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Abstract: In this paper, an algebraic structure of a type of double cyclic codes is investigated, which
covers some existing codes as special cases. The paper presents generic results about the generating
polynomials, minimal generating sets, matrices and dual codes of the proposed codes.
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1. Introduction

Due to the nice algebraic structures of finite rings, the coding theory over finite rings has attracted
the attention of many scholars since the early 1970s, which can be regarded as the generalization of the
classical coding theory over the finite fields.

For the ring R = Fq + vFq with v2 = v, it can be seen that it is a commutative finite ring which
can be viewed as a 2-dimensional vector space over Fq. In fact, it is also considered to be isomorphic to
Fq × Fq. Therefore, the ring R = Fq + vFq is a generalization of the classical finite fields.

In 1973, Delsarte [1] introduced the concept of additive codes and gave the explicit construction
of such codes. Since then, many scholars have began to focus on these codes. In 2010, Borges et al.
proposed a new concept called Z2Z4-linear codes in [2]. It is clear that Z2Z4-additive codes are Z4

additive subgroups of Zα
2 × Zβ

4 where α and β are index positive integers. For two index positive

integers, Z2Z4-additive codes are Z4 additive subgroups of Zα
2 ×Zβ

4 as can be seen in their structure.
Note that Z2Z4-additive code is a quaternary linear code for α = 0, while it is a binary linear code
for β = 0. Hence, Z2Z4-additive codes generalize both the binary linear codes and the quaternary
linear codes. Some good results related to Z2Z4-codes can be found in [3–5]. However, there are
two important problems about these codes that deserve further investigation: the one is to broaden
the alphabet and the other is to improve the structure of the codes further. For the first problem,
the structure of Z2Z2s -additive cyclic codes and ZprZps -additive codes in [6,7], respectively. Here, it is
worth emphasizing that the second problem is more closely related to this paper. Some good results
about this problem have been obtained in some references. For instance, in 2014, Abusltun et al. [8]
studied the algebraic structure of Z2Z4-cyclic codes systematically. In [9], Borges et al. replaced Z4 with
Z2 in the last part of the alphabet and then explored the related properties about Z2-double cyclic codes.
It should be pointed out that the initial concept of double cyclic codes is also proposed in [9]. Short after,
Gao et al. [10] replaced Z2 with Z4 in the first part of the alphabet and gave some good results about
double cyclic codes over Z4. Considering the relationship between Z2 and Z4, Wang and Gao [11]
investigated the double λ-constacyclic codes over finite chain rings, which generalizes the previous
works. For a non-chain ring, the double cyclic codes over Fq + vFq with v2 = v will be investigated
in this paper. The contributions of various authors in the history of double cyclic codes are listed
as follows in Table 1.
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Table 1. The table of authors’ contributions to the history of double cyclic codes.

References Titles Contributions

[2] Z2Z4-linear codes:generator matrices
and duality

Z2Z4-linear codes

[6,7] The structure of Z2Z2s -additive cyclic codes,
On ZprZps -additive codes

Various extensions and deformations of Z2Z4.

[9] Z2-double cyclic codes The original definition of double cyclic codes

[10] On double cyclic codes over Z4 Doule cyclic codes over another one finite
chain ring

[11] Double λ-constacyclic codes over finite
chain rings

Further extension of double cyclic codes over
generally finite chain rings

The notion of double cyclic codes derives from the research of Z2Z4-codes. Therefore, a natural
idea is to consider double cyclic codes over Z2 and Z4. For more details, readers can refer to [9,10].
Since then, coding researchers have tried to study the structure of double cyclic codes over the other
finite rings. Generally speaking, this article is the concrete form of the double cyclic codes under
another kind of ring. The following three remarks about this paper should be pointed out.

• Similar to the literature [10,11], this article shows the results over another type of ring. Compared
with literature [9,12], the theoretical results provided in this paper are more general. Therefore,
this paper will improve and generalize the concrete forms of those codes shown in [9,12] for further
research of the double cyclic codes over finite fields.

• Since the ring Fq + vFq is a finite field locally, the results shown in this paper reflect some
properties of double cyclic codes over finite fields locally as a result. Through some special details
of this ring, this double cyclic code can be viewed as a code over finite fields directly, rather than
having been implemented by the Gray map as some codes over traditional finite rings. This point
will be reflected by the examples of this paper.

• Throughout this article, double cyclic codes over Fq + vFq are found to be a linear combination of
two Fq-double cyclic codes with the same length, which also provides a new technical method
for us to obtain some codes with new parameters. Finally, some examples that are the linear
combination of two double cyclic codes over finite fields are presented, which is helpful for
acquiring some codes with new parameters over finite fields.

This paper is organized as follows. In Section 2, some preliminaries about this paper are reviewed.
Section 2.1 explains the structure of this ring, Section 2.2 just lists some reference results and Section 2.3
mainly leads to various marks and mathematical objects of this paper. Sections 3 and 4 are the kernel
of this paper. It utilizes the polynomial theory to give some results about double cyclic codes and their
dual codes. Section 3 illustrates the basic forms of the double cyclic codes, which include the forms
of generating polynomials, minimal generating sets and generating matrices. Section 4 explains the
generating polynomial relationship between the dual codes and their proposed codes. Some examples
of double cyclic codes over F2 + vF2 are also presented as the theoretical application of this article.
Section 5 summarizes this paper.

2. Preliminaries

Let Fq be the finite field with q elements, where q = ps is a prime power for some positive integer s.
Along this paper, let R denote the commutative finite ring Fq + vFq = {a + bv | a, b ∈ Fq} with v2 = v.
This section mainly introduces some properties of R and illustrates some necessary knowledge of
this article.

It is well known that R = Fq + vFq is a principal ideal ring and it has only two non-trivial ideals,
namely 〈v〉 = {av | a ∈ Fq} and 〈1− v〉 = {b(1− v) | b ∈ Fq}. It can be easily checked that 〈v〉 and
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〈1− v〉 are all maximal ideals in R. Hence, R is not a chain ring. R is a Frobenius ring from the results
of paper [13].

The definition of linear codes, cyclic codes over general rings obey the usual forms. Readers can
refer to [14].

2.1. The Basic Consequence about Polynomial Theory over R

For r ∈ R = Fq + vFq, let r = a + bv with a, b ∈ Fq. Obviously, we know that

a + bv = (a + b)v + a(1− v).

For the sake of convenience, set 1− v = w. Notice that v2 = v, w2 = w and vw = wv = 0.

Let r, s ∈ R with

{
r = rvv + rww,

s = svv + sww,
then

{
r + s = (rv + sv)v + (rw + sw)w,

rs = (rvsv)v + (rwsw)w.
It is indicated that this special non-chain ring can be considered as a 2-dimensional algebra over

Fq with {v, w} being its basis. The significance of this basis is that v, w are idempotent and orthogonal.

Define two canonical projective maps

{
Pv : R −→ Fq r 7−→ rv,

Pw : R −→ Fq r 7−→ rw.
The above facts illustrate

that Pv and Pw are Fq-algebra homomorphism. Similarly, for all n ∈ N, it can be seen that{
Pv : Rn −→ Fn

q (r1, . . . , rn) 7−→ ((r1)v, . . . , (rn)v),

Pw : Rn −→ Fn
q (r1, . . . , rn) 7−→ ((r1)w, . . . , (rn)w),

are Fq-algebra homomorphism.

As the application to polynomial theory, extend this thought from R to polynomial ring R[x]
naturally. Let ∑i rixi = r(x) ∈ R[x] with ri ∈ R. Set ri = Pv(ri)v + Pw(ri)w. Then,

r(x) = ∑
i
(Pv(ri)v + Pw(ri)w)xi = (∑

i
Pv(ri)xi)v + (∑

i
Pw(ri)xi)w = rv(x)v + rw(x)w,

where rv(x), rw(x) ∈ Fq[x].
For r(x), s(x) ∈ R[x], let r(x) = rv(x)v + rw(x)w and s(x) = sv(x)v + sw(x)w, it is clear that{

r(x) + s(x) = (rv(x) + sv(x))v + (rw(x) + sw(x))w,

r(x)s(x) = (rv(x)sv(x))v + (rw(x)sw(x))w.

Consequently, define

{
Pv : R[x] −→ Fq[x] r(x) 7−→ rv(x),

Pw : R[x] −→ Fq[x] r(x) 7−→ rw(x),
the two maps still are Fq[x]-algebra

homomorphism. For simplicity, if one mathematical object appears to subscript v or w, it uses the
projective maps Pv or Pw by default.

It follows from the above illustration that R[x] = Fq[x]v ⊕ Fq[x]w. For f (x) ∈ Fq[x], write
f (x) = f (x)v + f (x)w. This guarantees that the element of Fq[x] can be viewed as the element of R[x].

Next, let us consider the divisibility between any two elements in R[x]. Then, the following
proposition holds.

Proposition 1. For r(x), s(x) ∈ R[x], let r(x) = rv(x)v + rw(x)w, s(x) = sv(x)v + sw(x)w with
rv(x), rw(x), sv(x), sw(x) ∈ Fq[x]. Then, s(x)|r(x) in R[x] if and only if sv(x)|rv(x), sw(x)|rw(x) in Fq[x].

Proof. For s(x)|r(x), let r(x) = ε(x)s(x). So rv(x)v + rw(x)w = (εv(x)v + εw(x)w)(sv(x)v + sw(x)w).
Then, rv(x)v + rw(x)w = (εv(x)sv(x))v + (εw(x)sw(x))w. Due to the expression by the basis {v, w},
it follows that rv(x) = εv(x)sv(x) and rw(x) = εw(x)sw(x), which means that sv(x)|rv(x), sw(x)|rw(x).

Conversely, for sv(x)|rv(x), sw(x)|rw(x), let rv(x) = εv(x)sv(x), rw(x) = εw(x)sw(x). Then,

rv(x)v + rw(x)w = (εv(x)sv(x))v + (εw(x)sw(x))w = (εv(x)v + εw(x)w)(sv(x)v + sw(x)w)
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Let ε(x) = εv(x)v + εw(x)w, then ε(x) ∈ R[x] and s(x)|r(x) in R[x].

Remark 1. Proposition 1 implies that ( r(x)
s(x) )v = rv(x)

sv(x) and ( r(x)
s(x) )w = rw(x)

sw(x) for any r(x), s(x) ∈ R[x]
with s(x)|r(x).

Although Fq + vFq is not a field, it inherits the nice properties related to Fq, particularly with
regard to factorization. Therefore, let us consider the greatest common divisor between any two
elements in R[x]. Similarly, the following proposition is obtained.

Proposition 2. For r(x), s(x) ∈ R[x], let r(x) = rv(x)v + rw(x)w, s(x) = sv(x)v + sw(x)w with
rv(x), rw(x), sv(x), sw(x) ∈ Fq[x]. Then, in R[x],

gcd(r(x), s(x)) = gcd(rv(x), sv(x))v + gcd(rw(x), sw(x))w,

where the symbol gcd(−,−) on the right hand side of the equation denotes the greatest common divisor in Fq[x].

Proof. Let gcd(rv(x), sv(x))v+gcd(rw(x), sw(x))w = Θ(x). Clearly, Θ(x) ∈ R[x]. From Proposition 1,
Θ(x)|r(x) holds. For the same reason, Θ(x)|s(x) also holds. These indicate that Θ(x) is a common
divisor of r(x) and s(x) in R[x].

For every δ(x) ∈ R[x] with δ(x)|r(x), δ(x)|s(x), in terms of Proposition 1, write
δ(x) = δv(x)v + δw(x)w, where δv(x)|rv(x), δv(x)|sv(x), δw(x)|rw(x) and δw(x)|sw(x). As a
result of the conventional polynomial theory over finite fields, δv(x)| gcd(rv(x), sv(x)) and
δw(x)| gcd(rw(x), sw(x)) are obtained. Applying Proposition 1 again obtains δ(x)|Θ(x).

Hence, gcd(rv(x), sv(x))v + gcd(rw(x), sw(x))w = Θ(x) = gcd(r(x), s(x)) holds.

Remark 2. According to the above proof, (gcd(r(x), s(x)))v = gcdv(r(x), s(x)) = gcd(rv(x), sv(x)) and
(gcd(r(x), s(x)))w = gcdw(r(x), s(x)) = gcd(rw(x), sw(x)) also holds

The above analysis indicated that for r(x) ∈ R[x], one has r(x) = rv(x)v + rw(x)w with
rv(x), rw(x) ∈ Fq[x], which derives that

R[x]/ 〈r[x]〉 = (Fq[x]v⊕ Fq[x]w)/ 〈rv(x)v + rw(x)w〉 = (Fq[x]/ 〈rv(x)〉)v⊕ (Fq[x]/ 〈rw(x)〉)w.

2.2. Some Results about Cyclic Codes over R

This section lists some important results about cyclic codes over R, which will be used to obtain
the main results of this paper. For more details, please refer to [15].

Lemma 1. ([15]) Let C = vC1
⊕
(1− v)C2 be a linear code of length n over R. Then C is a cyclic code of

length n over R if and only if C1 and C1 are cyclic codes of length n over Fq.

Lemma 2. ([15]) Let C = vC1
⊕
(1− v)C2 be a cyclic code of length n over R. Then there exists a unique

polynomial f (x) such that C = 〈 f (x)〉, where f (x) = v f1(x) + (1− v) f2(x).

Lemma 3. ([15]) Let C = vC1
⊕
(1− v)C2 be a cyclic code of length n over R and f1(x), f2(x) are the

generator polynomials of C1 and C2, respectively. Then, |C| = |C1||C2| = q2n−deg( f1(x))−deg( f2(x)).

Remark 3. Denote by Cn(R) the set of all single cyclic codes of length n over R for n ∈ N.
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2.3. Further Results about Polynomial Theory over R

Definition 1. Let C be an R-submodule of Rm+n, C is called a double cyclic code of length (m, n) over R if
(c′0, . . . , c′m−2, c′m−1|c′′0 , . . . , c′′n−2, c′′n−1) ∈ C implies that

τ((c′0, . . . , c′m−2, c′m−1|c′′0 , . . . , c′′n−2, c′′n−1)) = (c′m−1, c′0, . . . , c′m−2|c′′n−1, c′′0 , . . . , c′′n−2) ∈ C.

Remark 4. Denote by Cm,n(R) the set of all double cyclic codes of length (m, n) over R.

For C ∈ Cm,n(R), let Cm be the coordinate projection of C on the first m coordinates,
and Cn be the coordinate projection of C on the second n coordinates. These mean that{

Φm : Cm,n → Cm (c′0, . . . , c′m−1|c′′0 , . . . , c′′n−1) 7→ (c′0, . . . , c′m−1),

Φn : Cm,n → Cn (c′0, . . . , c′m−1|c′′0 , . . . , c′′n−1) 7→ (c′′0 , . . . , c′′n−1),
are R-linear map and Cm = Φm(C),

Cn = Φn(C) (For the convenience of writing, one mathematical object has the subscript m or n, which
also means that it used by the coordinates projected to m or n). Hence, C ∈ Cm,n(R) if and only if
Cm ∈ Cm(R) and Cn ∈ Cn(R).

Remark 5. For simplicity, Pv, Pw are called canonical projective maps, and Φm, Φn are called coordinate
projective maps.

Definition 2. A code C ∈ Cm,n(R) is separable if C is the direct product of Cm and Cn.

Just like the situation of cyclic codes over finite fields, there exists a bijection between Rm × Rn

and (R[x]/ 〈xm − 1〉)× (R[x]/ 〈xn − 1〉) given by

(c′0, . . . , c′m−1|c′′0 , . . . , c′′n−1) 7→ (c′0 + c′1x + · · ·+ c′m−1xm−1|c′′0 + c′′1 x + · · ·+ c′′n−1xn−1).

Let this bijective map expressed by π. Set


Rm[x] = R[x]/ 〈xm − 1〉 ,

Rm,n[x] = (R[x]/ 〈xm − 1〉)× (R[x]/ 〈xn − 1〉) ,

Rn[x] = R[x]/ 〈xn − 1〉 .
Then the rings Rm[x], Rm,n[x] and Rn[x] with this action, which is induced by the action of R[x]

on Rm[x], Rm,n[x] and Rn[x] from the multiplication of R[x], become the R[x]-module. Simultaneously,
define two maps {

Φm : Rm,n[x]→ Rm[x] (p(x)|q(x)) 7→ p(x),

Φn : Rm,n[x]→ Rn[x] (p(x)|q(x)) 7→ q(x).

Then, Φm and Φn are still R[x]-module homomorphism.
This subsection reveals the fact that C ∈ Cm,n(R) if and only if π(C) is a R[x]-submodule to

Rm,n[x]. Hence, the issue of R[x]-submodule of Rm,n[x] needs to be of concern in this paper. Based on
the bijection of π, double cyclic codes over R as the R[x]-submodule of Rm,n[x] will be studied.

3. Double Cyclic Codes

3.1. Generating Polynomial Forms

From the above necessary preliminaries, the first important theorem of this paper is provided
as follows.

Theorem 1. Let C be a double cyclic code of length (m, n) over R. Then there exist ξ(x), `(x) ∈ Rm[x],
o(x) ∈ Rn[x] with ξ(x) = ξv(x)v+ ξw(x)w, `(x) = `v(x)v+ `w(x)w, o(x) = ov(x)v+ ow(x)w, such that

C = 〈(ξ(x)|0), (`(x)|o(x))〉 = 〈(ξv(x)v + ξw(x)w|0), (`v(x)v + `w(x)w|ov(x)v + ow(x)w)〉 ,
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where ξv(x), ξw(x)|xm − 1, ov(x), and ow(x)|xn − 1.

Proof. For C ∈ Cm,n(R), define C̃ = {(p(x)|q(x)) ∈ C | q(x) = 0}. It is obviously that C̃ ∼= Φm(C̃)
by using the map (p(x)|0) 7→ p(x). There are Φm(C̃) ∈ Cm(R) and Cn = Φn(C) ∈ Cn(R)
from the setting of the coordinate projections. Due to the results about cyclic codes over R
(see Lemmas 1, 2, 3 in Section 2.2), write Φm(C̃) = 〈ξ(x)〉, in which ξ(x) = ξv(x)v + ξw(x)w such
that ξv(x)|(xm − 1), ξw(x)|(xm − 1), and Φn(C) = Cn = 〈o(x)〉, where o(x) ∈ R[x] with o(x) =

ov(x)v + ow(x)w such that ov(x)|(xn − 1), ow(x)|(xn − 1). Hence, (ξ(x)|0) is a generator polynomial
of C̃ and there exists `(x) ∈ Rm[x] such that (`(x)|o(x)) ∈ C.

It remains to prove that C = 〈(ξ(x)|0), (`(x)|o(x))〉.
Obviously, q(x) = Φn((p(x)|q(x))) ∈ Φn(C) holds for any (p(x)|q(x)) ∈ C. Hence, there exists

ν(x) ∈ Rn[x] such that q(x) = ν(x)o(x). Then,

(p(x) | q(x))− ν(x)(`(x)|o(x)) = (p(x)− ν(x)`(x)|0) ∈ C̃,

which implies that there exists µ(x) ∈ Rm[x] such that (p(x) − ν(x)`(x)|0) = µ(x)(ξ(x)|0).
Thus (p(x)|q(x)) = µ(x)(ξ(x)|0) + ν(x)(`(x)|o(x)). It is sufficient to show that C is finite generated
by {(ξ(x)|0), (`(x)|o(x))}.

Remark 6. From the process of the above proof, it is easy to see that Cm is generated by the polynomial
gcd(ξ(x), `(x)) and Cn is generated by o(x).

There are three propositions about `(x) = `v(x)v + `w(x)w.

Proposition 3. Let C = 〈(ξv(x)v + ξw(x)w|0), (`v(x)v + `w(x)w|ov(x)v + ow(x)w)〉 ∈ Cm,n(R). As the
minimal forms of generating polynomials, it has

deg(`v(x)) < deg(ξv(x)) and deg(`w(x)) < deg(ξw(x)).

Proof. Otherwise, deg(`v(x)) ≥ deg(ξv(x)) or deg(`w(x)) ≥ deg(ξw(x)). Without loss of generality,
let deg(`v(x)) ≥ deg(ξv(x)). Set i = deg(`v(x)) − deg(ξ(x)), i ≥ 0 and let D be the code
generated by

{
(ξv(x)v + ξw(x)w|0), ((`v(x)− xiξv(x))v + `w(x)w|ov(x)v + ow(x)w)

}
. It is obvious

that deg((`v(x) − xiξv(x)) < deg(`v(x)). Since the generators of D belong to C, D ⊂ C. On the
other hand,

(`v(x)v + `w(x)w|ov(x)v + ow(x)w) =

((`v(x)− xiξv(x))v + `w(x)w|ov(x)v + ow(x)w) + vxi(ξv(x)v + ξw(x)w|0).

Then, (`v(x)v + `w(x)w|ov(x)v + ow(x)w) ⊂ D. This shows that C ⊂ D. Consequently, D = C.
Repeating the above process, the desired results will be obtained.

Proposition 4. Let C be a double cyclic code of length (m, n) over R, and set

C = 〈(ξv(x)v + ξw(x)w|0), (`v(x)v + `w(x)w|ov(x)v + ow(x)w)〉 .

Then, ξv(x)| xn−1
ov(x) `v(x) and ξw(x)| xn−1

ow(x) `w(x).

Proof. From the setting about coordinate projective homomorphism of R[x]-module defined by Φn|C :
C → Rn[x] | (p(x)|q(x)) 7→ q(x), it is easy to verify that Ker(Φn|C) = 〈(ξ(x)|0)〉. Focus on the
codewords of xn−1

o(x) (`(x)|o(x)) now.
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Since xn−1
o(x) (`(x)|o(x)) = ( xn−1

o(x) `(x)|0) ∈ Ker(Φn|C), one has ξ(x)| xn−1
o(x) `(x). It follows from

Proposition 1 that ξv(x)| xn−1
ov(x) `v(x) and ξw(x)| xn−1

ow(x) `w(x).

Corollary 1. Let C be a double cyclic code of length (m, n) over R and let

C = 〈(ξv(x)v + ξw(x)w|0), (`v(x)v + `w(x)w|ov(x)v + ow(x)w)〉 .

Then, ξv(x)| xn−1
ov(x) gcd(ξv(x), `v(x)) and ξw(x)| xn−1

ow(x) gcd(ξw(x), `w(x)).

Proof. By Theorem 1, someone has ov(x)|xn − 1 and ow(x)|xn − 1, which shows ξv(x)| xn−1
ov(x) ξv(x)

and ξw(x)| xn−1
ow(x) ξw(x). From Proposition 4, it follows that ξv(x)| xn−1

ov(x) `v(x) and ξw(x)| xn−1
ow(x) `w(x).

Hence, ξv(x)| xn−1
ov(x) gcd(ξv(x), `v(x)) and ξw(x)| xn−1

ow(x) gcd(ξw(x), `w(x)).

Proposition 5. If C = 〈(ξv(x)v + ξw(x)w|0), (`v(x)v + `w(x)w|ov(x)v + ow(x)w)〉 is a separable
R-double cyclic code, then `v(x) = `w(x) = 0.

Proof. Combining the definition of separable R-double cyclic codes with Theorem 1, one can derive
the desired results.

3.2. Generating Set Forms

Proposition 6. Let C be a double cyclic code of length (m, n) over R with

C = 〈(ξ(x) | 0), (`(x)|o(x))〉 = 〈(ξv(x)v + ξw(x)w|0), (`v(x)v + `w(x)w|ov(x)v + ow(x)w)〉 .

Define the sets

Gv
1 = {v(ξ(x)|0), vx(ξ(x)|0), . . . , vxm−deg(ξv(x))−1(ξ(x)|0)}

= {(ξv(x)v|0), (xξv(x)v|0), . . . , (xm−deg(ξv(x))−1ξv(x)v|0)},

Gw
1 = {w(ξ(x)|0), wx(ξ(x)|0), . . . , wxm−deg(ξw(x))−1(ξ(x)|0)}

= {(ξw(x)w|0), (xξw(x)w|0), . . . , (xm−deg(ξw(x))−1ξw(x)w|0)},

Gv
2 = {v(`(x)|o(x)), vx(`(x)|o(x)), . . . , vxn−deg(ov(x))−1(`(x)|o(x))}

= {(`v(x)v|ov(x)v), . . . , (xn−deg(ov(x))−1`v(x)v|xn−deg(ov(x))−1ov(x)v)},

Gw
2 = {w(`(x)|o(x)), wx(`(x)|o(x)), . . . , wxn−deg(ow(x))−1(`(x)|o(x))}

= {(`w(x)w|ow(x)w), . . . , (xn−deg(ow(x))−1`w(x)w|xn−deg(ow(x))−1ow(x)w)}.

Then, Gv
1 ∪ Gw

1 ∪ Gv
2 ∪ Gw

2 forms a minimal generating set for C as a Fq-vector space.

Proof. It is obvious that the codewords of Gv
1 ∪ Gw

1 ∪ Gv
2 ∪ Gw

2 are Fq-linear independent.
For c(x) ∈ C, let c(x) = p(x)(ξ(x)|0) + q(x)(`(x)|o(x)) with p(x), q(x) ∈ R[x]. Then, c(x) ∈〈

Gv
1 ∪ Gw

1 ∪ Gv
2 ∪ Gw

2
〉
Fq

will be verified in the following discussion.

If deg(pv(x)) ≤ m− deg(ξv(x))− 1 and deg(pw(x)) ≤ m− deg(ξw(x))− 1, then

p(x)(ξ(x)|0) = (pv(x)v + pw(x)w)(ξ(x)|0) ∈ 〈Gv
1 ∪ Gw

1 〉Fq
.

Conversely, suppose that deg(pv(x)) > m−deg(ξv(x))− 1 or deg(pw(x)) > m−deg(ξw(x))− 1.
Without loss of generality, let deg(pv(x)) > m− deg(ξv(x))− 1. Applying the Division Algorithm
over Fq[x], consider pv(x) = p̃v(x) xm−1

ξv(x) +
˜̃pv(x) with deg( ˜̃pv(x)) ≤ m− deg(ξv(x))− 1. Then
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p(x)(ξ(x)|0) = (pv(x)v + pw(x)w)(ξv(x)v + ξw(x)w|0)

= (( p̃v(x)
xm − 1
ξv(x)

+ ˜̃pv(x))v + pw(x)w)(ξv(x)v + ξw(x)w|0)

= ( ˜̃pv(x)v + pw(x)w)(ξv(x)v + ξw(x)w|0) ∈ 〈Gv
1 ∪ Gw

1 〉Fq

The statement c(x) ∈
〈

Gv
1 ∪ Gw

1 ∪ Gv
2 ∪ Gw

2
〉
Fq

will be proved once someone illustrates that

q(x)(`(x)|o(x)) ∈
〈

Gv
1 ∪ Gw

1 ∪ Gv
2 ∪ Gw

2
〉
Fq

.

If deg(qv(x)) ≤ n − deg(ov(x)) − 1 and deg(qw(x)) ≤ n − deg(ow(x)) − 1,
then q(x)(`(x)|o(x)) ∈

〈
Gv

1 ∪Gw
1 ∪Gv

2 ∪Gw
2
〉
Fq

. Otherwise, assume that deg(qv(x)) > n−deg(ov(x))−1.

Using the Division with Remainder similarly, let qv(x) = q̃v(x) xn−1
ov(x) + ˜̃qv(x) with

deg( ˜̃qv(x)) ≤ n− deg(ov(x))− 1. Hence,

q(x)(`(x) | o(x)) = (qv(x)v + qw(x)w)(`(x)|o(x))

= ((q̃v(x)
xn − 1
ov(x)

+ ˜̃qv(x))v + qw(x)w)(`(x)|o(x))

= q̃v(x)
xn − 1
ov(x)

v(`(x)|o(x)) + ( ˜̃qv(x)v + qw(x)w)(`(x)|o(x)).

On the one hand, ( ˜̃qv(x)v + qw(x)w)(`(x)|o(x)) ∈
〈

Gv
2 ∪ Gw

2
〉
Fq

. On the other hand,

q̃v(x)
xn − 1
ov(x)

v(`(x)|o(x)) = q̃v(x)
xn − 1
ov(x)

v(`v(x)v + `w(x)w|ov(x)v + ow(x)w)

= (q̃v(x)
xn − 1
ov(x)

`v(x)v|q̃v(x)
xn − 1
ov(x)

ov(x)v)

= (q̃v(x)
xn − 1
ov(x)

`v(x)v|0).

From Proposition 4, it follows that ξv(x)| xn−1
ov(x) `v(x) which leads to (q̃v(x) xn−1

ov(x) `v(x)v|0) ∈
〈

Gv
1
〉
Fq

.
Therefore, the desired results follow.

3.3. Generating Matrix Forms

Through the generating polynomials of C, it is not difficult to gain the generating matrix forms of
C in the following theorem.

Theorem 2. Let C = 〈(ξv(x)v + ξw(x)w|0), (`v(x)v + `w(x)w|ov(x)v + ow(x)w)〉 ∈ Cm,n(R). Then, C
is permutation equivalent to an Fq-linear code with generating matrix

G =



Im−deg(ξv(x))v Ȧvv Ävv
0 Ḃvv B̈vv
0 0 0

Im−deg(ξw(x))w Ȧww Äww
0 Ḃww B̈ww
0 0 0

0 0 0
...
Bvv Ikv v 0
Ṁvv M̈vv In−deg(ξv(x))−kv v

0 0 0
...
Bww Ikw w 0
Ṁvv M̈ww In−deg(ξw(x))−kw w


,

where kv = deg(ξv(x))− deg(gcd(ξv(x), `v(x))) and kw = deg(ξw(x))− deg(gcd(ξw(x), `w(x))) are
two integers with the subscript.

Proof. Due to the fact in Proposition 6, C is generated by the matrix whose rows are the elements of
the set Gv

1 ∪ Gw
1 ∪ Gv

1 ∪ Gw
1 . Note that m− deg(ξv(x)) and n− deg(ov(x)) are the dimensions of the
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matrices generated by the shifts of ξv(x) and ov(x), respectively. Then, the generating matrix of the
code C is permutation equivalent to the following matrix

Im−deg(ξv(x))v Avv
0 Bvv

Im−deg(ξw(x))w Aww
0 Bww

0 0
Xvv In−deg(ov(x))v

0 0
Xww In−deg(ow(x))v

 .

It is clear that (Cm)v is a conventional cyclic code generated by gcd(ξv(x), `v(x)). Then, the
submatrix Bv has rank kv = deg(ξv(x)− deg(g(ξv(x), `v(x)))). Obviously, the same reason applies to
the submatrix of Bw. Moreover, the generating matrix of Cm is permutation equivalent to the matrix

Im−deg(ξv(x))v Ȧvv Ävv
0 Ḃvv B̈vv
0 0 0

Im−deg(ξw(x))w Ȧww Äww
0 Ḃww B̈ww
0 0 0


,

where Ḃv is a full rank square matrix of size kv × kv and Ḃw is a full rank square matrix of size kw × kw.
Applying the convenient permutations and linear combinations, C is permutation equivalent to a
Fq-linear code with the above generating matrix in the end.

From the generating matrix of the R-double cyclic code, it is easy to prove that

Corollary 2. Let C = 〈(ξv(x)v + ξw(x)w|0), (`v(x)v + `w(x)w|ov(x)v + ow(x)w)〉 ∈ Cm,n(R). Then, C
is a Fq-linear code of dimension 2m + 2n− deg(ξv(x))− deg(ov(x))− deg(ξw(x))− deg(ow(x)).

Consider some examples as the end of this section.

Example 1. Let Fq = F2, m = 7, n = 7,
ξ(x) = vx6 + vx5 + x4 + x3 + x2 + vx + 1

= (x6 + x5 + x4 + x3 + x2 + x + 1)v + (x4 + x3 + x2 + 1)w,

`(x) = x3 + vx2 + (1 + v)x + 1 = (x3 + x2 + 1)v + (x3 + x + 1)w,

o(x) = vx4 + (1 + v)x3 + x2 + vx + 1 = (x4 + x2 + x + 1)v + (x3 + x2 + 1)w.

Therefore,

C = 〈(ξ(x)|0), (`(x)|o(x))〉 = 〈(ξv(x)v + ξw(x)w|0), (`v(x)v + `w(x)w|ov(x)v + ow(x)w)〉

is an F2 + vF2-double cyclic code. According to Proposition 6, the minimal generating set of C is Gv
1 ∪ Gw

1 ∪
Gv

2 ∪ Gw
2 , where

Gv
1 =

{
v(x6 + x5 + x4 + x3 + x2 + x + 1|0)

}
,

Gw
1 =

{
w(x4 + x3 + x2 + 1|0), wx(x4 + x3 + x2 + 1|0), wx2(x4 + x3 + x2 + 1|0)

}
,

Gv
2 =

{
v(x3 + x2 + 1|x4 + x2 + x + 1), vx(x3 + x2 + 1|x4 + x2 + x + 1),

vx2(x3 + x2 + 1|x4 + x2 + x + 1)
}

,

Gw
2 =

{
w(x3 + x + 1|x3 + x2 + 1), wx(x3 + x + 1|x3 + x2 + 1),

wx2(x3 + x + 1|x3 + x2 + 1), wx3(x3 + x + 1|x3 + x2 + 1)
}

.
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Hence, the generating matrix of C is

v v v v v v v
v 0 v v 0 0 0
0 v 0 v v 0 0
0 0 v 0 v v 0
w 0 w w w 0 0
0 w 0 w w w 0
0 0 w 0 w w w
w w 0 w 0 0 0
0 w w 0 w 0 0
0 0 w w 0 w 0
0 0 0 w w 0 w

0 0 0 0 0 0 0
v v v 0 v 0 0
0 v v v 0 v 0
0 0 v v v 0 v
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
w 0 w w 0 0 0
0 w 0 w w 0 0
0 0 w 0 w w 0
0 0 0 w 0 w w



.

This means that the generating matrices of Pv(C), Pw(C) are


1 1 1 1 1 1 1
1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0

0 0 0 0 0 0 0
1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1

 ,



1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1
1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1


,

respectively. Then,{
the length of Pv(C) is 14, dimF2(Pv(C)) = 4, dmin(Pv(C)) = 7;

the length of Pw(C) is 14, dimF2(Pw(C)) = 7, dmin(Pw(C)) = 4.

Consequently, the codes Pv(C) and Pw(C) have parameters [14, 4, 7] and [14, 7, 4], respectively. Both of
them are optimal from the table in [16] and the F2 + vF2-double cyclic code C has the paramter of [28, 11, 4].

Example 2. Let Fq = F2, m = 7, n = 14 and

ξ(x) = vx7 + (1 + v)x6 + (1 + v)x5 + (1 + v)x4 + (1 + v)x3 + (1 + v)x2 + (1 + v)x + 1

= (x7 + 1)v + (x6 + x5 + x4 + x3 + x2 + x + 1)w,

`(x) = (1 + v)x4 + x3 + vx + 1

= (x3 + x + 1)v + (x4 + x3 + 1)w,

o(x) = vx9 + vx8 + vx6 + x5 + vx4 + vx3 + (1 + v)x2 + (1 + v)x + 1

= (x9 + x8 + x6 + x5 + x4 + x3 + 1)v + (x5 + x2 + x + 1)w.

As in Example 1, Pv(C), Pw(C), C have the parameters of [21, 5, 10], [21, 10, 7], [42, 15, 7], respectively.

4. The Dual Codes

As the generalization of cyclic codes over R, one can obtain the following results about the dual
codes of cyclic codes over R. For more information, someone can consult [15].

Lemma 4. ([15]) Let C = vC1 ⊕ (1− v)C2 be a cyclic code of length n over R, then its dual code C⊥ is also a
cyclic and moreover we have C⊥ = vC⊥1 ⊕ (1− v)C⊥2 .
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Lemma 5. ([15]) Let C = 〈v f1(x), (1− v) f2(x)〉 be a cyclic code of length n over R, with f1(x) and
f2(x) as the generator polynomials of C1 and C2, respectively such that xn − 1 = f1(x)h1(x) and
xn − 1 = f2(x)h2(x). Then

(i) C⊥ =
〈
vh∗1(x), (1− v)h∗2(x)

〉
and |C⊥| = qdeg f1(x)+deg f2(x),

(ii) C⊥ = 〈h(x)〉 where h(x) = vh∗1(x) + (1− v)h∗2(x).

Lemma 6. ([15]) Let C1 and C2 be two linear codes of length n over Fq and

C = vC1 ⊕ (1− v)C2 = {vc1 + (1− v)c2 | c1 ∈ C1, c2 ∈ C2} .

We have
C⊥ = vC⊥1 ⊕ (1− v)C⊥2 =

{
(vc1 + (1− v)c2), c1 ∈ C⊥1 , c2 ∈ C⊥2

}
.

4.1. Background Knowledge

Motivated by the idea in [10]: some new definitions will be introduced as follows.

Definition 3. Let C be a double cyclic code of length (m, n) over R. Define

〈c, d〉 =
m−1

∑
i=0

c′id
′
i +

n−1

∑
j=0

c′′j d′′j ,

where c = (c′0, . . . , c′m−1|c′′0 , . . . , c′′n−1), d = (d′0, . . . , d′m−1|d′′0 , . . . , d′′n−1).

Similarly, give the following definition.

Definition 4. For C ∈ Cm,n(R), define C⊥ = {d ∈ Rm+n | 〈d, c〉 = 0 ∀c ∈ C} as its dual code.

For r(x) ∈ R[x], let r(x) = rv(x)v + rw(x)w with rv(x), rw(x) ∈ Fq[x]. Inspired by the results
in [10],

Definition 5. Define the monic reciprocal polynomial of r(x) as

r∗(x) = r∗v(x)v + r∗w(x)w = (rv(0))−1xdeg(rv(x))rv(x−1)v + (rw(0))−1xdeg(rw(x))rw(x−1)w.

Remark 7. Obviously, r∗(x) ∈ R[x] and Definition 5 generalizes the trivial case for v = 0 or v = 1. Good
results for the composite operation between it and the canonical projections are that (r∗(x))v = (rv(x))∗ and
(r∗(x))w = (rw(x))∗. Based on these facts, the polynomials r∗v(x) and r∗w(x) can be expressed explicitly.

Proposition 7. Let r(x), s(x) ∈ R[x] with s(x)|r(x). Then, ( r(x)
s(x) )

∗ = r∗(x)
s∗(x) .

Proof. Firstly, it is easy to verify that ( f (x)g(x))∗ = f ∗(x)g∗(x), f (x), g(x) ∈ Fq[x]. Secondly,
the polynomial can be decompose into a combination of {v, w} over Fq[x], which translates into
the proof of the polynomial over traditional finite fields. These finish the proof.

Remark 8. Like as the case of finite fields, there is r∗∗(x) = r(x) for each r(x) ∈ R[x]. In the following
sections, Proposition 1, 2 and 7 will be used directly without explanation.

Based on the extended inner product forms, the following significant theorem is obtained.

Theorem 3. Let C be a double cyclic code of length (m, n) over R with

C = 〈(ξ(x)|0), (0|o(x))〉 = 〈(ξv(x)v + ξw(x)w|0), (`v(x)v + `w(x)w|ov(x)v + ow(x)w)〉 .
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Then, C⊥ ∈ Cm,n(R) and set

C⊥ =
〈
(ξ(x)|0), (`(x)|o(x))

〉
=
〈
(ξv(x)v + ξw(x)w|0), (`v(x)v + `w(x)w|ov(x)v + ow(x)w)

〉
.

Proof. First of all, let us C⊥ ∈ Cm,n(R). Set d = (d′0, . . . , d′m−1|d′′0 , . . . , d′′n−1) ∈ C⊥.
From the definition to R-double cyclic codes, it must be proved that τ(d) ∈ C⊥ in
the following. For any codeword c ∈ C, it just needs to show 〈τ(d), c〉 = 0. Notice
that τl(c) = c, where l = lcm(m, n). Since C is an R-double cyclic code, which implies that
τl−1(c) = τl−2τ(c) ∈ C. Taking c = (c′0, . . . , c′m−1|c′′0 , . . . , c′′n−1) and analyzing the detail of τl−1(c),
this gives τl−1(c) = (c′1, . . . , c′m−1, c′0|c′′1 , . . . , c′′n−1, c′′0 ). Since d ∈ C⊥, c ∈ C,

0 =
〈

d, τl−1(c)
〉
= d′0c′1 + · · ·+ d′m−2c′0 + d′m−1c′0 + d′′0 c′′1 + · · ·+ d′′m−2c′′0 + d′′m−1c′′0 = 〈τ(d), c〉

shows that τ(d) ∈ C⊥. Therefore, C⊥ is also an R-double cyclic code of length (m, n). It follows from
Theorem 1 that the second results of Theorem 3 is yielded.

Corollary 3. Just like as the station to Proposition 5, let

C = 〈(ξv(x)v + ξw(x)w|0), (0|ov(x)v + ow(x)w)〉

be a separable double cyclic code of length (m, n) over R. Then, C⊥ is also a separable double cyclic code over
R and

C⊥ =

〈
(

xm − 1
ξ∗(x)

|0), (0| x
n − 1

o∗(x)
)

〉
=

〈
(

xm − 1
ξ∗v(x)

v +
xm − 1
ξ∗w(x)

w|0), (0| x
n − 1

o∗v(x)
v +

xn − 1
o∗w(x)

w)

〉
.

Proof. If C is separable, then C = Cm × Cn. Thus, it is easy to verify that C⊥ = C⊥m × C⊥n . By the
related results about cyclic codes over Fq + vFq (see Lemmas 4, 5, 6), one can acquire that

C⊥ =

〈
(

xm − 1
ξ∗(x)

|0), (0| x
n − 1

o∗(x)
)

〉
=

〈
(

xm − 1
ξ∗v(x)

v +
xm − 1
ξ∗w(x)

w|0), (0| x
n − 1

o∗v(x)
v +

xn − 1
o∗w(x)

w)

〉
.

4.2. Some Propositions

Let θm(x) represent the polynomial ∑m−1
i=0 xi. Using this symbol, the following proposition holds.

Proposition 8. Let m, n ∈ N, then xmn − 1 = (xm − 1)θn(xm).

Proof. It is obvious that tn − 1 = (t − 1)θn(t). The desired result is achieved by replacing t with
xm.

From now on, l denotes the least common multiple of m and n.

Definition 6. Let

{
c(x) = (c′v(x)v + c′w(x)w|c′v(x)v + c′′w(x)w),

d(x) = (d′v(x)v + d′w(x)w|d′′v (x)v + d′′w(x)w),
be two elements in Rm,n[x]. Define

the map ◦ : Rm,n[x]× Rm,n[x]→ Rl [x] with

◦ (c(x), d(x)) = (c′v(x)θ l
m
(xm)xl−1−deg(d′v(x))d′∗v (x) + c′′v (x)θ l

m
(xm)xl−1−deg(d′′v (x))d′′∗v (x))v+

(c′w(x)θ l
m
(xm)xl−1−deg(d′w(x))d′∗w (x) + c′′w(x)θ l

m
(xm)xl−1−deg(d′′w(x))d′′∗w (x))w mod (xl − 1).
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It is easy to verify that the map ◦ is linear in each of its arguments. Then, ◦ is a bilinear map
between the two R[x]-modules. For the convenience of writing, denote ◦(c(x), d(x)) by c(x) ◦ d(x).

Proposition 9. Let c = (c′0, . . . , c′m−1|c′′0 , . . . , c′′n−1), d = (d′0, . . . , d′m−1|d′′0 , . . . , d′′n−1) be two vectors in
Rm × Rn with associated polynomials

c(x) = (c′v(x)v + c′w(x)w|c′′v (x)v + c′′w(x)w), d(x) = (d′v(x)v + d′w(x)w|d′′v (x)v + d′′w(x)w),

respectively. Then, c is orthogonal to d and all of its shifts if and only if c(x) ◦ d(x) ≡ 0.

Proof. Denote by d(s) = (d′0+s, . . . , d′m−1+s | d′′0+s, . . . , d′′n−1+s) the s-th cyclic shift of vector d,

where 0 ≤ s ≤ l − 1. By the definition of inner product,
〈

c, d(s)
〉

= 0 if and only if

∑m−1
k1=0 c′k1

d′k1+s + ∑n−1
k2=0 c′′k2

d′′k2+s = 0. Set ∆s = ∑m−1
k1=0 c′k1

d′k1+s + ∑n−1
k2=0 c′′k2

d′′k2+s, one can check that

c(x) ◦ d(x) =
m−1

∑
i=0

(θ l
m
(xm)

m−1

∑
k1=0

c′k1
d′k1+ix

l−1−i) +
n−1

∑
j=0

(θ l
n
(xn)

n−1

∑
k2=0

c′′k2
d′′k2+jx

l−1−j)

= (θ l
m
(xm))[

m−1

∑
i=0

m−1

∑
k1=0

c′k1
d′k1+ix

l−1−i] + (θ l
n
(xn)[

m−1

∑
j=0

n−1

∑
k2=0

c′′k2
d′′k2+jx

l−1−j]

=
l−1

∑
s=0

∆sxl−1−s

in R[x]/(xl − 1). Thus, c(x) ◦ d(x) = 0 if and only if ∆s = 0 for all 0 ≤ s ≤ l − 1.

Proposition 10. Let c(x) = (c′(x)|c′′(x)) and d(x) = (d′(x)|d′′(x)) be two elements in Rm,n[x] such that
c(x) ◦ d(x) = 0 mod (xl − 1). Then:

(i) If c′(x) ≡ 0 or d′(x) ≡ 0, we have c′′(x)d′′∗(x) = 0 mod (xn − 1);
(ii) if c′′(x) ≡ 0 or d′′(x) ≡ 0, we have c′(x)d′∗(x) = 0 mod (xm − 1).

Proof. This only prove case (ii), case (i) can be proved in a similar way. Let c′′(x) or d′′(x) equal
to 0 module xn − 1. This means that c′′v (x) ≡ c′′w(x) ≡ 0 or d′′v (x) ≡ d′′w(x) ≡ 0. From the specific
definition of ◦ associated to each two elements in R[x],

c(x) ◦ d(x) = (c′v(x)θ l
m
(xm)xl−1−deg(d′v(x))d′∗v (x))v + (c′w(x)θ l

m
(xm)xl−1−deg(d′w(x))d′∗w (x))w

= 0 mod (xl − 1).

Thus, there exists a polynomial δ(x) ∈ R[x] such that

(c′v(x)θ l
m
(xm)xl−1−deg(d′v(x))d′∗v (x))v + (c′w(x)θ l

m
(xm)xl−1−deg(d′w(x))d′∗w (x))w = δ(x)(xl − 1).

Let δ(x) = δv(x)v + δw(x)w, then

(c′v(x)θ l
m
(xm)xl−1−deg(d′v(x))d′∗v (x))v + (c′w(x)θ l

m
(xm)xl−1−deg(d′w(x))d′∗w (x))w

= δv(x)(xl − 1)v + δw(x)(xl − 1)w.

Further,

c′v(x)θ l
m
(xm)xl−1−deg(d′v(x))d′∗v (x) = δv(x)(xl − 1), c′w(x)θ l

m
(xm)xl−1−deg(d′w(x))d′∗w (x) = δw(x)(xl − 1).
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Let Λ(x) = Λv(x)v+Λw(x)w with Λv(x) = δv(x)xdeg(d′v(x))+1, Λw(x) = δw(x)xdeg(d′w(x))+1, then

c′v(x)θ l
m
(xm)xld′∗v (x) = Λv(x)(xl − 1), c′w(x)θ l

m
(xm)xld′∗w (x) = Λw(x)(xl − 1).

While xl − 1 = θ l
m
(xm)(xm− 1) is obtained by Proposition 8. Hence, c′v(x)d′∗v (x)xl = Λv(x)(xm−

1) and c′w(x)d′∗w (x)xl = Λw(x)(xm− 1). This means that xm− 1|c′v(x)d′∗v (x)xl and xm− 1|c′w(x)d′∗w (x)xl .
It is obvious that xm − 1 is prime to xl , which yields that xm − 1|c′v(x)d′∗v (x) and xm − 1|c′w(x)d′∗w (x).
Therefore, c′v(x)d′∗v (x)v + c′w(x)d′∗w (x)w = c′(x)d′∗(x) = 0 mod (xm − 1).

4.3. Main Results

Proposition 11. Let C ∈ Cm,n(R) withC = 〈(ξ(x)|0), (`(x)|o(x))〉 = 〈(ξv(x)v + ξw(x)w|0), (`v(x)v + `w(x)w|ov(x)v + ow(x)w)〉 ,

C⊥ =
〈
(ξ(x)|0), (`(x)|o(x))

〉
=
〈
(ξv(x)v + ξw(x)w|0), (`v(x)v + `w(x)w|ov(x)v + ow(x)w)

〉
.

Then,{
|Cm| = q2m+kv+kw−deg(ξv(x))−deg(ξw(x)), |Cn| = q2n−deg(ov(x))−deg(ow(x)),

|(C⊥)m| = qdeg(ov(x))+deg(ow(x)), |(C⊥)m| = qdeg(ov(x))+deg(ow(x))+kv+kw ,

where kv = deg(ξv(x))− deg(gcd(ξv(x), `v(x))) and kw = deg(ξw(x))− deg(gcd(ξw(x), `w(x))) are
two integers.

Proof. By the generating matrix of C in Theorem 2 and using the projection on the first m coordinates
of it,

|Cm| = |(Cm)v||(Cm)w| = qm−deg(ξv(x))+kv+m−deg(ξw(x))+kw = q2m+kv+kw−deg(ξv(x))−deg(ξw(x)).

Similarly to Cn, it has|Cn| = q2n−deg(ov(x))−deg(ow(x)).
Through the calculation, the parity check matrix of C can be obtained. It is

H =



Ȧt
vv Ikv v 0

Ät
vv 0 Ideg(ξv(x))−kv v
0 0 0

Ȧt
ww Ikw w 0

Ät
ww 0 Ideg(ξw(x))−kw w
0 0 0

0 Ḃt
vv Ḃt

v M̈t
vv

0 B̈t
vv B̈t

v M̈t
vv

Ideg(ov(x))
...
Bt

vv (Ṁt
v +

...
Bt

v M̈t
v)v

0 Ḃt
ww Ḃt

w M̈t
ww

0 B̈t
ww B̈t

w M̈t
ww

Ideg(ow(x))
...
Bt

ww (Ṁt
w +

...
Bt

w M̈t
w)w


.

Utilizing the relationship between cyclic codes and their dual codes about the generating matrix,
one can use the same method as above to derive the following results:{

|(C⊥)m| = |((C⊥)m)v||((C⊥)m)w| = qdeg(ov(x))+deg(ow(x)),

|(C⊥)n| = |((C⊥)n)v||((C⊥)n)w| = qdeg(ov(x))+deg(ow(x))+kv+kw .

Remark 9. Similarly to the cardinality relationship between cyclic codes and their dual codes over traditional
finite fields, |C||C⊥| = q2n for C ∈ Cn(R). Consequently, |(Cm)⊥| = qdeg(ξv(x))+deg(ξw(x))−kv−kw and
|(Cn)⊥| = qdeg(ov(x))+deg(ow(x)). Of course, someone can also refer to [13].
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Corollary 4. Let C and C⊥ be defined as above. Then,
deg(ξv(x)) = m− deg(gcd(ξv(x), `v(x))),

deg(ξw(x)) = m− deg(gcd(ξw(x), `w(x))),

deg(ov(x)) = n− deg(ξv(x))− deg(ov(x)) + deg(gcd(ξv(x), `v(x))),

deg(ow(x)) = n− deg(ξw(x))− deg(ow(x)) + deg(gcd(ξw(x), `w(x))).

Proof. It is easy to check that (Cm)⊥ is a single cyclic code generated by ξ(x). From the conclusion
about single cyclic codes over R, |((Cm)⊥)v| = qm−deg(ξv(x)). Moreover, by Proposition 11,
|((Cm)⊥)v| = qdeg(ξv(x))−kv . Thus deg(ξv(x)) = m− deg(gcd(ξv(x), `v(x))). The same method can
obtain that deg(ξw(x)) = m− deg(gcd(ξw(x), `w(x))).

Since C⊥ is also an R-double cyclic code of the same length to C, (C⊥)m is a cyclic code generated
by o(x). Thus, |((C⊥)m)v| = qn−deg(ov(x)). Moreover, by Proposition 8, |((C⊥)m)v| = qdeg(ov(x))+kv .
Hence, deg(ov(x)) = n− deg(ξv(x))− deg(ov(x)) + deg(gcd(ξv(x), `v(x))). The same proof works
for deg(`w(x)) = n− deg(ξw(x))− deg(ow(x)) + deg(gcd(ξw(x), `w(x))).

Theorem 4. Let C ∈ Cm,n(R) withC = 〈(ξ(x)|0), (`(x)|o(x))〉 = 〈(ξv(x)v + ξw(x)w|0), (`v(x)v + `w(x)w|ov(x)v + ow(x)w)〉 ,

C⊥ =
〈
(ξ(x)|0), (`(x)|o(x))

〉
=
〈
(ξv(x)v + ξw(x)w|0), (`v(x)v + `w(x)w|ov(x)v + ow(x)w)

〉
.

Then, ξ(x) = xm−1
gcd∗(ξ(x),`(x)) =

xm−1
gcd∗(ξv(x),`v(x))v + xm−1

gcd∗(ξw(x),`w(x))w.

Proof. By the generators to the dual code of C, (ξ(x)|0) belongs to C⊥. According to Proposition 9,{
(ξ(x)|0) ◦ (ξ(x)|0) = 0 mod (xl − 1),

(ξ(x)|0) ◦ (`(x)|o(x)) = 0 mod (xl − 1).

Therefore, by Proposition 10,{
ξ
∗
(x)ξ(x) = 0 mod (xm − 1)⇐⇒ (xm − 1)|ξ∗(x)ξ(x),

ξ
∗
(x)`(x) = 0 mod (xm − 1)⇐⇒ (xm − 1)|ξ∗(x)`(x).

Furthermore, xm − 1|ξ∗(x) gcd(ξ(x), `(x)). While xm − 1|ξ∗(x) gcd(ξ(x), `(x)) if and only if{
xm − 1|ξ∗v(x) gcdv(ξ(x), `(x)) = ξ

∗
v(x) gcd(ξv(x), `v(x)),

xm − 1|ξ∗w(x) gcdw(ξ(x), `(x)) = ξ
∗
w(x) gcd(ξw(x), `w(x)).

Since ξ
∗
v(x), gcd(ξv(x), `v(x)), ξ

∗
w(x), gcd(ξw(x), `w(x)) are all factors of xm − 1, it follows from

Corollary 4 that {
deg(ξ

∗
v(x)) = deg(ξv(x)) = m− deg(gcd(ξv(x), `v(x))),

deg(ξ
∗
w(x)) = deg(ξw(x)) = m− deg(gcd(ξw(x), `w(x))).

Then, {
xm − 1 = ξ

∗
v(x) gcdv(ξ(x), `(x)) = ξ

∗
v(x) gcd(ξv(x), `v(x)),

xm − 1 = ξ
∗
w(x) gcdw(ξ(x), `(x)) = ξ

∗
w(x) gcd(ξw(x), `w(x)).
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Hence,

ξ
∗
(x) gcd(ξ(x), `(x)) = ξ

∗
v(x) gcd(ξv(x), `v(x))v + ξ

∗
w(x) gcd(ξw(x), `w(x))w = xm − 1.

Therefore, ξ(x) = xm−1
gcd∗(ξ(x),`(x)) =

xm−1
gcd∗(ξv(x),`v(x))v + xm−1

gcd∗(ξw(x),`w(x))w.

Theorem 5. Let C ∈ Cm,n(R) withC = 〈(`(x) | 0), (`(x)|o(x))〉 = 〈(ξv(x)v + ξw(x)w|0), (`v(x)v + `w(x)w|ov(x)v + ow(x)w)〉 ,

C⊥ =
〈
(ξ(x)|0), (`(x)|o(x))

〉
=
〈
(ξv(x)v + ξw(x)w|0), (`v(x)v + `w(x)w|ov(x)v + ow(x)w)

〉
.

Then, o(x) = (xn−1) gcd∗(ξ(x),`(x))
ξ∗(x)o∗(x) =

(xn−1) gcd∗(ξv(x),`v(x))
ξ∗v(x)o∗v(x) v +

(xn−1) gcd∗(ξw(x),`w(x))
ξ∗w(x)o∗w(x) w.

Proof. Concentrate on the codeword of(
0| ξ(x)

gcd(ξ(x), `(x))
o(x)

)
=

ξ(x)
gcd(ξ(x), `(x))

(`(x)|o(x))− `(x)
gcd(ξ(x), `(x))

(ξ(x)|0).

Then,
(

0| ξ(x)
gcd(ξ(x),`(x)) o(x)

)
∈ C. From Proposition 9,

(`(x)|o(x)) ◦
(

0| ξ(x)
gcd(ξ(x), `(x))

o(x)
)
= 0 mod (xl − 1).

Thus, by Proposition 10,

o(x)
ξ∗(x)o∗(x)

gcd∗(ξ(x), `(x))
= 0 mod (xn − 1) ⇐⇒ xn − 1|o(x)

ξ∗(x)o∗(x)
gcd∗(ξ(x), `(x))

.

However, one can check that xn − 1|o(x) ξ∗(x)o∗(x)
gcd∗(ξ(x),`(x)) if and only if

xn − 1|ov(x) ξ∗v(x)o∗v(x)
gcd∗v(ξ(x),`(x)) = ov(x) ξ∗v(x)o∗v(x)

gcd∗(ξv(x),`v(x)) ,

xn − 1|ow(x) ξ∗w(x)o∗w(x)
gcd∗w(ξ(x),`(x)) = ow(x) ξ∗w(x)o∗w(x)

gcd∗(ξw(x),`w(x)) .

ov(x)|(xn − 1) and ow(x)|(xn − 1) follow from Theorem 3. At the same time, from Corollary 1,
ξ∗v(x)o∗v(x)

gcd(ξv(x),`v(x)) |(xn − 1), ξ∗w(x)o∗w(x)
gcd(ξw(x),`w(x)) |(xn − 1). By Corollary 4,

{
deg(ov(x)) = n− deg(ξv(x))− deg(ov(x)) + deg(gcd(ξv(x), `v(x)),

deg(ow(x)) = n− deg(ξw(x))− deg(ow(x)) + deg(gcd(ξw(x), `w(x)).

Hence, deg( ov(x)ξ∗v(x)o∗v(x)
gcd∗(ξv(x),`v(x)) ) = n = deg(xn − 1), deg( ow(x)ξ∗w(x)o∗w(x)

gcd∗(ξw(x),`w(x)) ) = n = deg(xn − 1).

These mean that xn − 1 = ov(x)ξ∗v(x)o∗v(x)
gcd∗(ξv(x),`v(x)) , xn − 1 = ow(x)ξ∗w(x)o∗w(x)

gcd∗(ξw(x),`w(x)) . Therefore,

o(x)
ξ∗(x)o∗(x)

gcd∗(ξ(x), `(x))
= ov(x)

ξ∗v(x)o∗v(x)
gcd∗(ξv(x), `v(x))

v + ow(x)
ξ∗w(x)o∗w(x)

gcd∗(ξw(x), `w(x))
w

= (xn − 1)v + (xn − 1)w = (xn − 1)(v + w) = xn − 1.

Therefore, o(x) = (xn−1) gcd∗(ξ(x),`(x))
ξ∗(x)o∗(x) =

(xn−1) gcd∗(ξv(x),`v(x))
ξ∗v(x)o∗v(x) v +

(xn−1) gcd∗(ξw(x),`w(x))
ξ∗w(x)o∗w(x) w.

Remark 10. In the process of the above proof, the fact that deg( f ∗(x)) = deg( f (x)) holds for all f (x) ∈ Fq[x]
has been applied.
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Theorem 6. Let C ∈ Cm,n(R) withC = 〈(ξ(x) | 0), (`(x)|o(x))〉 = 〈(ξv(x)v + ξw(x)w|0), (`v(x)v + `w(x)w|ov(x)v + ow(x)w)〉 ,

C⊥ =
〈
(ξ(x)|0), (`(x)|o(x))

〉
=
〈
(ξv(x)v + ξw(x)w|0), (`v(x)v + `w(x)w|ov(x)v + ow(x)w)

〉
.

Then, `(x) = ( xm−1
ξ∗v(x) v + xm−1

ξ∗w(x)w)ρ(x), where

ρ(x) = (−xl−deg(ov(x))+deg(ξv(x))v− xl−deg(ow(x))+deg(ξw(x))w)(
ξ∗(x)

gcd∗(ξ(x), `(x))
)−1mod

ξ∗(x)
gcd∗(ξ(x), `(x))

.

Proof. Since (`(x)|o(x)) ∈ C⊥ and (ξ(x)|0) ∈ C, it follows from Proposition 9 that

(`(x)|(o)(x)) ◦ (ξ(x)|0) ≡ 0 mod (xl − 1).

Then, `(x)ξ∗(x) = 0 mod (xm − 1) because of Proposition 10. Hence, there exists a polynomial
ρ(x) ∈ R[x] such that `(x) = xm−1

ξ∗(x) ρ(x) = ( xm−1
ξ∗v(x) v + xm−1

ξ∗w(x)w)ρ(x). The remainder of this proof is to
show the concrete expression of ρ(x).

Computing (`(x) | o(x)) ◦ (`(x)|o(x)), it follows that

(`(x)|o(x)) ◦ (`(x)|o(x)) = (
xm − 1
ξ∗(x)

ρ(x)| (xn − 1) gcd∗(ξ(x), `(x))
ξ∗(x)o∗(x)

) ◦ (`(x)|o(x)) =

((
xm − 1
ξ∗v(x)

ρ(x)θ l
m
(xm)xl−1−deg(`v(x))`∗v(x) +

(xn − 1) gcd∗v(ξ(x), `(x))
ξ∗v(x)o∗v(x)

θ l
n
(xn)xl−1−deg(ov(x))o∗v(x))v+

((
xm − 1
ξ∗w(x)

ρ(x)θ l
m
(xm)xl−1−deg(`w(x))`∗w(x) +

(xn − 1) gcd∗w(ξ(x), `(x))
ξ∗w(x)o∗w(x)

θ l
n
(xn)xl−1−deg(ow(x))o∗w(x))w.

While (xm − 1)θ l
m
(xm) = xl − 1 and (xn − 1)θ l

n
(xn) = xl − 1. Then,

(xl − 1) gcd∗v(ξ(x), `(x))
ξ∗v(x)

(ρv(x)xl−deg(`v(x)) `∗v(x)
gcd∗v(ξ(x), `(x))

+ xl−deg(ov(x)−1))v+

(xl − 1) gcd∗w(ξ(x), `(x))
ξ∗w(x)

(ρw(x)xl−deg(`w(x)) `∗w(x)
gcd∗w(ξ(x), `(x))

+ xl−deg(ow(x)−1))w

= 0 mod (xl − 1).

This means that

xl − 1
ξ∗v(x)/ gcd∗v(ξ(x), `(x))

(ρv(x)xl−deg(`v(x)) `∗v(x)
gcd∗v(ξ(x), `(x))

+ xl−deg(ov(x)−1))v+

xl − 1
ξ∗w(x)/ gcd∗w(ξ(x), `(x))

(ρw(x)xl−deg(`w(x)) `∗w(x)
gcd∗w(ξ(x), `(x))

+ xl−deg(ow(x)−1))w = 0 mod (xl − 1).

To simplify the length and complexity of the above equations, let

ξ̂(x) =
ξ(x)

gcd(ξ(x), `(x))
, ˆ̀(x) =

`(x)
gcd(ξ(x), `(x))

.

Hence,

xl − 1
ξ̂∗v(x)

(ρv(x)xl−deg(`v(x)) ˆ̀∗
v(x) + xl−deg(ov(x)−1))v +

xl − 1
ξ̂∗w(x)

(ρw(x)xl−deg(`w(x)) ˆ̀∗
w(x)

+ xl−deg(ow(x)−1))w = 0 mod (xl − 1).
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Then,

(ρv(x)xl−deg(`v(x)) ˆ̀∗
v(x) + xl−deg(ov(x)−1))v + (ρw(x)xl−deg(`w(x)) ˆ̀∗

w(x) + xl−deg(ow(x)−1))w

= 0 mod (xl − 1)

or

(ρv(x)xl−deg(`v(x)) ˆ̀∗
v(x) + xl−deg(ov(x)−1))v + (ρw(x)xl−deg(`w(x)) ˆ̀∗

w(x) + xl−deg(ow(x)−1))w

= 0 mod (ξ̂∗(x)).

Note that these two equations are closely related. In fact, the former can deduce the latter
according to ô∗(x)|(xl − 1). Therefore, one can assume that

(ρv(x)xl−deg(`v(x)) ˆ̀∗
v(x) + xl−deg(ov(x)−1))v + (ρw(x)xl−deg(`w(x)) ˆ̀∗

w(x) + xl−deg(ow(x)−1))w

= 0 mod (ξ̂∗(x)).

From the setting of the abbreviation, gcd(ξ̂(x), ˆ̀(x)) = 1. Furthermore, xl = 1 mod ξ∗(x).
Then, ˆ̀∗(x) is an invertible element modulo ξ̂∗(x). Thus,

ρ(x)=(−xl−deg(ov(x))+deg(ξv(x))v−xl−deg(ow(x))+deg(ξw(x))w)

(
`∗(x)

gcd∗(ξ(x), `(x))

)−1
mod

ξ∗(x)
gcd∗(ξ(x), `(x))

.

As an application to this section, consider the dual codes of the codes in Section 3.3.

Example 3. Continue to use the parameters in Example 1. From Theorem 3, C⊥ is also a F2 + vF2-double
cyclic code. According to the results in this section, an easy computation shows that

ξ(x) = (x4 + x2 + x + 1)v + (x4 + x3 + x2 + 1)w,

`(x) = (x3 + x)v + (x3 + x + 1)w,

o(x) = v + (x3 + x2 + 1)w.

Similarly, the minimal generating set of C⊥ is Gv
1 ∪ Gw

1 ∪ Gv
2 ∪ Gw

2 , where

Gv
1 =

{
v(x4 + x2 + x + 1|0), vx(x4 + x2 + x + 1|0), vx2(x4 + x2 + x + 1|0)

}
,

Gw
1 =

{
w(x4 + x3 + x2 + 1|0), wx(x4 + x3 + x2 + 1|0), wx2(x4 + x3 + x2 + 1|0)

}
,

Gv
2 =

{
v(x3 + x|1), vx(x3 + x|1), vx2(x3 + x|1), vx3(x3 + x|1),

vx4(x3 + x|1), vx5(x3 + x|1), vx6(x3 + x|1)
}

,

Gw
2 =

{
w(x3 + x + 1|x3 + x2 + 1), wx(x3 + x + 1|x3 + x2 + 1),

wx2(x3 + x + 1|x3 + x2 + 1), wx3(x3 + x + 1|x3 + x2 + 1)
}

.
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Therefore, the generating matrix of C⊥ is

v v v 0 v 0 0
0 v v v 0 v 0
0 0 v v v 0 v
0 v 0 v 0 0 0
0 0 v 0 v 0 0
0 0 0 v 0 v 0
0 0 0 0 v 0 v
v 0 0 0 0 v 0
0 v 0 0 0 0 v
v 0 v 0 0 0 0
w 0 w w w 0 0
0 w 0 w w w 0
0 0 w 0 w w w
w w 0 w 0 0 0
0 w w 0 w 0 0
0 0 w w 0 w 0
0 0 0 w w 0 w

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
v 0 0 0 0 0 0
0 v 0 0 0 0 0
0 0 v 0 0 0 0
0 0 0 v 0 0 0
0 0 0 0 v 0 0
0 0 0 0 0 v 0
0 0 0 0 0 0 v
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
w 0 w w 0 0 0
0 w 0 w w 0 0
0 0 w 0 w w 0
0 0 0 w 0 w w



.

This means that the generating matrices of Pv(C⊥), Pw(C⊥) are

1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1
0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1
1 0 0 0 0 1 0
0 1 0 0 0 0 1
1 0 1 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


,



1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1
1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1


.

Hence, {
the length of Pv(C⊥) is 14, dimF2(Pv(C⊥)) = 10, dmin(Pv(C⊥)) = 3;

the length of Pw(C⊥) is 14, dimF2(Pw(C⊥)) = 7, dmin(Pw(C⊥)) = 4.

Consequently, the codes Pv(C⊥) and Pw(C⊥) have the parameters [14, 10, 3] and [14, 7, 4], respectively.
Then, the F2 + vF2-double cyclic code C⊥ has the parameter of [28, 17, 3].

Example 4. Applying the parameters in Example 2. By the results about the dual code of R-double cyclic code
in this section, then 

ξ(x) = (x4 + x3 + x2 + 1)v + (x7 + 1)w,

`(x) = xv + (x4 + x3 + x2 + x + 1)w,

o(x) = (x + 1)v + (x3 + x + 1)w.

As in Example 3, Pv(C⊥), Pw(C⊥), C⊥ have the parameters of [21, 16, 3], [21, 11, 6],
[42, 27, 3], respectively.

More examples about F2 + vF2-double cyclic codes and their duals have below in Tables 2 and 3.
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Table 2. Table of F2 + vF2-double cyclic codes.

Code Generators [m,n] Parameters

C1 ξ(x) = vx7 + (1+ v)x6 + (1+ v)x5 + (1+ v)x4 + (1+ v)x3 + (1+ v)x2 + (1+
v)x + 1, `(x) = vx4 + (1 + v)x3 + x2 + 1, o(x) = x4 + x2 + x + 1

[7, 7] [28, 7, 7]

C2 ξ(x) = vx7 + (1 + v)x4 + (1 + v)x3 + (1 + v)x2 + 1, `(x) = vx4 + (1 + v)x3 +
vx2 + x + 1, o(x) = vx4 + (1 + v)x3 + x2 + vx + 1

[7, 7] [28, 10, 4]

C3 ξ(x) = vx7 + (1+ v)x6 + (1+ v)x5 + (1+ v)x4 + (1+ v)x3 + (1+ v)x2 + (1+
v)x + 1, `(x) = vx3 + x + 1, o(x) = vx9 + vx8 + vx6 + vx5 + vx4 + vx3 + (1 +
v)x2 + 1

[7, 14] [42, 17, 5]

C4 ξ(x) = vx7 + (1 + v)x3 + (1 + v)x2 + 1, `(x) = vx3 + vx + 1, o(x) = vx9 +
vx8 + vx6 + vx5 + vx4 + vx3 + (1 + v)x2 + 1

[7, 14] [42, 21, 3]

C5 ξ(x) = x6 + x5 + x4 + x3 + x2 + x + 1, `(x) = vx4 + vx3 + (1 + v)x + 1,
o(x) = vx5 + (1 + v)x3 + x2 + vx + 1

[7, 14] [42, 22, 5]

C6 ξ(x) = vx6 + vx5 + vx4 + x3 + x2 + vx + 1, `(x) = vx4 + vx3 + 1, o(x) =
vx5 + x2 + vx + 1

[7, 14] [42, 22, 3]

C7 ξ(x) = vx6 + vx5 + vx4 + x3 + x2 + vx+ 1, `(x) = vx+ 1, o(x) = vx3 + x2 + 1 [7, 14] [42, 38, 3]

Table 3. The dual codes of Table 2.

Code Generators [m, n] Paramaters

C⊥1 ξ(x) = (1 + v)x4 + vx3 + x2 + (1 + v)x + 1, `(x) = (1 + v)x3 + (1 + v)x + v,
o(x) = 1

[7, 7] [28, 21, 2]

C⊥2 ξ(x) = (1 + v)x4 + x3 + x2 + 1, `(x) = (1 + v)x3 + (1 + v)x + 1, o(x) =
(1 + v)x3 + (1 + v)x2 + 1

[7, 7] [28, 18, 2]

C⊥3 ξ(x) = (1 + v)x7 + vx4 + vx3 + vx2 + 1, `(x) = (1 + v)x6 + (1 + v)x4 + (1 +
v)x3 + (1 + v)x2 + x + (1 + v), o(x) = (1 + v)x5 + (1 + v)x4 + (1 + v)x3 +
vx + 1

[7, 14] [42, 25, 3]

C⊥4 ξ(x) = (1 + v)x7 + vx4 + vx3 + vx2 + 1, `(x) = (1 + v)x6 + (1 + v)x5 + (1 +
v)x2 + vx + 1, o(x) = (1 + v)x9 + (1 + v)x6 + (1 + v)x5 + (1 + v)x4 + (1 +
v)x3 + x + 1

[7, 14] [42, 21, 3]

C⊥5 ξ(x) = x7 + 1, `(x) = (1 + v)x6 + x4 + x3 + x2 + x + (1 + v), o(x) = (1 +
v)x5 + (1 + v)x4 + x3 + vx + 1

[7, 14] [42, 20, 6]

C⊥6 ξ(x) = x7 + 1, `(x) = (1+ v)x6 + (1+ v)x5 + vx4 + vx3 + x2 + vx + 1, o(x) =
(1 + v)x9 + (1 + v)x6 + (1 + v)x5 + (1 + v)x4 + (1 + v)x3 + x + 1

[7, 14] [42, 16, 6]

C⊥7 ξ(x) = x7 + 1, `(x) = x6 + (1 + v)x5 + vx4 + vx3 + x2 + vx + 1, o(x) =
(1 + v)x9 + (1 + v)x6 + x5 + x4 + x3 + (1 + v)x + 1

[7, 14] [42, 14, 6]

5. Summaries

Owing to the nice algebraic structure of Fq + vFq, some results about double cyclic codes over
Fq + vFq are provided in a convenient way. Section 3 gives the basic forms of the double cyclic codes,
which include the forms of generating polynomials, minimal generating sets and generating matrices.
Section 4 explores the relation between the generating polynomials of double cyclic codes and their
duals. The main results of this article are summarized as follows.
Conclusions 1. Let C be a double cyclic code of length (m, n) over R, then C has the forms of

C = 〈(ξ(x)|0), (`(x)|o(x))〉 = 〈(ξv(x)v + ξw(x)w|0) , (`v(x)v + `w(x)w|ov(x)v + ow(x)w)〉 ,

where ξv(x), ξw(x)|xm − 1, ov(x), ow(x)|xn − 1 and
If C is a separable R-double cyclic code, then `v(x) = `w(x) = 0 (i.e., `(x) = 0).
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If C is a free R-double cyclic code, then


(1)deg(`v(x)) < deg(ξv(x)), deg(`w(x)) < deg(ξw(x));

(2)ιv(x)| xn−1
ov(x) `v(x), ιw(x)| xn−1

ow(x) `w(x);

(3)ξv(x)| xn−1
ov(x) gcd(ξv(x), `v(x)), ξw(x)| xn−1

ow(x) gcd(ξw(x), `w(x)).

Conclusions 2. Let C ∈ Cm,n(R) as mentioned above, then C⊥ ∈ Cm,n(R). Let

C⊥ =
〈
(ξ(x)|0), (`(x)|o(x))

〉
=
〈
(ξv(x)v + ξw(x)w|0), (`v(x)v + `w(x)w|ov(x)v + ow(x)w)

〉
.

Then:

(1) ξ(x) = xm−1
gcd∗(ξv(x),`v(x))v + xm−1

gcd∗(ξw(x),`w(x))w;

(2) o(x) = (xn−1) gcd∗(ξv(x),`v(x))
ξ∗v(x)o∗v(x) v +

(xn−1) gcd∗(ξw(x),`w(x))
ξ∗w(x)o∗w(x) w;

(3) `(x) = ( xm−1
ξ∗v(x) v + xm−1

ξ∗w(x)w)ρ(x), where

ρ(x) = 0 if C is separable, or otherwise

ρ(x) = (−xl−deg(ov(x))+deg(ξv(x))v− xl−deg(ow(x))+deg(ξw(x))w)
(

`∗(x)
gcd∗(ξ(x),`(x))

)−1
mod ξ∗(x)

gcd∗(ξ(x),`(x)) .

While letting v = 0 (i.e., w = 1) or v = 1 (i.e., w = 0), the above conclusions become to
Conclusions 1’. Let C be a Fq-double cyclic code of length (m, n), then C has the forms of

C = 〈(ξ(x)|0), (`(x)|o(x))〉 ,

where ξ(x)|xm − 1, o(x)|xn − 1 and:
If C is a separable Fq-double cyclic code, then `(x) = 0.

If C is a free Fq-double cyclic code, then


(1)deg(`(x)) < deg(ξ(x));

(2)ι(x)| xn−1
o(x) `(x);

(3)ξ(x)| xn−1
o(x) gcd(ξ(x), `(x)).

Conclusions 2’. Let C ∈ Cm,n(Fq) as mentioned above, then C⊥ ∈ Cm,n(Fq). Let

C⊥ =
〈
(ξ(x)|0), (`(x)|o(x))

〉
.

Then:

(1) ξ(x) = xm−1
gcd∗(ξ(x),`(x)) ;

(2) o(x) = (xn−1) gcd∗(ξ(x),`(x))
ξ∗(x)o∗(x) ;

(3) `(x) = xm−1
ξ∗(x) ρ(x), where

ρ(x) = 0 if C is separable, or otherwise

ρ(x) = −xl−deg(o(x))+deg(ξ(x))
(

`∗(x)
gcd∗(ξ(x),`(x))

)−1
mod ξ∗(x)

gcd∗(ξ(x),`(x)) .

These are the main results about Fq-double cyclic codes in [9,12]. Therefore, the double cyclic
codes over Fq + vFq investigated in this paper are the generalization of those over finite fields.

Throughout this paper, one can seen that cyclic codes are a special class of double cyclic codes.
On the other side, double cyclic codes are permutation equivalent to generalized quasi-cyclic codes
of index 2. Consequently, the study of double cyclic codes can help us to realize various generalized
and deformed structures of cyclic codes. While it must also point out that although Fq + vFq-double
cyclic codes can be directly regarded as linear codes over finite fields, Fq-linear codes obtained in this
way are usually not optimal codes. However, the main motivation of this paper was to provide an
underlying theoretical framework for considering the weight distribution of Fq + vFq-double cyclic
codes. Meanwhile, possible acquisition of quantum codes based on such Fq + vFq-double cyclic
codes also requires the conclusions of this paper as the theoretical foundation. Therefore, possible
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further research is to consider the weight distributions or the case of quantum codes from these
Fq + vFq-double cyclic codes.
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