IGDp(A, B) are defined as

GDp(A, B) :=

(
1
N

N

∑
i=1

dist(ai, B)p

)1/p

IGDp(A, B) :=

(
1
M

M

∑
i=1

dist(bi, A)p

)1/p

,

(3)

where p is an integer and where the distance of a point ai to a set B is defined by dist(ai, B) :=
minb∈B ||ai − b||2. The averaged Hausdorff distance ∆p is simply the maximum of these two values,

∆p := max{GDp(A, B), IGDp(A, B)}. (4)

We refer to [21] for an extension of the indicators to continuous sets. We stress that all of these
three indicators are entirely distance based and are in particularly not Pareto compliant. A variant
of IGD that is weakly Pareto compliant is the indicator DOA. Here, we are particularly interested in
multi-objective reference set problems. That is, given a finite reference set Z ⊂ Rk, we are interested in
solving the problem

min
A⊂Q
|A|=N

I(F(A), Z), (5)

where I is one of the indicators GDp, IGDp, or ∆p, and N is the size of the approximation.
Probably the most important reference set in our context is the Pareto front itself. For this case,

∆p prefers, roughly speaking, evenly spread solutions along the Pareto front and is hence e.g., in accord
with the terms spread and convergence as used in the evolutionary multi-objective optimization (EMO)
community for a “suitable” performance indicator. As an example, Figure 1 shows some “best
approximations” in the ∆2 sense (i.e., when using p = 2) for MOPs with different shapes of the Pareto
front. More precisely, each subfigure shows a fine grain (M = 200) approximation of the Pareto front
of the underlying problem (using dots), as well as the best approximations in the ∆2 sense (using
diamonds). The latter are (numerical) solutions of (5) for N = 20, and where Z has been chosen as the
Pareto front approximation.
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Figure 1. Pareto fronts with different shapes together with their best approximations in the sense of
(5) for p = 2 and N = 20, and where Z is an approximation of the Pareto front.

If A = {a1, . . . , aN} is a subset of the Rn it means that each of its element ai is an element of
the Rn. Hence, the set A = {a1, . . . , aN} ⊂ Rn can in a natural way also be identified as a point or
vector in the higher dimensional space RN·n, i.e., A ∈ RN·n. That is, the optimization problem (5) can
be identified as a “classical” scalar optimization problem that is defined in N · n-dimensional search
space. A necessary condition for optimality is hence given by the Karush–Kuhn–Tucker conditions,
e.g., for unconstrained problems we are seeking for sets A for those the (set based) gradient vanishes.
In order to solve this root finding problem, one can e.g., utilize the Newton method. If we are given
a performance indicator I together with the derivatives ∇I(A) and ∇2 I(A) on a set A, the Newton
function is hence given by

N(A) := A−∇2 I(A)−1∇I(A). (6)

There exist many methods for the computation of Pareto optimal solutions. For example, there are
mathematical programming (MP) techniques such as scalarization methods that transform the MOP
into a sequence of scalar optimization problems (SOPs) [22–26]. These methods are very efficient in
finding a single solution or even a finite size discretization of the solution set. Another sub-class of the
MP techniques is given by continuation-like methods that take advantage of the fact that the Pareto
set forms—at least locally—a manifold. Methods of this kind start from a given initial solution and
perform a search along the solution manifold [6,27–33].



Mathematics 2020, 8, 1822 5 of 29

Next there exist also set oriented methods that are capable of obtaining the entire solution set in a
global manner. Examples for the latter are subdivision [34–36] and cell mapping techniques [37–39].
Another class of set based methods is given by multi-objective evolutionary algorithms (MOEAs) that
have proven to be very effective for the treatment of MOPs [14,16,40–43]. Some reasons for this include
that are very robust, do not require hard assumptions on the model, and allow to compute a reasonable
finite size representation of the solution set already in a single run.

Methods that deal with single reference points for multi-objective problems can be
found in [26,44,45]. The first work that deals with a set based approach using a problem similar
to the one in (5) can be found in [46], where the authors apply the steepest descent method on the
Hypervolume indicator [47]. In [48], the Newton method is defined where as well the Hypervolume
indicator has been used. In [49], a multi-objective Newton method is proposed that detects single
Pareto optimal solutions for a given MOP. In [50], a set based Newton method is proposed for general
root finding problems and for convex sets.

3. GDp Newton Method

In the following sections we will investigate the set based Newton methods for GDp, IGDp,
and ∆p. More precisely, we will consider the p-th powers, p > 1, of these indicators as this does not
change the optimal solutions. In all cases, we will first derive the (set based) derivatives, and then
investigate the resulting Newton method. For the derivatives, we will focus on p = 2 which is related
to the Euclidean norm, and which hence represents the most important performance indicator of the
indicator families. However, we will also state the derivatives for general integers p.

Let A = {a1, . . . , aN} ⊂ Rn be a candidate set for (2), and Z = {z1, . . . , zM} ⊂ Rk be a given
reference set. The indicator GDp measures the averaged distance of the image of A and Z:

GDp(A) :=

(
1
N

N

∑
i=1

d(F(ai), Z)p

) 1
p

. (7)

Hereby, we have used the notation

d(F(ai), Z) := min
j=1,...,M

‖F(ai)− zj‖, for i = 1, . . . , N, (8)

and assume Z to be fixed for the given problem (and hence, it does not appear as input argument).

3.1. Derivatives of GD2
2

3.1.1. Gradient of GD2
2

In the following, we have to assume that for every point F(ai) there exists exactly one closest
element in Z. That is, ∀ i = 1, . . . , N there exists an index ji ∈ {1, . . . , M} such that:

d(F(ai), Z) = ‖F(ai)− zji‖ < ‖F(ai)− zq‖ ∀q ∈ {1, . . . , M} \ {ji}. (9)

Otherwise, the gradient of GDp is not defined at A. If condition (9) is satisfied, then (7) can be
written as follows:

GDp(A) :=

(
1
N

N

∑
i=1
‖F(ai)− zji‖

p

) 1
p

, (10)

and for the special case p = 2 we obtain

GD2
2(A) :=

1
N

N

∑
i=1
‖F(ai)− zji‖

2
2 ∈ Rn·N . (11)
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The gradient of GD2
2 at A is hence given by

∇GD2
2(A) :=

2
N


J(a1)

T(F(a1)− zj1)

J(a2)
T(F(a2)− zj2)

...
J(aN)

T(F(aN)− zjN )

 ∈ Rn·N , (12)

where J(ai) denotes the Jacobian matrix of F at ai for i = 1, . . . , N. We call the vector

J(ai)
T(F(ai)− zji ), i ∈ {1, . . . , N}, (13)

the i-th sub-gradient ( The sub-gradient is defined here as part of the gradient that is associated to an
element a of A, and is not equal to the notion of the sub-gradient known in non-smooth optimization. )
of GD2

2 with respect to ai ∈ A. Note that the sub-gradients are completely independent of the location
of the other archive elements aj ∈ A.

If the given MOP is unconstrained, then the first order necessary condition for optimality is that
the gradient of GD2

2 vanishes. This is the case for a set A if all sub-gradients vanish

∇GD2
2(A) = 0⇔ J(ai)

T(F(ai)− zji ) = 0 ∀ i = 1, . . . , N. (14)

This happens if for each ai either

(i) F(ai) = zji , that is, if the image of ai is equal to one of the elements of the reference set. This is for
instance never the case if Z is chosen utopian.

(ii) If F(ai) 6= zji , we have

J(ai)
T(F(ai)− zji ) =

k

∑
l=1
∇ fl(ai) ( fl(ai)− (zji )l)︸ ︷︷ ︸

=:α(i)l

=
k

∑
l=1

α
(i)
l ∇ fl(ai) = 0 (15)

for a vector α(i) ∈ Rk\{0}. The point ai is hence a critical point since rank(J(ai)) < k. Furthermore,
if F(ai) − zji ≥p 0 (e.g., if Z is again utopian) then ai is even a Karush–Kuhn–Tucker point.
See Figure 2 for a geometrical interpretation of this scenario.
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Figure 2. Geometrical interpretation of the optimality condition (ii) for GD2

2 . Note that α is orthogonal
to the linearized Pareto front. (a) shows this behavior on a concave Pareto front, (b) on a convex Pareto
front, and (c) on a concave/convex Pareto front.



Mathematics 2020, 8, 1822 7 of 29

3.1.2. Hessian ofGD2
2

We first define the map g : Rn → Rn as

g(ai) :=
k

∑
l=1

α
(i)
l ∇ fl(ai), (16)

where α(i) is as in (15). In order to find an expression of the Hessian matrix, we now derive Equation (16)
as follows:

Dg(ai) =
k

∑
l=1

(
∇ fl(ai)∇ fl(ai)

T + αl∇2 fl(ai)
)
= J(ai)

T J(ai) + Wα(ai) ∈ Rn×n, (17)

where

Wα(ai) =
k

∑
l=1

αl∇2 fl(ai). (18)

Thus, the Hessian matrix of GD2
2 is

∇2GD2
2(A) =

2
N

diag (Dg(a1), . . . ,Dg(aN)) ∈ Rn·N×n·N , (19)

which is a block diagonal matrix.

3.2. Gradient and Hessian for General p > 1

As mentioned above, we focus here on the special case p = 2. The above derivatives, however,
can be generalized for p > 1 as follows (assuming that Z is an utopian finite set to avoid problems
when p < 4): the gradient is given by

∇GDp
p(A) :=

p
N


‖F(a1)− zj1‖

p−2 J(a1)
T(F(a1)− zj1)

‖F(a2)− zj2‖p−2 J(a2)
T(F(a2)− zj2)

...
‖F(aN)− zjN‖

p−2 J(aN)
T(F(aN)− zjN )

 ∈ Rn·N , (20)

and the Hessian by
∇2GDp

p(A) = diag (H1, . . . ,HN) ∈ Rn·N×n·N , (21)

where

Hi =
p(p− 2)

N
‖F(ai)− zji‖

p−4
[

J(ai)
T(F(ai)− zji )(F(ai)− zji )

T J(ai)
T
]

+
p
N

[
J(ai)

T J(ai) + Wα(ai)
]

, (22)

for i = 1, 2, . . . , N.

3.3. GD2
2-Newton Method

After having derived the gradient and the Hessian we are now in the position to state the set
based Newton method for the GD2

2 indicator:
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GD2
2 Newton method

A0 ⊂ Rn

At+1 := At − diag (Dg(a1), . . . ,Dg(aN))
−1

 J(a1)
T(F(a1)− zj1)

...
J(aN)

T(F(aN)− zjN )

 , t = 0, 1, . . .
(23)

The Newton iteration can in practice be stopped at a set A f if

‖∇GD2
2(A f )‖ ≤ tol, (24)

for a given tolerance tol > 0. In order to speed up the computations one may proceed due to the
structure of the (sub-)gradient as follows: for each element ai of a current archive A with

‖J(ai)
T(F(ai)− zji )‖ ≤

tol√
N

(25)

one can continue the Newton iteration with the smaller set Ā = A\{ai} (and later insert ai into the
final archive).

We are particularly interested in the regularity of ∇2GD2
2 at the optimal set, i.e., at a set A∗

that solves problem (5) for I = GD2
2. This is the case since if the Hessian is regular at A∗—and if

the objective function is sufficiently smooth—we can expect the Newton method to converge locally
quadratically [51].

Since the Hessian is a block diagonal matrix it is regular if all of its blocks

J(ai)
T J(ai) + Wα(i)(ai), i = 1, . . . , N, (26)

are regular. From this we see already that if Z is not utopian, we cannot expect quadratic convergence:
assume that one point z ∈ Z is feasible, i.e., that there exists one x ∈ Q such that F(x) = z. We can
assume that x is also a member of the optimal set A∗, say ai = x. Then, we have that the weight vector
α(i) is zero, and hence that Wα(i) = ∑k

l=1 α
(i)
l ∇

2 fl(ai) = 0. Thus, the block matrix reduces to J(ai)
T J(ai)

those rank is at most k. The block matrix is hence singular, and so is the Hessian of GD2
2 at A∗.

In the case all individual objectives are strictly convex, the GD2
2 Hessian is positive definite

(and hence regular) at every feasible set A, and we can hence expect local quadratic convergence.

Proposition 1. Let a MOP of the form (2) be given whose individual objectives are strictly convex, and let Z be
a discrete utopian set. Then, the matrix ∇2GD2

2(A) is positive definite for all feasible sets A.

Proof. Since ∇2GD2
2(A) is block diagonal, it is sufficient to consider the block matrices J(ai)

T J(ai) +

Wα(i)(ai), i = 1, . . . , N. Let i ∈ {1, . . . , N}. Since Z is utopian, it is α(i) 6= 0, and all of its elements are
non-negative. Further, since all individual objectives fl are strictly convex, the matrices ∇2 fl(ai) are
positive definite, and hence also the matrix Wα(ai). Since JT(ai)J(ai) is positive semi-definite, we have
for all x ∈ Rn \ {0}

xT
(

J(ai)
T J(ai) + Wα(i)

)
x = xT J(ai)

T J(ai)x + xTWα(i)x > 0,

since xT J(ai)
T J(ai)x ≥ 0 and xTWα(i)x > 0. Therefore, each Dg(ai), i = 1, . . . , N, is positive definite

and hence also the matrix ∇2GD2
2(A).
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3.4. Example

We consider the following convex bi-objective problem

f1, f2 : R2 → R

f1(x) = x2
1 + (x2 + 3)2

f2(x) = (x1 + 3)2 + x2
2.

(27)

Figure 3 shows the Pareto front of this problem together with the reference set Z that contains 30
elements (black dots). The set Z is a discretization of the convex hull of individual minima (CHIM, [23])
of the problem that has been shifted left down. Further, it shows the images of the Newton steps
of an initial set A0 that contains 21 elements. As it can be seen, all images converge toward three
solutions that are placed in the middle of the Pareto front (which is owed to the fact that Z is discrete.
If Z would be continuous, all images would converge toward one solution). This example already
shows that the GD2

2 Newton method is of restricted interest as standalone algorithm. The method
will, however, become important as part of the ∆p-Newton method as it will become apparent later
on. Table 1 shows the respective GD2

2 values plus the norms of the gradients which indicate quadratic
convergence. The second column indicates that the images of the archives converge toward the Pareto
front as anticipated.
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Figure 3. (Left) application of the GD2
2 Newton method on bi-objective oriented problem (BOP) (27). (Right) only

the final archive is shown.

Table 1. Numerical results of the GD2
2-Newton method for BOP (27).

Iter. ‖∇GD2
2(Ai)‖ GD2

2(F(Ai), F(PQ)) GD2
2(F(Ai), Z)

0 - 12.000000000000000 2.102524077758237
1 24.575789798441914 2.443855313744088 1.364160070353236
2 10.174108923911083 0.155893831541973 1.099322040004995
3 5.003263195893473 0.002209872937986 1.014751905633911
4 3.169714351377499 0.000015254816873 0.976329099745630
5 1.947602617177173 0.000000021343544 0.957865673825140
6 1.758375206901766 0.000000000020256 0.945790145414235
7 1.433193382521511 0.000000000000013 0.939274242767051
8 1.012249366157551 0.000000000000000 0.936469149315602
9 0.006408088020990 0.000000000000000 0.936469035893491

10 0.000000182419413 0 0.936469035893491
11 0.000000000000002 0 0.936469035893491
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4. IGDp Newton Method

The indicator IGDp computes how far, on average, the discrete reference set Z is from a given
archive A, and is defined as

IGDp(A) :=

(
1
M

M

∑
i=1

d(zi, F(A))p

) 1
p

, (28)

where d(zi, F(A)) is given by

d(zi, F(A)) := min
j=1,...,N

‖zi − F(aj)‖, for i = 1, . . . , M. (29)

4.1. Gradient of IGDp

Similar to GD, we will also have to assume that for all i = 1, . . . , M there exists an index
ji ∈ {1, . . . , N} such that:

d(zi, F(A)) = ‖zi − F(aji )‖ < ‖zi − F(aq)‖ ∀q ∈ {1, . . . , N} \ {ji}, (30)

since otherwise the gradient of IGDp is not defined. Then, using Equation (30), Equation (28) can be
written as follows:

IGDp(A) :=

(
1
M

M

∑
i=1
‖zi − F(aji )‖

p

) 1
p

. (31)

From now on we will consider IGD2
2 which is given by

IGD2
2(A) :=

1
M

M

∑
i=1
‖zi − F(aji )‖

2
2. (32)

In order to derive the gradient of IGD2
2, let Il := {i : ji = l}, l ∈ {1, . . . , N}, be the set formed by

the indexes i ∈ {1, 2, . . . , M} that are related to ji. In other words, this set gives us the relation of the
elements of Z related to each image F(al) (an example of this relation can be found in Figure 4). Then,
the sub-gradient of IGD2

2 at point al is given by

∂IGD2
2

∂al
(A) =

2
M ∑

i∈Il

J(al)
T(F(al)− zi) =

2
M

J(al)
T(ml F(al)− ∑

i∈Il

zi), (33)

where ml =| Il | . Finally, the gradient of IGD2
2 can be expressed as

∇IGD2
2(A) :=



∂IGD2
2

∂a1
(A)

∂IGD2
2

∂a2
(A)

...

∂IGD2
2

∂aN
(A)


∈ Rn·N . (34)

It is worth to notice that the sub-gradients depend on the location of the other archive elements
which implies a “group motion” (which is in contrast to the gradient of GD2

2).
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Figure 4. Example of a relation between the reference set Z and the approximation set F(A).

We next consider under which conditions the gradient of IGD2
2 vanishes. If ∇IGD2

2(A) = 0,
then for all l = 1, . . . , N we have that

J(al)
T(ml F(al)− ∑

i∈Il

zi) = 0 (35)

⇔ J(al)
T F(al) = J(al)

T
(

∑i∈Il
zi

ml

)
︸ ︷︷ ︸

Cl

, (36)

where C is the centroid of zi’s. Then, note that if:

1. rank(J(al)) = k, then F(al) =
∑i∈Il

zi
ml

= Cl .

2. rank(J(al)) = k − 1, then F(al) − Cl is orthogonal to the linearized image of F at F(al),
and orthogonal to the linearized Pareto front at F(al) in case F(al)− Cl ≥p 0 and F(al)− Cl 6= 0
(see Figure 5 for such a scenario).
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f1

f 2

Figure 5. Geometric interpretation when F(al)− C is orthogonal to the linearized Pareto front.



Mathematics 2020, 8, 1822 12 of 29

4.2. Hessian Matrix of IGDp

Analog to the derivation of GDp− Hessian, we first define the map g : Rn → Rn as

g(al) := J(al)
T(ml F(al)− ∑

i∈Il

zi). (37)

Now, let ∑i∈Il
zi = y = (y1, . . . , yk)

T . Then

g(al) = J(al)
T(ml F(al)− y) = ml

k

∑
i=1

fi(x)∇ fi(x)−
k

∑
i=1

yi∇ fi(x). (38)

Then, we derive Equation (38) as follows:

Dg(al) = ml

k

∑
i=1

fi(al)∇2 fi(al) + ml J(al)
T J(al)−

k

∑
i=1

yi∇2 fi(al) (39)

=
k

∑
i=1

(ml fi(al)− yi)∇2 fi(al) + ml J(al)
T J(al)

= ml J(al)
T J(al) + Wα(al) ∈ Rn×n,

where

Wα(al) =
k

∑
i=1

(ml fi(al)− yi)︸ ︷︷ ︸
:=α

(l)
i

∇2 fi(al) =
k

∑
i=1

α
(l)
i ∇

2 fi(al). (40)

Thus, the Hessian matrix of IGD2
2 is given by

∇2 IGD2
2(A) =

2
M

diag (Dg(a1), . . . ,Dg(aN)) ∈ Rn·N×n·N , (41)

which is a block diagonal matrix.

4.3. Gradient and Hessian for General p > 1

The above derivatives can be generalized for p > 1 as follows: the gradient is given by

∇IGDp
p(A) :=

p
M



J(a1)
T ∑i∈I1

‖F(a1)− zi‖p−2(F(a1)− zi)

J(a2)
T ∑i∈I2

‖F(a2)− zi‖p−2(F(a2)− zi)

...

J(aN)
T ∑i∈IN

‖F(aN)− zi‖p−2(F(aN)− zi)


∈ Rn·N , (42)

and the Hessian by
∇2 IGDp

p(A) = diag (H1, . . . ,HN) ∈ Rn·N×n·N , (43)

where

Hl =
p(p− 2)

N ∑
i∈Il

‖F(al)− zi‖p−4
[

J(al)
T(F(al)− zi)(F(al)− zi)

T J(al)
T
]

+
p
M

[
J(al)

T J(al) + Wα(al)
]

. (44)
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4.4. IGD2
2 Newton Method

After having derived the gradient and the Hessian of IGD2
2 we are now in the position to state

the respective set based Newton method.

IGD2
2 Newton method

A0 ⊂ Rn

At+1 := At − diag (Dg(a1), . . . ,Dg(aN))−1


J(a1)

T(m1F(a1)−∑i∈I1
zi)

...
J(aN)T(mN F(aN)−∑i∈IN

zi)

 , t = 0, 1, . . .
(45)

Similarly to the GD Newton method, the iteration can be stopped at an set A f if

‖∇IGD2
2(A f )‖ ≤ tol (46)

for a given tolerance tol > 0, and the iteration for an element ai can be stopped when

2
M

J(al)
T(ml F(al)− ∑

i∈Il

zi) ≤
tol√

N
. (47)

One important special case is when the image F(al) of a point al of a set A is not the nearest point
of any element of Z, i.e., if ml = 0 (see Figure 6). In that case, the l-th sub-gradient vanishes,

ml = 0⇒
∂IGD2

2
∂al

(A) = 0, (48)

which means that the point al will remain fixed under further iterations of the IGD Newton method.
One possibility is hence to neglect such points in subsequent iterations, and to continue with the
reduced set. Note also that dominance and distance are two different concepts. That is, if all points of a
set A are mutually non-dominated, this does give an implication on ml , see Figure 7 for two examples.
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f1

f
2

Pareto Front: F (PQ)
Z
F (ai)

Figure 6. Potential problem of the Inverted Generational Distance (IGD) Newton method: if ml = 0
(here it is m2 = 0) then the l-th sub-gradient is equal to zero, and al will stay fixed under the
Newton iteration.
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Figure 7. Dominance and distance are different concepts. (Left) an example where a1 and a2 are
mutually non-dominated, but where | I2 |= 0. (Right) an example where a1 ≺ a2, but | Il |6= 0 for
l ∈ {1, 2}.

Similar to GD, we are interested in the regularity of ∇2 IGD2
2 at the optimal set since we can in

that case expect local quadratic convergence. By the structure of the Hessian we have singularity in
the following cases:

1. if ml = 0 for a l ∈ {1, . . . , N} (since then Dg(al) = 0) (see also the discussion above), and
2. if one element zl of Z is feasible (since thenDg(al) = J(al)

T J(al) which has a rank≤ k, and under
the assumption that k < n).

Similar as for GD, the IGD-Hessian is positive definite for strictly convex problems and utopian
reference sets if in addition ml ≥ 1 for all l ∈ {1, . . . , N}.

Proposition 2. Let a MOP of the form (2) be given whose individual objectives are strictly convex, and let
Z be a discrete utopian set. Further, let ml ≥ 1 for all l ∈ {1, . . . , N}, and A be feasible. Then, the matrix
∇2 IGD2

2(A) is positive definite.

Proof. Let l ∈ {1, . . . , N}, and for ease of notation
⋃

i∈Il
zi = {Z1, . . . , Zml}. Since all Zi’s are utopian

we have
α(l) = ml F(al)− ∑

i∈Il

zi = F(al)− Z1︸ ︷︷ ︸
≥p0

+ · · ·+ F(al)− Zml︸ ︷︷ ︸
≥p0

≥p 0, (49)

as well as ml F(al) 6= ∑i∈Il
zi (and hence α(l) 6= 0). The rest is analog to the proof of Proposition 1.

4.5. Examples

We first consider again the convex BOP (27) as for the previous example (see Figure 8), but now
using the IGD-Newton method. Already after one iteration step for 8 out of the 21 elements it is ml = 0
(denoted by red dots), and we continue the Newton method with the resulting 13-element subset.
For this, we obtain quadratic convergence toward the ideal set (for N = 13) as it can be observed
from Table 2.
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Figure 8. (Left) application of the IGD2
2-Newton method on BOP (27). (Right) image of the final

archive (green) together with the images for those ml = 0 (red).

Table 2. Numerical results of IGD2
2-Newton method for BOP (27), see Figure 8.

Iter. ‖∇IGD2
2(Ai)‖ GD2

2(F(Ai), F(PQ)) IGD2
2(F(Ai), Z)

0 - 12.000000000000000 0.280604068205798
1 18.378420484981000 1.930506027522264 0.206869895378755
2 5.432039146770605 0.043471951768718 0.192756253890335
3 0.817043487084936 0.000003701993633 0.192391225092683
4 0.706420510642436 0.000000000171966 0.192326368208389
5 0.006184251273371 0.000000000000000 0.192326331507963
6 0.000000481423311 0 0.192326331505474
7 0.000000000000007 0 0.192326331505474

We next consider the following BOP [52]

f1, f2 : [−4, 4]2 ⊂ R2 → R

f1(x) = 1− exp

[
−
(

x1 −
1√
2

)2
−
(

x2 −
1√
2

)2
]

f2(x) = 1− exp

[
−
(

x1 +
1√
2

)2
−
(

x2 +
1√
2

)2
] (50)

those Pareto front is concave. We apply the IGD-Newton method on the sets A0 with |A0| = 21 and
Z with |Z| = 30 as shown in Figure 9. For this example, only six elements of A0 are closest to one
element of Z. Table 3 shows that the convergence is much slower than for the previous example.

Finally, we consider the BOP [53]

f1, f2 : R2 → R

f1(x, y) =
1
2

(√
1 + (x + y)2 +

√
1 + (x− y)2 + x− y

)
+ λ · e−(x−y)2

f2(x, y) =
1
2

(√
1 + (x + y)2 +

√
1 + (x− y)2 − x + y

)
+ λ · e−(x−y)2

(51)
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For λ = 0.85 and Q = [−1.5, 1.5]2 the Pareto front containts a “dent” and is hence convex-concave.
Figure 10 shows the setting and Table 4 the respective convergence behavior. Again, we “lose” elements
from A0 since for them there are no elements of Z that are closest to them.
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Figure 9. (Left) application of the IGD2
2-Newton method on BOP (50). (Right) the image of the final

archive (green) together with the images for which ml = 0.

Table 3. Numerical results of IGD2
2-Newton method for BOP (50), see Figure 9.

Iter. ‖∇IGD2
2(Ai)‖ IGD2

2(F(Ai), F(PQ)) IGD2
2(F(Ai), Z)

0 - 0.278373584606464 0.023220380628487
1 0.336586538953659 0.201027590101253 0.008847986218368
2 0.037592704195443 0.208694136517504 0.008453782829010
3 0.020266018162657 0.205037496184976 0.008317268653462
4 0.004947265003093 0.197436504168332 0.008331864711939
5 0.012675095498115 0.196899482529974 0.008335126593931
6 0.011342458560546 0.195934897889421 0.008256278024484
7 0.001644428661330 0.194957155951972 0.008252791569886
8 0.001355427544721 0.194529344670235 0.008248151529685
9 0.000531420743367 0.194275287179155 0.008247144931520

10 0.000462304446354 0.194197084382389 0.008244551897282
11 0.000160142304221 0.194173320804311 0.008243923138606
12 0.000083987735463 0.194171755397215 0.008243322467470
13 0.000007989306735 0.194171718496160 0.008243262849450
14 0.000000313502013 0.194171718485903 0.008243260421944
15 0.000000004246450 0.194171718485903 0.008243260388981
16 0.000000000077470 0.194171718485903 0.008243260388530
17 0.000000000010284 0.194171718485903 0.008243260388522
18 0.000000000001988 0.194171718485903 0.008243260388521
19 0.000000000000385 0.194171718485903 0.008243260388521
20 0.000000000000075 0.194171718485903 0.008243260388521

Table 4. Numerical results of IGD2
2-Newton method for BOP (51), see Figure 10.

Iter. ‖∇GD2
2(Ai)‖ IGD2

2(F(Ai), F(PQ)) IGD2
2(F(Ai), Z)

0 - 0.743479945976417 0.089706026039859
1 1.774223579432539 0.598423777888877 0.069797721774084
2 1.059917072891813 0.580388865733755 0.065730197299576
3 0.436102700877237 0.575606525856331 0.065186338106827
4 0.044524401746943 0.575571396044490 0.065172539475108
5 0.000368536791948 0.575571392056566 0.065172518364193
6 0.000000023167599 0.575571392056566 0.065172518358461
7 0.000000000000001 0.575571392056566 0.065172518358461
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Figure 10. (Left) application of the IGD2
2-Newton method on BOP (51). (Right) only the final archive is shown.

5. ∆2-Newton Method

Based on the results of the previous two sections we are now in the position to state the set based
Newton method for the ∆2

2 indicator.

5.1. ∆2-Newton Method

Since ∆2
2(Ai, Z) is defined by the maximum of GD2

2(Ai, Z) and IGD2
2(Ai, Z) we simply check in

each iteration which of the latter two values is larger, and apply either the GD or the IGD-Newton
step accordingly.

∆2
2-Newton method

A0 ⊂ Rn

for i = 0, 1, . . .

if GD2
2(Ai, Z) > IGD2

2(Ai, Z) (use GD2
2-Newton step)

At+1 := At − diag (Dg(a1), . . . ,Dg(aN))−1


J(a1)

T(F(a1)− zj1 )
...

J(aN)T(F(aN)− zjN )


else (use IGD2

2-Newton step)

At+1 := At − diag (Dg(a1), . . . ,Dg(aN))−1


J(a1)

T(m1F(a1)−∑i∈I1
zi)

...
J(aN)T(mN F(aN)−∑i∈IN

zi)



(52)

The properties and the realization of the method are in principle as for the GD and the
IGD-Newton method. The only difference, at least theoretically, is a possible loss of smoothness
since ∆p is defined by the maximum of two functions. Such issues, at least for convergence, however,
are only to be expected in case GD(A∗, Z) is equal to IGD(A∗, Z) for a reference set Z and the
respective optimal archive A∗. The cost for the realization one Newton step for each of the three
indicators is O(Nn2) in storage when taking into account the block structure of the Hessians since N
matrices of dimension n× n have to be stored, and O(Nn3) in terms of flops since N linear equation
systems of dimension n have to be solved.
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5.2. Examples

We will in the following demonstrate the applicability of the ∆2
2-Newton method on several

methods. For this, we first consider the same three examples and settings as for the IGD2
2-Newton

method presented above. Figures 11–13 show some numerical results of the ∆2-Newton method using
the same initial archives A0 and reference sets Z as in the previous section. As it can be seen, in all cases
the method achieved much better approximations as for the sole usage of the IGD-Newton method
(as well as the GD-Newton method). The convergence behaviors can be seen in Tables 5–7. In all cases,
the GD value is the greater one in the initial steps of the method. After some iterations (and switches
from GD to IGD and vice versa), however, the IGD value becomes eventually the largest one so that
the ∆p-Newton method eventually coincides with the IGD-Newton method. In comparison to the
results of the IGD-Newton method, however, it becomes apparent that the GD-Newton steps are in
fact important to obtain better overall approximations.

Table 5. Numerical results of the ∆2
2-Newton method on BOP (27), see Figure 11.

Iter. ‖∇∆2
2(Ai)‖ ∆2

2(F(Ai), F(PQ)) ∆2
2(F(Ai), Z) Indicator

0 - 2.000000000000000 2.102524077758237 GD
1 24.575789798441914 0.410124138028425 1.364160070353236 GD
2 10.174108923911083 0.026608923543674 1.099322040004995 IGD
3 3.542645526228592 0.000015520657566 1.104000035194028 GD
4 5.213757247004612 0.000000441436988 1.020226507943846 IGD
5 9.260923965020773 0.000000016030350 1.036249331407054 IGD
6 2.625118989394418 0.000000384599061 1.047878336296791 IGD
7 0.042216669617238 0.000000384618980 1.047678945935868 IGD
8 0.000010909557366 0.000000384618980 1.047678891593882 IGD
9 0.000000000000756 0.000000384618980 1.047678891593878 IGD

10 0.000000000000006 0.000000384618980 1.047678891593878 IGD
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Figure 11. (Left) application of the ∆2-Newton method on BOP (27). (Right) the final archive.
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Table 6. Numerical results of the ∆2
2-Newton method on BOP (50), see Figure 12.

Iter. ‖∇∆2
2(Ai)‖ ∆2

2(F(Ai), F(PQ)) ∆2
2(F(Ai), Z) Indicator

0 - 0.278373584606464 0.139932582443422 GD
1 0.056371237267200 0.066618294837097 0.056728504338161 GD
2 0.057045938719184 0.039369161609912 0.041433057966044 GD
3 0.037484475625202 0.024109339347752 0.031977133783097 IGD
4 0.050812222533911 0.023513431743364 0.033996922698945 GD
5 0.031160653990564 0.014395303481718 0.024321095970292 IGD
6 0.037264116905168 0.016443622791045 0.025809212757710 IGD
7 0.018144934519792 0.024703492528406 0.029965847813991 IGD
8 0.019468781951843 0.028619439695385 0.030778919683651 GD
9 0.035410330655855 0.017309625336888 0.019853297293327 IGD
10 0.043091325647137 0.021752471483838 0.024124052991424 IGD
11 0.008311561314162 0.017118271463333 0.026490329733338 GD
12 0.029726132461309 0.011015521887052 0.017647857545199 IGD
13 0.049385612870240 0.013547698417436 0.021426583957166 IGD
14 0.014525769797194 0.020436747509906 0.034124722919781 IGD
15 0.030582462613590 0.012480668370491 0.021750946945761 IGD
16 0.030419387651439 0.006090064700256 0.023544581385908 IGD
17 0.012758353366778 0.000030594174296 0.025131789220814 IGD
18 0.009657374280631 0.001454430574110 0.025813967350062 IGD
19 0.005296333332650 0.001374135866037 0.026375698139894 IGD
20 0.005548518084090 0.002112406054454 0.027521017269386 IGD
21 0.005856819919213 0.002804811375528 0.029968509026162 IGD
22 0.012701286040104 0.001922080339960 0.030132357483057 IGD
23 0.003183819547848 0.001504297326063 0.030456038027207 IGD
24 0.003253860331803 0.002240659587601 0.031310708007687 IGD
25 0.003580104890061 0.001602870721889 0.031465842685442 IGD
26 0.002074689422294 0.001367127795787 0.031805380040383 IGD
27 0.001414150903872 0.000126099902661 0.031769100819775 IGD
28 0.001111604812819 0.001688362662578 0.031742469387990 IGD
29 0.000901680741441 0.003036794425943 0.031689031421120 IGD
30 0.000257772611116 0.003797901156449 0.031672123060034 IGD
31 0.000101230696412 0.003991409932376 0.031663374641811 IGD
32 0.000007716198343 0.004008504531546 0.031662626381853 IGD
33 0.000000360445308 0.004008654325951 0.031662593054177 IGD
34 0.000000015185568 0.004008654388153 0.031662591709428 IGD
35 0.000000000643412 0.004008654388154 0.031662591654952 IGD
36 0.000000000027461 0.004008654388154 0.031662591652896 IGD
37 0.000000000001332 0.004008654388154 0.031662591652858 IGD
38 0.000000000000154 0.004008654388154 0.031662591652867 IGD
39 0.000000000000033 0.004008654388154 0.031662591652869 IGD
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Figure 12. (Left) application of the ∆2
2-Newton method on BOP (50). (Right) the final archive.
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Figure 13. (Left) application of the ∆2-Newton method on BOP (51). (Right) the final archive.

Table 7. Numerical results of the ∆2
2-Newton method on BOP (51), see Figure 13.

Iter. ‖∇∆2
2(Ai)‖ ∆2

2(F(Ai), F(PQ)) ∆2
2(F(Ai), Z) Indicator

0 - 0.706541653137130 0.794786137846191 GD
1 2.052766083969590 0.169306894160018 0.477606371056880 GD
2 1.043651307474400 0.001325637478010 0.312621943719186 IGD
3 0.335281361638164 0.000782828935146 0.318925114182142 IGD
4 0.091979632627269 0.000782533520334 0.322156690814970 IGD
5 0.070361802550103 0.000782533238333 0.325270306125291 IGD
6 0.001111027357469 0.000782533238004 0.325312843569155 IGD
7 0.000000574058899 0.000782533238004 0.325312858713113 IGD
8 0.000000000000187 0.000782533238004 0.325312858713118 IGD
9 0.000000000000000 0.000782533238004 0.325312858713118 IGD

We next consider an example where we use the unconstrained three-objective problem that is
defined by the following map

F :R3 → R3

F(x) =

 (x1 + 1)2 + (x2 + 1)2 + (x3 + 1)2

(x1 − 1)2 + (x2 − 1)2 + (x3 − 1)2

(x1 + 1)2 + (x2 − 1)2 + (x3 + 1)2

 .
(53)

For this problem, we consider the following scenario: assume there are two decision makers
which each have their own preference vector (denote here by z1 = (6.08,−2.08, 2.72)T and
z2 = (0.32, 3.68,−3.04)T). As compromise it could be interesting to consider the line segment that
connects z1 and z2 (denote by Z) and to compute a set of solutions along the Pareto front that is near
(in the Hausdorff sense) to this aspiration set. Figure 14 and Table 8 show the numerical result of the
Newton method for an initial set consisting of 7 elements. As anticipated, the final set resembles a curve
along the Pareto front with minimal distance to Z, and may be used for the decision making process.
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Figure 14. Result of the ∆2
2-Newton method for MOP (53), where Z is a line.

This concept can of course be extended to general sets. For instance, one can choose the triangle
Z that is defined by the three vertices z1 = (6.08,−2.08, 2.72)T , z2 = (−2.56, 6.56,−0.16)T and
z3 = (0.20, 3.79,−2.92)T (e.g., if a third decision maker is involved). Figure 15 and Table 9 show such a
numerical result. For sake of better visualization, we only show the edges Z instead of the complete
triangle. As it can be seen, the obtained solutions resemble to a certain extent a bended triangle along
the Pareto front. From Table 9 it follows that for the final iteration the value ‖∇∆2

2(A6)‖ is already
very close to zero which indicates that a local solution has been computed. The solution, however,
does not seem to be perfectly shaped which is due to the fact that the problem to locate solutions along
the Pareto front with respect to the given reference set is highly multi-modal (the “perfect” shape is
associated to the global solution of Problem (5)). In order to obtain better results it is hence imperative
to hybridize the set based Newton methods with global multi-objective solvers (as e.g., multi-objective
evolutionary algorithms) which is beyond the scope of this work.
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Figure 15. Result of the ∆2
2-Newton method for MOP (53), where Z is a triangle (two different views

of the same result).
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Table 8. Numerical results of ∆2
2-Newton method for MOP (53), see Figure 14 .

Iter. ‖∇∆2
2(Ai)‖ ∆2

2(F(Ai), F(PQ)) ∆2
2(F(Ai), Z)

0 - 1.378676581248260 5.918796450955248
1 7.515915778732357 1.244858568391063 5.821725966611490
2 1.853655193889793 1.249239765031169 5.811343998211261
3 0.145669456936361 1.250137056379269 5.810973507376134
4 0.000671971342724 1.250139614137738 5.810971792145200
5 0.000000033865300 1.250139614289546 5.810971792043552
6 0.000000000000003 1.250139614289546 5.810971792043552

Table 9. Numerical results of ∆2
2-Newton method for MOP (53) when Z is a triangle, see Figure 15.

Iter. ‖∇∆2
2(Ai)‖ ∆2

2(F(Ai), F(PQ)) ∆2
2(F(Ai), Z)

0 1.000000000000000 1.378676581248260 5.136345894189382
1 9.078968824204878 1.190673858342912 5.014877171961635
2 12.361924917381627 1.250986213036476 3.359444827553141
3 4.188649668005252 1.076592897207513 3.232994469439562
4 0.664877643630374 1.053683832191072 3.217085086974496
5 0.686656379329441 1.036451498535567 3.213854172896627
6 0.005761784413677 1.036607563930994 3.213850773658971
7 0.000001010224622 1.036607573211355 3.213850772877354
8 0.000000000000157 1.036607573211355 3.213850772877354
9 0.000000000000002 1.036607573211354 3.213850772877354

5.3. A Bootstrap Method for the Computation of the Pareto Front

It is known that the proper choice of reference points/sets is a non-trivial task for the use of
performance indicators in general when targeting at the entire solution set (e.g., [54–56]). In the
following we show some numerical results of a bootstrap method that allows to a certain extent to
compute approximations of the entire Pareto fronts of a given MOP without prior knowledge of this
set. For this, we adapt the idea proposed in [57] to the context of the set based Newton method: given a
performance indicator and a set based SOP of the form (5), one can iteratively approximate the Pareto
front of a given problem using the Newton method via the following steps:

1. Compute the minima x∗i of the individual objectives fi, i = 1, . . . , k. Let y∗i = F(x∗i ), and let Z̃0 be
the convex hull of the y∗i ’s (also called convex hull of individual minima (CHIM) [23]). Let δ0 > 0
and set

Z0 = Z̃0 − δ0, (54)

where δ0 is ideally large enough so that Z0 is utopian. Compute a Newton step using Z0 leading
to the set of candidate solutions A(0).

2. In step l of the iteration, use the set A(l−1) computed in the previous iteration to compute a set Z̃l .
This can be done via interpolation of the elements of A(l−1) so that Z̃l only contains mutually
non-dominated elements. As new reference set use

Zl = Z̃l − δl , (55)

where δl < δl−1. Compute a Newton step using Zl leading to A(l).

For k = 2 objectives, the CHIM is simply the line segment that connects y∗1 and y∗2. Figures 16–18 and
Tables 10–12 show the results of this bootstrapping method on the MOPs (27), (50), and (51), respectively.
Table 13 shows the number of function, Jacobian, and Hessian calls that have been spent for each problem. In
our computations, we have chosen δ0 sufficiently large, and δl =

1
2 δl−1 for the shift parameter. The results

show that the entire Pareto fronts can for these examples be approximated via using the Newton method
together with the bootstrapping method. While the final approximations can considered to be “good” for the
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problems with the convex and convex/concave Pareto fronts, the final solution for MOP (50) that contains a
concave Pareto front is not yet satisfying. Table 11 indicates that the solutions do not even converge toward
a local solution (even if more iteration steps are performed). We conjecture that the problem results from the
multi-modality of the test function which encourages us further to hybridize the set based Newton method
with a global strategy in the future.
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Figure 16. Different iterations of the ∆2
2-Newton method to obtain the Pareto front of MOP (27) via the

bootstrapping method.

Table 10. Numerical results of the ∆2
2-Newton method to obtain the Pareto front of MOP (27) via the

bootstrapping method.

Iter. ‖∇∆2
2(Ai)‖ ∆2

2(F(Ai), F(PQ)) ∆2
2(F(Ai), Z) Indicator

0 - 2.565838356405802 5.454852860388515 GD
1 14.958401000284267 1.230817708101819 1.024752009175881 IGD
2 6.553591835159349 0.754749784421640 0.553744685923295 IGD
3 1.930428808338138 0.613768117290251 0.490492908923838 IGD
4 0.937132679630156 0.537139549603782 0.481517242208329 IGD
5 0.540200357139832 0.476989307368074 0.471988242018486 IGD
6 0.394304493982539 0.438480476946482 0.467546882767516 IGD
7 0.153675036875927 0.419941366901776 0.468192970378975 IGD
8 0.059462724070887 0.413040100805383 0.468716613758660 IGD
9 0.039636672484473 0.412237873646849 0.468845106760589 IGD

10 0.016104664984103 0.412336536272929 0.468844846612736 IGD
11 0.001970967225026 0.412348016205662 0.468845003745375 IGD
12 0.000010540592599 0.412348100926435 0.468845005883349 IGD
13 0.000000006447819 0.412348100981951 0.468845005884675 IGD
14 0.000000000000000 0.412348100981951 0.468845005884675 IGD
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Figure 17. Different iterations of the ∆2
2-Newton method to obtain the Pareto front of MOP (50) via the

bootstrapping method.

Table 11. Numerical results of the ∆2
2-Newton method to obtain the Pareto front of MOP (50) via the

bootstrapping method.

Iter. ‖∇∆2
2(Ai)‖ ∆2

2(F(Ai), F(PQ)) ∆2
2(F(Ai), Z) Indicator

0 - 0.455981539616886 0.695079920183452 GD
1 0.335395116261223 0.073901038363798 0.755243658407092 GD
2 0.091052248527535 0.037763808963224 0.074896196233522 IGD
3 0.014233219389476 0.037763808963224 0.037618719614753 IGD
4 0.012918924846453 0.037763808963224 0.037607435705178 IGD
5 0.012918504651879 0.037763808963224 0.037607435705178 IGD
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Figure 18. Different iterations of the ∆2
2-Newton method to obtain the Pareto front of MOP (51) via the

bootstrapping method.

We finally consider a BOP with higher dimensional decision variable space: the bi-objective
problem minus DTLZ2 [58] is defined as

f1(x) = −(1 + g(x)) cos
(π

2
x1

)
f2(x) = −(1 + g(x)) sin

(π

2
x1

)
g(x) =

n

∑
i=1

(xi − 0.5)2,

(56)

where we have chosen n = 20. Figure 19 shows an initial candidate set as well as the final result of the
Newton method together with the bootstrapping. In order to obtain the final result, 8 iteration steps
were needed using 1415 function, 700 Jacobian, and 350 Hessian calls. Note that the initial set contains
some dominated solutions that do not have an influence on the IGD2 value. Hence, also in this case
the use of GD2 helped to push these solutions toward the Pareto front.
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Table 12. Numerical results of the ∆2
2-Newton method to obtain the Pareto front of MOP (51) via the

bootstrapping method.

Iter. ‖∇∆2
2(Ai)‖ ∆2

2(F(Ai), F(PQ)) ∆2
2(F(Ai), Z) Indicator

0 - 0.702540625580303 2.214433876989687 GD
1 1.437150990002929 0.389087697290865 0.477018278137838 IGD
2 0.581565628190262 0.342604825739356 0.357844471083072 IGD
3 0.461927350893728 0.164460636656196 0.182910255512032 IGD
4 0.082455998873464 0.158481979725082 0.175440371075156 IGD
5 0.074464658261760 0.191541386471772 0.208964468823487 IGD
6 0.131398860002112 0.153900963788386 0.171965063484733 IGD
7 0.040291187202238 0.152033891842905 0.166135305826676 IGD
8 0.005689443259245 0.151817516262598 0.165264799265542 IGD
9 0.002103237914802 0.151819267034376 0.165273277734145 IGD

10 0.000466641874904 0.151819600203537 0.165273337507943 IGD
11 0.000013655772453 0.151819670338732 0.165273320812711 IGD
12 0.000000209461574 0.151819687437130 0.165273316697773 IGD
13 0.000000050653504 0.151819691559064 0.165273315706448 IGD
14 0.000000012209033 0.151819692552588 0.165273315467506 IGD
15 0.000000002942920 0.151819692792067 0.165273315409911 IGD
16 0.000000000709377 0.151819692849792 0.165273315396027 IGD
17 0.000000000167849 0.151819692849792 0.165273315396027 IGD

Table 13. Number of function (#F), Jacobian (#J), and Hessian (#H) calls used by the ∆2
2-Newton

method using bootstrapping for the three test problems.

MOP (27) MOP (50) MOP (51)

#F 532 225 698
#J 532 210 680
#H 513 189 660
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Figure 19. Initial candidate set (left) and numerical result of the ∆2-Newton method on minus
DTLZ2 (right).

6. Conclusions and Future Work

In this work, we have considered a set based Newton Method for the ∆p indicator for
unconstrained multi-objective optimization problems. Since ∆p is constructed by GDp and IGDp

we have also considered the set based Newton method for these two indicators. To this end, we have
first derived the set based gradients and Hessians, and have based on this formulated and analyzed
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the Newton methods. Numerical results on selected test problems have revealed the strengths and
weaknesses of the resulting methods. For this, we have mainly considered aspiration set problems
(i.e., the problem to minimize the indicator distance of a set to a given utopian reference set) but also
shown a bootstapping method that allows to a certain extend to compute finite size approximation of
the entire Pareto front without prior knowledge of this set. The results have shown that the method
may indeed converge quadratically to the desired set, however, also—and as anticipated—that the
Newton method is only applicable locally. It is hence imperative to hybridize the method with a global
search strategy such as an evolutionary multi-objective optimization algorithm in order to obtain a fast
and reliable algorithm for the treatment of such problems. The latter, however, is beyond the scope of
this work and left for future investigations. Another interesting path for future research would be to
extend the proposed Newton methods to constrained multi-objective optimization problems.
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