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Abstract: The diagnosability is an essential subject for the reliability of a multiple CPU system. As a
celebrated topology structure of interconnection networks, an n-dimensional wheel network CWn

has numerous great features. In this paper, we discuss the diagnosability of CWn with missing edges
under the comparison model. Both the local diagnosability and the strong local diagnosability feature
are studied; this feature depicts the equivalence of the local diagnosability of a node and its degree.
We demonstrate that CWn(n ≥ 6) possesses this feature, containing the strong feature even with up
to 2n− 4 missing edges in it, and the outcome is ideal regarding the amount of missing edges.

Keywords: interconnection networks; MM∗ diagnosis model; local diagnosability; strong local
diagnosability; extended star; wheel networks

1. Introduction

Numerous multiple CPU systems have interconnection networks (networks for short) as
fundamental topologies, and a network is normally spoken to by a graph where nodes speak to
CPUs and links speak to communication links between CPUs. For a system, a few CPUs may
fizzle in the system, so CPU flaw distinguishing proof assumes a significant job for solid figuring.
The distinguishing process is known as the diagnosis of the system. A system is supposed to be
t-diagnosable if all broken CPUs can be distinguished without substitution, given that the quantity of
faults presented does not surpass t. The diagnosability t(G) of a system G is the largest amount of t
such that G is t-diagnosable [1–3].

A few diagnosis models (e.g., PMC model [4], BGM model [5] and MM model [6]) are suggested
to examine the ability to be diagnosed. Under the PMC model [4], the diagnosis of a system G is
achieved through two adjacent nodes in G testing each other. The BGM model [5] uses the same testing
strategy as the PMC model, but it assumes that a faulty unit is always tested as faulty regardless of
the state of the tester. Specifically, the MM model, is notable and broadly utilized. In the MM model,
likewise named the comparison model, to diagnose a system, a node sends the similar assignment to
two of its neighbors, and afterward looks at their responses. Sengupta and Dahbura [1] suggested an
uncommon instance of the MM model, named the MM∗ model, in which every node can test its any
couple of adjacent nodes. These were investigated within the PMC model and MM model or MM∗

model. Fan [2] studied the diagnosability of crossed cubes under the comparison diagnosis model.
Lai et al. [3] discussed the conditional diagnosability measures for large multiprocessor systems under
the PMC model. Chang et al. [7] studied the structural properties and conditional diagnosability
of star graphs by using the PMC model. Feng et al. [8] gave the nature diagnosability of wheel
graph networks under the PMC model and MM∗ model. Lin et al. [9] investigated the conditional
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diagnosability of Cayley graphs generated by transposition trees under the comparison diagnosis
model. Peng et al. [10] gave the g-good-neighbor conditional diagnosability of hypercube under PMC
model. Wang et al. [11] studied the 1-good-neighbor diagnosability of Cayley graphs generated by
transposition trees under the PMC model and MM∗ model. Wang et al. [12] gave the 1-good-neighbor
connectivity and diagnosability of Cayley graphs generated by complete graphs under the PMC model
and MM∗ model. Yuan et al. [13] obtained the g-good-neighbor conditional diagnosability of k-ary
n-cubes under the PMC model and MM∗ model.

Hsu and Tan [14] observed that in case we only consider the global faulty or fault-free status in a
t-diagnosable system, at that point we lose some local subtleties of the system. Therefore, Hsu and
Tan [14] suggested a measure of the ability to be diagnosed for a multiple CPU system G, which is
the local diagnosability of G. This measure considers the local diagnosability of each CPU rather than
the entire system. Chiang and Tan [15] suggested a helpful local structure named an extended star to
ensure the node diagnosability and a sufficient condition to decide the local diagnosability under the
MM model. They found that there is a solid connection between the local diagnosability of G and the
classical diagnosability of G. The system G has the strong local diagnosability feature (property) if the
local diagnosability of each node is equivalent to its degree in G. Following this idea, the strong local
diagnosability has been generally investigated. Chiang et al. [16] found that an n-dimensional star has
the strong local diagnosability even with up to n− 3 missing edges. Furthermore, Cheng et al. [17]
obtained the strong local diagnosability to (n, k)-star graphs and the Cayley Graphs produced by
2-trees. In 2018, Wang and Ma [18] demonstrated that an n-alternating group graph possesses the
strong local diagnosability feature even with up to 2n− 7 missing edges in it under the MM∗ model.
Wang et al. [19] showed that an n-dimensional bubble-sort star graph BSn(n ≥ 5) has the feature even
with up to 2n− 5 missing edges, under the MM∗ model. Here, we present that an n-dimensional wheel
network CWn(n ≥ 6) has the local diagnosability feature even with up to 2n− 4 missing edges in it
under the MM∗ model, and the consequence is optimal respect to the number of missing edges.

2. Preliminaries

2.1. Definitions and Presentations

A multiple CPU system is presented as a directionless graph G = (V, E), whose vertices (nodes)
determine CPUs and edges (links) determine communication links. Given a nonempty node subset
V′ of V, the induced subgraph by V′ in G, denoted by G[V′], is a graph, whose node set is V′ and
the link set is the set of each link of G with both endpoints in V′. The degree dG(v) of a node v
is the amount of links incident with v. We denote by δ(G) the minimum degrees of nodes of G.
We describe the neighborhood NG(v) of a node v in G as set of nodes adjacent to v. u is named a
neighbor or a neighbor node of v for u ∈ NG(v). Let S ⊆ V. We use NG(S) to represent the set
∪v∈SNG(v)\S. For neighborhoods and degrees, we shall typically neglect the subscript for the graph
once no misperception ascends. A graph G is k-regular if for all v ∈ V, dG(v) = k. The connectivity κ(G)

of a connected graph G is the minimum number of nodes whose exclusion effects in a disconnected
graph or just a node left when G is complete. The edge-connectivity λ(G) of G is the minimum number
of links whose exclusion outcomes in a disconnected graph. A graph is bipartite if its node set can
be partitioned into two subsets X and Y its fragments such that G[X] and G[Y] has no link. The girth
is the length of the shortest cycle in a graph G. The automorphism group of a graph G is transitive
if there is an automorphism ϕ to arbitrary couples u, v of nodes in G such that ϕ(u) = v. Here, G is
named node transitive. For graph-related vocabulary and representation not described we refer the
reader to [20].

Proposition 1 ([20]). For a graph G = (V, E), κ(G) ≤ λ(G) ≤ δ(G).
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2.2. The MM∗ Model

The MM model is originally suggested by Malek and Maeng in [6]. In the MM model, the diagnosis
is performed by transmitting the same testing errand to a couple of CPUs and looking at their responses.
Within the MM model, we generally accept the yield of a comparison achieved by a defective CPU is
questionable. The comparison scheme of a system G = (V, E) is presented as a multi-graph, denoted by
M = (V(G), L), where L is the labeled-link set. A labeled link (u, v)w ∈ L determines an evaluation
where two vertices u and v are compared by a node w, which indicates uw, vw ∈ E(G). The collection
of each comparison outcome in M = (V(G), L) is named the syndrome of the diagnosis, denoted by σ.
If the comparison (u, v)w differs, then σ((u, v)w) = 1, else, σ((u, v)w) = 0. Thereat, a syndrome is a
mapping from L to {0, 1}. Sengupta and Dahbura [21] suggested MM∗ model. The MM∗ model is a
specific type of the MM model. Within the MM∗ model, each comparison of G is in the comparison
system of G, i.e., if uw, vw ∈ E(G), then (u, v)w ∈ L. The set of each defective CPU in the system is
named a faulty set. It can be an arbitrary subset of V(G). For a given a syndrome σ. Then a subset
of nodes F ⊆ V(G) is supposed to be consistent with σ if σ can be formed from the state, for all
(u, v)w ∈ L such that w ∈ V\F, σ((u, v)w) = 1 if and only if at least one of {u, v} is in F. Let σ(F)
signify the set of each syndrome that F is consistent with. Let F1 and F2 be two different sets in
V(G). If σ(F1) ∩ σ(F2) = ∅, it is said F1 and F2 be a distinguishable pair (couple); else, (F1, F2) is an
indistinguishable pair (couple).

The primary merit of the MM model is its simplicity in identifying a faulty CPU because the
comparison of pairs of CPUs seems to be easier than testing one CPU by another or others [22]. The MM
model has two advantages in fault identification: the MM model requires no additional hardware;
transient and permanent faults may be identified before the comparison program has completed [22].
Sengupta et al. [21] investigated many significant features of a diagnosable system using the MM
model. The MM∗ model might result in the development of a polynomial-time diagnosis algorithm in
general MM self-diagnosable systems, and complexity leads to determining the diagnosability level of
systems [23].

2.3. Wheel Networks

The wheel networks [24] are a famous topology construction in interconnection networks.
We consider this topology in this section.

Let Q be a finite group, and assume S be a spanning set of Q such that S does not contain the
identity element. The directed Cayley graph Cay(S, Q) is described as follows: its node set is Q, its arc
set is {(g, gs) : g ∈ Q, s ∈ S}. If for each s ∈ S, s−1 ∈ S, then all of arc sets of Cay(S, Q) have
parallel links going in diverse directions. If we replace two arcs of the parallel link going in different
directions in Cay(S, Q) with a link, then we get a directionless graph named the undirected Cayley
graph. Each Cayley graph in this paper is an undirected Cayley graph.

In the permutation ( 1 2 ··· n
p1 p2 ··· pn

), i −→ pi. For convenience, we signify the permutation

( 1 2 ··· n
p1 p2 ··· pn

) by p1 p2 · · · pn. Each permutation is denoted by a product of cycles [25]. For instance,

(1 2 3
3 1 2) = (132). Specially, (1 2 ··· n

1 2 ··· n) = (1). The product στ of two permutations is the composition
function τ trailed by σ, i.e., (12)(13) = (132). For algebraic terminology and notation not described
here we refer to [25].

Let [n] = {1, 2, · · · , n}, and consider H as a simple connected graph whose node set is [n](n ≥ 3).
Each link of H is reflected as the transposition in symmetric group Sn, and so the link set of H
corresponds to a transposition set S in Sn. Therefore, H is named a transposition simple graph.
The Cayley graph Cay(S, 〈S〉), denoted by Cay(H, 〈S〉), is named the corresponding Cayley graph of
H. As mentioned in [26], 〈S〉 = Sn. Once H is a tree (resp. path, star) of n nodes, the corresponding
Cayley graph is named an n-dimensional transposition tree (resp. bubble-sort graph, star graph),
and denoted by CΓn (resp. Bn, Sn) [26].
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Proposition 2 ([27]). BSn is (2n− 3)-regular for n ≥ 4.

Proposition 3 ([28]). κ(BSn) = 2n− 3 for n ≥ 4.

Once H is a sector SEn of n (n ≥ 3) nodes, i.e., V(SEn) = [n] and E(SEn) = {(1, k) : 2 ≤ k ≤ n} ∪
{(k, k + 1) : 2 ≤ k ≤ n− 1}, the corresponding Cayley graph Cay(SEn, Sn) is named an n-dimensional
bubble-sort star graph [27], denoted by BSn. Once H is a wheel Wn of n (n ≥ 4) nodes, i.e., V(Wn) = [n]
and E(Wn) = {(1, k) : 2 ≤ k ≤ n} ∪ {(k, k + 1) : 2 ≤ k ≤ n − 1} ∪ {(2, n)}, the corresponding
Cayley graph Cay(Wn, Sn) is named an n-dimensional wheel network [24], denoted by CWn. In fact,
an n-dimensional wheel network CWn is the graph with node set V(CWn) = Sn in which 2 nodes u,
v are adjacent if and only if u = v(1, k), 2 ≤ k ≤ n, or u = v(k, k + 1), 2 ≤ k ≤ n− 1, or u = v(2, n).

As can be seen in [27,29], the bubble-sort star graph BSn possesses lesser diameter than Bn,
equal diameter to Sn, and larger connectivity than Bn and Sn, and the ability to be embedded of the
bubble-sort star graph is far superior to that of the star graph. Consequently, BSn utilizes the benefits
of Sn and Bn, and overcomes their own limitations. Note that the diameters of BSn and CWn are both
equal to b 3(n−1)

2 c for n ≥ 7 [27,30], and the BSn can be embedded into a CWn, CWn outperforms BSn

in connectivity [8,28]. Consequently, the wheel network is the popular and multipurpose net system
for multiple CPU systems.

Notice that CWn is a special Cayley graph. This graph possesses some features.

Proposition 4 ([31]). For each integer n ≥ 4, CWn is (2n− 2)-regular and node transitive.

Proposition 5 ([31]). For each integer n ≥ 4, CWn is bipartite.

Proposition 6 ([8]). For each integer n ≥ 4, the girth of CWn is 4.

CWn can be partitioned into n disjoint subgraphs CW1
n , CW2

n , · · · , CWn
n , where each node

u = u1u2 · · · un ∈ V(CWi
n) takes a fixed integer i in the last place un for i ∈ [n]. Obviously, CWi

n is
isomorphic to BSn−1, where BSn−1 is an (n− 1)-dimensional bubble-sort star graph. Let v ∈ V(CWn),
then v(1n), v(2n) and v(n − 1, n) are named outside neighbors of v. A link is named a cross-edge
concerning the given factorization if its two nodes are in different CWi

n’s.

3. The Local Diagnosability

Let F1 and F2 be two different subsets of V for a system G = (V, E), and let the symmetric
difference F1∆F2 = (F1\F2) ∪ (F2\F1).

Definition 1 ([4]). A system G is t-diagnosable if all the faulty processors can be precisely pointed out given
that the number of faulty processors is at most t.

Lemma 1 ([21]). A system G = (V, E) is t-diagnosable if and only if, for every couple of different set of nodes
(F1, F2) with |F1| ≤ t and |F2| ≤ t, (F1, F2) is a distinguishable pair.

Lemma 2 ([21]). Let F1 and F2 be two different subsets of nodes. (F1, F2) is a distinguishable couple if and only
if at least one of the next situations is fulfilled:

(1) ∃u, w ∈ V\F1\F2 and ∃v ∈ (F1\F2) ∪ (F2\F1) such that (u, v)w ∈ L.

(2) ∃u, v ∈ F1\F2 and ∃w ∈ (V\F1\F2) such that (u, v)w ∈ L, or

(3) ∃u, v ∈ F2\F1 and ∃w ∈ (V\F1\F2) such that (u, v)w ∈ L.
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Opposite to the global sense in system diagnosis, Chiang and Tan [15] determined a local idea,
named the local diagnosability of an assumed node in a system. This technique needs only the
precise identification of the defective or defective-free position of a single node. The concept of local
diagnosability is presented.

Definition 2 ([14]). A system G = (V, E) is locally t-diagnosable at a node x if, assumed a test syndrome σF
given by the system within the presence of a set of faulty vertices F comprising of x with |F| ≤ t, each set of
faulty nodes F

′
is consistent with σF and |F′ | ≤ t, must also contain node x.

An equivalent method of declaring the overhead description is specified here.

Definition 3 ([14]). A system G = (V, E) is locally t-diagnosable at a node x for every different couple of
faulty subsets F1 and F2 of V with |F1| ≤ t and |F2| ≤ t if x ∈ F1∆F2, and F1 and F2 is distinguishable.

The local diagnosability of an assumed node in given here:

Definition 4 ([14]). The local diagnosability tl(x) of a node x in a system G = (V, E) is
described as the maximum number of t for G that is locally t-diagnosable at x, i.e., tl(x) =

max{t : G is locally t−diagnosable at x}.

The notion of a system that is t-diagnosable at a node is consistent with the classical notion of a
system that is t-diagnosable in a global sense. The connection between those two is as follows:

Lemma 3 ([14]). A system G = (V, E) is t-diagnosable if and only if G is locally t-diagnosable at each node of G.

Lemma 4 ([14]). The diagnosability t(G) of a system G = (V, E) is equivalent to the minimum value within
the local diagnosability of each node in G, i.e., t(G) = min{tl(x) : ∀ x ∈ V(G)}.

From Lemma 4, we can identify the diagnosability of a system by figuring the local diagnosability
of every node. The diagnosability of many famous networks which are node-symmetric can be
identified using the effective measure. To assure the local diagnosability of a node x, an extended star
structure at the node x is suggested as given next:

Definition 5 ([15]). Fix a node x in a graph G = (V, E) and a positive integer p ≤ dG(x). An extended star
ES(x; p) in x of degree p is a subgraph of G with the node set V(ES(x; p)) = {x} ∪ {vij : i = 1, 2, · · · , p;
j = 1, 2, 3, 4}, and the link set E(ES(x; p)) = {(x, vk1), (vk1, vk2), (vk2, vk3), (vk3, vk4) : k = 1, 2, · · · , p}.

Here, x is named the root of ES(x; p). An extended star is an important structure in figuring the
local diagnosability of a given node. The time complexity of the algorithm to diagnose a given CPU is
bounded by O(logN) and that to diagnose all the faulty CPUs in a system with N CPUs is bounded
O(NlogN) under the comparison model, provided there is an extended star structure at each CPU
and that the time for looking up the testing result of a comparator in the syndrome table is constant,
where N is the total number of CPUs [15].

Lemma 5 ([15]). Let x be a node in a graph G = (V, E) with dG(x) = p. The local diagnosability of x is p if
there is an extended star ES(x; p) in G at x.

Notice that the local diagnosability tl(x) of a node x may or may not be equal to its degree. So two
concepts are suggested as follows:

Definition 6 ([14]). Let x be a node within a graph G = (V, E). The node x has the strong local diagnosability
feature if the local diagnosability of x is equivalent to its degree in G, i.e., tl(x) = dG(x).
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Definition 7 ([14]). Let G = (V, E) be a graph. G contains the strong local diagnosability feature if each node
in G possesses the strong local diagnosability feature.

The diagnosability of a system may be derived straightforwardly.

4. The Diagnosability of Wheel Networks

Lemma 6 ([21]). Under the MM* model, a system G = (V, E) is t-diagnosable at a node x if and only if for all
different couples of faulty subsets F1 and F2 of V with |F1| ≤ t and |F2| ≤ t, and x ∈ F1∆F2, (F1, F2) satisfies
one of the next conditions:

(1) There exist two nodes u, w ∈ V(G)\(F1 ∪ F2) and 1 node v ∈ F1∆F2 such that uw ∈ E(G) and
vw ∈ E(G);

(2) There exist two nodes u, v ∈ F1\F2 and there exists 1 node w ∈ V(G)\(F1 ∪ F2) such that uw ∈ E(G)

and vw ∈ E(G);
(3) There exist two nodes u, v ∈ F2\F1 and there exists a node w ∈ V(G)\(F1 ∪ F2) such that uw ∈ E(G)

and vw ∈ E(G) (see Figure 1).
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Figure 1. Illustration of a distinguishable pair (F1, F2) under the MM* model.

Lemma 7 ([19]). For every node x in the bubble-sort graph BSn with n ≥ 5, there is an extended star
ES(x; 2n− 3) in BSn at x.

Lemma 8. For every node x in the wheel network CWn with n ≥ 6, there is an extended star ES(x; 2n− 2) in
CWn at x.

Proof. We may partition CWn into n disjoint subgraphs CW1
n , CW2

n , · · · , CWn
n , where each node

u = u1u2 · · · un ∈ V(CWi
n) possesses a fixed integer i in the last position un for i ∈ [n]. Obviously,

CWi
n is isomorphic to BSn−1, where BSn−1 is an (n− 1)-dimensional bubble-sort star graph.

We will determine an extended star ES(x; 2n − 2) as a subgraph of CWn at a given node x.
By Proposition 4, CWn is node transitive. Therefore, (1) ∈ V(CWn

n ) can be chosen as the root
of ES(x; 2n − 2), i.e., x = (1), where (1) is the identity element of the symmetric group Sn.
By Lemma 7, for the bubble-sort graph BSn with n ≥ 5, there is an extended star ES(x; 2n − 3)
in BSn at x. So there is an extended star ES(x; 2(n − 1) − 3) in CWn

n at x. Note that (1) has three
outside neighbor nodes (1n), (2n) and (n − 1, n), where (1n) ∈ V(CW1

n), (2n) ∈ V(CW2
n) and

(n− 1, n) ∈ V(CWn−1
n ). Notice that the 3-path P1 = 〈(1n), (12n), (132n), (13n)〉 is in CW1

n , and the
3-path P2 = 〈(2n), (1n2), (13n2), (23n)〉 is in CW2

n , and the 3-path P3 = 〈(n − 1, n), (n − 1, n)(12),
(n− 1, n)(13), (n− 1, n)(23)〉 is in CWn−1

n . We connected P1, P2 and P3 to x, and then combine them
with ES(x; 2n− 5). Thus, we can obtain an extended star ES(x; 2n− 2) in CWn at (1), i.e., an extended
star ES(x; 2n− 2) exists in CWn at x.

Theorem 1. Let CWn be an n-dimensional wheel network with n ≥ 6. Then the diagnosability of CWn is
2n− 2, i.e., t(CWn) = 2n− 2 and CWn possesses the strong local diagnosability feature.

Proof. By Lemmas 5 and 8, the local diagnosability of every node x of CWn is 2n− 2. By Lemma 4,
the diagnosability of CWn is 2n− 2, i.e., t(CWn) = 2n− 2. Since the degree of every node x of CWn is



Mathematics 2020, 8, 1818 7 of 16

2n− 2, the local diagnosability of every node is equivalent to its degree in CWn. By Lemma 7, CWn has
the strong local diagnosability feature.

Sometimes, many links in a multiple CPU system may be missing. A missing edge implies
that a link between 2 CPUs that was faulty. The existence of missing edges in a system may affect
the diagnosability of the whole system, and degrees and the local diagnosability of some nodes.
Especially, in a regular graph, nodes that are adjacent to missing edges have lower degrees than others.
Hence, those nodes may not keep the strong local diagnosability feature, and the graph may not keep
the strong local diagnosability feature again. Those new degrees can be used to determine whether the
incomplete graph keeps the strong local diagnosability feature or not. Next, we demonstrate that an
n-dimensional wheel network CWn(n ≥ 6) keeps the strong local diagnosability feature even with up
to 2n− 4 missing edges.

Lemma 9 ([19]). Let BSn be the bubble-sort graph with n ≥ 5, and let Fe be an arbitrary set of missing edges
with |Fe| ≤ 2n− 5. Thus BSn − Fe possesses the strong local diagnosability feature for every node x in BSn

with missing edges Fe, and outcome is ideal, respectful to the number of missing edges.

Lemma 10. Let Fe be an arbitrary set of missing edges with |Fe| ≤ 2n− 4. For every node x in CWn(n ≥ 6),
there is an extended star ES(x; dCWn−Fe(x)) at x.

Proof. By Proposition 4, CWn is node transitive. Therefore, (1) can be chosen as the root of an
extended star ES(x; dCWn−Fe(x)), i.e., x = (1), where (1) is the identity element of the symmetric
group Sn. CWn can be partitioned into n disjoint subgraphs CW1

n , CW2
n , · · · , CWn

n , where each node
u = u1u2 · · · un ∈ V(CWi

n) has a fixed integer i in the last position un for i ∈ [n]. Clearly, CWi
n is

isomorphic to BSn−1, where BSn−1 is the bubble-sort star graph with the dimension n− 1.
Let Fi

e = Fe ∩ E(CWi
n) for 1 ≤ i ≤ n, and F∗ = Fe ∩ (E(CWn)\∑n

i=1 E(CWi
n)), then Fe = F∗ ∪ F1

e ∪
· · · ∪ Fn

e . For convenience, let F̃ = F∗ ∩ {xu, xv, xw}, and denote u = (1n), v = (2n) and w = (n− 1, n)
three outside neighbors of (1). To prove this lemma, we need to discuss whether F̃ is an empty set
or not. When F̃ = ∅, the first step is to discover an extended star ES(x; dCWn

n−Fn
e (x)) in CWn

n − Fn
e ;

the second step is to find a 3-path Pu in CW1
n , a 3-path Pv in CW2

n and a 3-path Pw in CWn−1
n ; the third

step is to connect Pu, Pv and Pw to x. Then, an extended star ES(x; dCWn−Fe(x)) is found in CWn − Fe at
x, (with ES(x; dCWn−Fe(x)) written simply as B). For the case of F̃ 6= ∅, we obtain an extended star to
satisfy the lemma by removing any 4-path that contains any link of F̃ and starts at x from B.

It should be noted that removing a 4-path P from a graph G means removing all nodes and links
of the 4-path except y from a graph G in this paper, where y is the only common node of P and G.

Firstly, we give two claims as follows.

Claim 1. If |Fi
e | ≤ 2n− 7, then there exists an extended star ES(z; dCWi

n−Fi
e
(z)) in CWi

n − Fi
e at z for

z ∈ V(CWi
n). In the extended star ES(z; dCWi

n−Fi
e
(z)), there exist at least (2n− 5− |Fi

e |) and at most
(2n− 5) 4-paths (resp. 3-paths) with just common node z.

Proof. Notice that each CWi
n is isomorphic to BSn−1 and |Fi

e | ≤ 2n− 7 = 2(n− 1)− 5, by Lemma 9,
then there exists an extended star ES(z; dCWi

n−Fi
e
(z)) in CWi

n − Fi
e at z for z ∈ V(CWi

n) and dCWi
n
(z) =

2(n− 1)− 3 = 2n− 5. Therefore, dCWi
n−Fi

e
(z) ≥ 2n− 5− |Fi

e |, and we can find at least (2n− 5− |Fi
e |)

and at most (2n − 5) 4-paths (resp. 3-paths) with just common node z in the ES(z; dCWi
n−Fi

e
(z))

combining the definition of the extended star. In particular, in the extended star ES(z; dCWi
n−Fi

e
(z)),

there exist just (2n− 5− |Fi
e |) 4-paths (resp. 3-paths) with just common node z if and only if each of

edges in Fi
e is incident with z.

Claim 2. If |Fi
e | < 2n− 5, then there exists at least a 3-path in CWi

n − Fi
e starting at z for z ∈ V(CWi

n).
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Proof. By Propositions 1–3, we have that λ(BSn−1) = 2(n − 1) − 3 = 2n − 5. Since each CWi
n is

isomorphic to BSn−1, we have that λ(CWi
n) = 2n− 5. If |Fi

e | < 2n− 5, then CWi
n − Fi

e is connected.
By Proposition 6 and |V(CWi

n)| − |Fi
e | > (n− 1)!− (2n− 5) ≥ 113 for n ≥ 6. So a 3-path starting at z

can be found in ES(z; dCWi
n−Fi

e
(z)) for z ∈ V(CWi

n).

Then we can find the extended star ES(x; dCWn−Fe(x)) by discussing |Fe| and |Fi
e | as follows.

Case 1. |Fn
e | ≤ 2n− 7.

By Claim 1, there exists an extended star ES(x; dCWn
n−Fn

e (x)) = A in CWn
n − Fn

e at x.
Case 1.1. |Fe| < 2n− 5.
Here, |Fi

e | < 2n − 5 for i = 1, 2, n − 1. By Claim 2, there exists a 3-path Pu (resp. Pv, Pw) in
CW1

n − F1
e (resp. CW2

n − F2
e , CWn−1

n − Fn−1
e ). We connect Pu, Pv and Pw to x. Combining them with A,

an extended star ES(x; dCWn−Fe(x)) is found in CWn − Fe at x, (with ES(x; dCWn−Fe(x)) written simply
as B). If F̃ = ∅, then B satisfies the lemma. If F̃ 6= ∅, then we find an extended star to satisfy the
lemma by removing any 4-path that contains any edge of F̃ and starts at x from B.

Case 1.2. |Fe| = 2n− 5.
If each of |F1

e |, |F2
e | and |Fn−1

e | is less than 2n − 5, then we can complete the proof as
Case 1.1. Clearly, at most one of |F1

e |, |F2
e | and |Fn−1

e | is equal to 2n− 5, without loss of generality,
we consider |F1

e | = 2n − 5. Then |F∗| + |F2
e | + |F3

e | + · · · + |Fn−1
e | = 0. We choose a 4-path

Pu = 〈(1n), (1n)(2n), (1n)(2n)(23), (1n)(2n)(23)(34)〉. Clearly, Pu − u is in CW2
n . By Claim 1 and

|F2
e | = |Fn−1

e | = 0, there exist (2n− 5) 3-paths that do not contain a missing edge in CW2
n (resp. CWn−1

n ).
Notice that v /∈ V(Pu), |V(Pu) ∩ V(CW2

n)| = 3 and 2n− 5 > 3 for n ≥ 6, so there exists a 3-path Pv

starting at v in CW2
n such that Pu and Pv have no common node. We can choose a 3-path Pw starting at

w in CWn−1
n . Notice that any two of Pu, Pv and Pw have no common node, and each of Pu, Pv and Pw

does not contain a missing edge. We connect Pu, Pv and Pw to x. Combining them with A, we can get
an extended star ES(x; dCWn−Fe(x)) in CWn − Fe.

Case 1.3. |Fe| = 2n− 4.
If each of |F1

e |, |F2
e | and |Fn−1

e | is less than 2n− 5, then we can complete the proof as Case 1.1.
Clearly, at most one of |F1

e |, |F2
e | and |Fn−1

e | is equal to 2n− 5 or 2n− 4. Without loss of generality,
let |F1

e | = 2n− 4, or 2n− 5. If |F1
e | = 2n− 4, then the proof for |F1

e | = 2n− 4 can be completed as Case
1.2. If |F1

e | = 2n− 5, then |F∗|+ |F2
e |+ |F3

e |+ · · ·+ |Fn−1
e | = 1.

Case 1.3.1. |F2
e |+ |F3

e |+ · · ·+ |Fn−1
e | = 1.

Without loss of generality, let |F2
e | = 1. Here, |F∗|+ |F3

e |+ |F4
e |+ · · ·+ |Fn−1

e | = 0. We choose
a 4-path Pu = 〈(1n), (1n)(n− 1, n), (1n)(n− 1, n)(23), (1n)(n− 1, n)(23)(34)〉. Clearly, Pu − u is in
CWn−1

n . Combining Claim 1, there exist at least (2n− 6) 3-paths in CW2
n − F2

e (resp. CWn−1
n − Fn−1

e ).
Notice that w /∈ V(Pu), |V(Pu) ∩V(CWn−1

n )| = 3 and 2n− 6 > 3 for n ≥ 6, so there exists a 3-path Pw

starting at w in CWn−1
n such that Pu and Pw have no common node. Choose a 3-path Pv starting at v

in CW2
n . Notice that any two of Pu, Pv and Pw have no common node, and each of Pu, Pv and Pw does

not contain a missing edge. We connect Pu, Pv and Pw to x. Combining them with A, we can get an
extended star ES(x; dCWn−Fe(x)) in CWn − Fe.

Case 1.3.2. |F2
e |+ |F3

e |+ · · ·+ |Fn−1
e | = 0.

Notice that |F∗| = 1. If F̃ = ∅, then we choose a 4-path Pu = 〈(1n), (1n)(n − 1, n),
(1n)(n− 1, n)(23), (1n)(n − 1, n)(23)(34)〉. Clearly, Pu − u is in CWn−1

n . By Claim 1 and |F2
e | =

|Fn−1
e | = 0, there exist at least (2n − 5) 3-paths in CW2

n − F2
e (resp. CWn−1

n − Fn−1
e ). Notice that

w /∈ V(Pu), |V(Pu) ∩ V(CWn−1
n )| = 3 and 2n− 5 > 3 for n ≥ 6, so there exists a 3-path Pw starting

at w in CWn−1
n such that Pu and Pw have no common node. Choose a 3-path Pv starting at v in CW2

n .
Notice that any two of Pu, Pv and Pw have no common node, and each of Pu, Pv and Pw does not
contain a missing edge. We connect Pu, Pv and Pw to x. Combining them with A, an extended star
ES(x; dCWn−Fe(x)) is found in CWn − Fe at x, (with ES(x; dCWn−Fe(x)) written simply as B), and B
satisfies the lemma. If F̃ 6= ∅, then we find an extended star to satisfy the lemma by removing any
4-path that contains any link of F̃ and starts at x from B.

Case 2. |Fn
e | = 2n− 6, |Fe| = 2n− 6.
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Here, |F∗|+ |F1
e |+ |F2

e |+ · · ·+ |Fn−1
e | = 0. By Claim 1, we can choose a 3-path Pu (resp. Pv, Pw)

from at least (2n− 5) 3-paths that do not contain a missing edge in CW1
n (resp. CW2

n , CWn−1
n ). Let f

be an arbitrary link of Fn
e , and let F

′
e = Fn

e \{ f }. Then |F′e | = 2n − 7, there exists an extended star
ES(x; dCWn

n−F′e
(x)) in CWn

n − F
′
e by Claim 1. Let A

′
= ES(x; dCWn

n−F′e
(x)).

Case 2.1. f /∈ E(A
′
).

Here, A
′

is one of extended star ES(x; dCWn
n−Fn

e (x)) at x of CWn
n − Fn

e . Notice that |F∗| = 0, so we
can connect Pu, Pv and Pw to x. Combining them with A

′
, an extended star ES(x; dCWn−Fe(x)) can be

obtained in CWn − Fe.
Case 2.2. f ∈ E(A

′
).

Let Px be a 4-path containing f and starting at x in A
′
. A graph is obtained by removing Px from

A
′
, denoted by A.

Case 2.2.1. f is incident with x.
Notice that |F∗| = 0, so we connect Pu, Pv and Pw to x. Combining them with A, an extended star

ES(x; dCWn−Fe(x)) can be obtained in CWn − Fe.
Case 2.2.2. f is not incident with x.
Let Pa be a 3-path containing f and starting at a, and then a is adjacent to x. Next, we consider

a = (1i) for 2 ≤ i ≤ n− 1. Without loss of generality, let a = (12). Notice that |F2
e | = 0, we can choose a

2-path Pa′ = 〈a
′
, a
′
(23), a

′
(23)(34)〉 that does not contain a missing edge in CW2

n , where a
′
= (12)(1n).

By Claim 1 and |Fi
e | = 0, we can find (2n − 5) 3-paths in CWi

n, where i = 1, 2, n − 1. Note that
v /∈ V(Pa′ ), |V(Pa′ ) ∩V(CW2

n)| = 3 and 2n− 5 > 3 for n ≥ 6, so we can find a 3-path Pv in CW2
n that

does not contain a missing edge, and Pv and Pa′ have no common node. At the same time, we can find
a 3-path Pu (resp. Pw) in CW1

n (resp. CWn−1
n ), and connect Pa′ to a to obtain a 3-path Pa. Notice that

each of Pa, Pu, Pv and Pw do not contain a missing edge, and any two of them have no common node.
We connect Pa, Pu, Pv and Pw to x. Combining them with A, an extended star ES(x; dCWn−Fe(x)) can be
got in CWn − Fe. The case of a = (i, i + 1) for 2 ≤ i ≤ n− 2 can be proved similarly.

Case 3. |Fn
e | = 2n− 6, |Fe| = 2n− 5.

Notice that |F∗|+ |F1
e |+ |F2

e |+ · · ·+ |Fn−1
e | = 1. By Claim 1, we can choose a 3-path Pu (resp.

Pv, Pw) from at least (2n− 6) 3-paths that do not contain a missing edge in CW1
n (resp. CW2

n , CWn−1
n ).

Let f be an arbitrary edge of Fn
e , and let F

′
e = Fn

e \{ f }. Then |F′e | = 2n− 7. Combining Claim 1, there
exists an extended star ES(x; dCWn

n−F′e
(x)) in CWn

n − F
′
e . Let A

′
= ES(x; dCWn

n−F′e
(x)).

Case 3.1. f /∈ E(A
′
).

Here, A
′

is one of extended star ES(x; dCWn
n−Fn

e (x)) at x in CWn
n − Fn

e . We connect Pu, Pv and
Pw to x. Combining them with A

′
, an extended star ES(x; dCWn−Fe(x)) is found in CWn − Fe at x,

(with ES(x; dCWn−Fe(x)) written simply as B). Notice that |F∗| ≤ 1. If F̃ = ∅, then B satisfies the
lemma. If F̃ 6= ∅, then we find an extended star to satisfy the lemma by removing any path that
contains any edge of F̃ and starts at x from B.

Case 3.2. f ∈ E(A
′
).

Let Px be a 4-path containing f and starting at x in A
′
. A graph is obtained by removing Px

from A
′
, denoted by A.

Case 3.2.1. f is incident with x.
Connect Pu, Pv and Pw to x. Combining them with A, an extended star ES(x; dCWn−Fe(x)) is found

in CWn − Fe at x, (with ES(x; dCWn−Fe(x)) written simply as B). Notice that |F∗| ≤ 1. If F̃ = ∅, then B
satisfies the lemma. If F̃ 6= ∅, then we find an extended star to satisfy the lemma by removing any
path that contains any edge of F̃ and starts at x from B.

Case 3.2.2. f is not incident with x.
Let Pa be a 3-path starting at a, and let it contain f , then a is adjacent to x.
Case 3.2.2.1. |F∗| = 0.
Here, |F1

e |+ |F2
e |+ · · ·+ |Fn−1

e | = 1. Without loss of generality, let |F1
e | = 1. Now we consider

a = (1i) for 2 ≤ i ≤ n − 1. Without loss of generality, let a = (12). We can choose a 2-path
Pa′ = 〈a

′
, a
′
(23), a

′
(23)(34)〉 in CW2

n , where a
′
= (12)(1n). Notice that |F2

e | = 0, so Pa′ does not contain
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a missing edge. By Claim 1 and |Fi
e | ≤ 1 for i = 1, 2, n − 1, we can find (2n − 6) 3-paths that do

not contain a missing edge in CWi
n, and any two of these 3-paths have no common node except u

(resp. v, w). Notice that v /∈ V(Pa′ ), |V(Pa′ ) ∩V(CW2
n)| = 3 and 2n− 6 > 3 for n ≥ 6, so we can find a

3-path Pv that does not contain a missing edge in CW2
n , and Pv and Pa′ have no common node. We can

find a 3-path Pu (resp. Pw) that does not contain a missing edge in CW1
n (resp. CWn−1

n ) as well. We can
connect Pa′ to a to obtain Pa. Notice that each of Pa, Pu, Pv and Pw does not contain a missing edge,
and any two of them have no common node. We connect Pa, Pu, Pv, Pw to x. Combining them with A,
an extended star ES(x; dCWn−Fe(x)) can be got in CWn − Fe. The case of a = (i, i + 1) for 2 ≤ i ≤ n− 2
can be proved similarly.

Case 3.2.2.2. |F∗| = 1.
Here, |F1

e | + |F2
e | + · · · + |Fn−1

e | = 0. Now we consider a = (1i) for 2 ≤ i ≤ n − 1.
Without loss of generality, let a = (12). We can find Pa′1

= 〈a′1, a
′
1(23), a

′
1(23)(34)〉 in CW2

n and

Pa′2
= 〈a′2, a

′
2(23), a

′
2(23)(34)〉 in CW1

n , where a
′
1 = (12)(1n) and a

′
2 = (12)(2n). Since |F1

e | = |F2
e | = 0,

we can choose a 2-path Pa′ from Pa′1
and Pa′2

that does not contain a missing edge. Notice that Pa′1
and

Pa′2
are in different CWi

n’s and |F∗| = 1, and we can connect Pa′ to a to obtain a 3-path Pa that does not

contain a missing edge. By Claim 1 and |Fi
e | = 0 for i = 1, 2, n− 1, we can find (2n− 5) 3-paths that

do not contain a missing edge in CWi
n, and any two of these 3-paths have no common node except

u (resp. v, w). Notice that u /∈ V(Pa′ ), v /∈ V(Pa′ ) and 2n− 5 > 3 for n ≥ 6. If Pa′ = Pa′2
, then we can

find a 3-path Pu that does not contain a missing edge in CW1
n , and Pu and Pa′ have no common node,

and we can find a 3-path Pv (resp. Pw) that does not contain a missing edge in CW2
n (resp. CWn−1

n ) as
well. If Pa′ = Pa′1

, then we can find a 3-path Pv that does not contain a missing edge in CW2
n , and Pv

and Pa′ have no common node, and we can find a 3-path Pu (resp. Pw) that does not contain a missing
edge in CW1

n (resp. CWn−1
n ) as well. We connect Pa, Pu, Pv, Pw to x. Notice that each of Pa, Pu, Pv and

Pw does not contain a missing edge, and any two of them have no common node. Combining them
with A, an extended star ES(x; dCWn−Fe(x)) is found in CWn − Fe at x, (with ES(x; dCWn−Fe(x)) written
simply as B). Notice that |F∗| = 1. If F̃ = ∅, then B satisfies the lemma. If F̃ 6= ∅, then we find an
extended star to satisfy the lemma by removing any path that contains any link of F̃ and starts at x
from B. The case of a = (i, i + 1) for 2 ≤ i ≤ n− 2 can be proved similarly.

Case 4. |Fn
e | = 2n− 6, |Fe| = 2n− 4.

Here, |F∗|+ |F1
e |+ |F2

e |+ · · ·+ |Fn−1
e | = 2. By Claim 1, we can choose a 3-path Pu (resp. Pv, Pw)

from at least (2n− 7) 3-paths that do not contain a missing edge in CW1
n (resp. CW2

n , CWn−1
n ). Let f

be an arbitrary link of Fn
e , and let F

′
e = Fn

e \{ f }. Then F
′
e = 2n− 7, so there exists an extended star

ES(x; dCWn
n−F′e

(x)) in CWn
n − F

′
e by Claim 1. Let A

′
= ES(x; dCWn

n−F′e
(x)).

Case 4.1. f /∈ E(A
′
).

Here, A
′

is one of extended star ES(x; dCWn
n−Fn

e (x)) at x in CWn
n − Fn

e . We connect Pu, Pv and
Pw to x. Combining them with A

′
, an extended star ES(x; dCWn−Fe(x)) is found in CWn − Fe at x,

(with ES(x; dCWn−Fe(x)) written simply as B). Notice that |F∗| ≤ 2. If F̃ = ∅, then B satisfies the
lemma. If F̃ 6= ∅, then we find an extended star to satisfy the lemma by removing any path that
contains any link of F̃ and starts at x from B.

Case 4.2. f ∈ E(A
′
).

Let Px be a 4-path containing f and starting at x in A
′
. A graph is obtained by removing Px

from A
′
, denoted by A.

Case 4.2.1. f is incident with x.
Connect Pu, Pv and Pw to x. Combining them with A, Then, an extended star ES(x; dCWn−Fe(x)) is

found in CWn − Fe at x, (with ES(x; dCWn−Fe(x)) written simply as B). Notice that |F∗| ≤ 2. If F̃ = ∅,
then B satisfies the lemma. If F̃ 6= ∅, then we find an extended star to satisfy the lemma by removing
any path that contains any link of F̃ and starts at x from B.

Case 4.2.2. f is not incident with x.
Let Pa be a 3-path starting at a and containing f , then a is adjacent to x.
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Case 4.2.2.1. |F∗| = 0.
Here, |F1

e |+ |F2
e |+ · · ·+ |Fn−1

e | = 2.
Case 4.2.2.1.1. |Fi

e | = 2 for some i ∈ {1, 2, · · · , n− 1}.
Without loss of generality, let |F1

e | = 2. We can complete the proof as Case 3.2.2.1.
Case 4.2.2.1.2. |Fi

e | = 1 and |Fj
e | = 1 for some i, j ∈ {1, 2, · · · , n− 1}, i 6= j.

Without loss of generality, let |F1
e | = 1 and |F2

e | = 1. Now we consider a = (1i) for 2 ≤ i ≤ n− 1.
Without loss of generality, let a = (12). We can choose a 2-path Pa′ = 〈a

′
, a
′
(23), a

′
(23)(34)〉 in CWn−1

n ,
where a

′
= (12)(n− 1, n). Notice that |Fn−1

e | = 0, so Pa′ does not contain a missing edge. By Claim 1
and |Fi

e | ≤ 1 for i = 1, 2, n− 1, we can find (2n− 6) 3-paths that do not contain a missing edge in CWi
n,

and any two of these 3-paths have no common node except u (resp. v, w). Notice that w /∈ V(Pa′ ),
and 2n− 6 > 3 for n ≥ 6, so we can find a 3-path Pw that does not contain a missing edge in CWn−1

n ,
and Pw and Pa′ have no common node. We can find a 3-path Pu (resp. Pv) that does not contain a
missing edge in CW1

n (resp. CW2
n). Connect Pa′ to a to obtain a 3-path Pa. Notice that each of Pa, Pu,

Pv and Pw does not contain a missing edge, and any two of them have no common node. We connect Pa,
Pu, Pv, Pw to x. Combining them with A, we can get the extended star ES(x; dCWn−Fe(x)) in CWn − Fe.
The case of a = (i, i + 1) for 2 ≤ i ≤ n− 2 can be proved similarly.

Case 4.2.2.2. |F∗| = 1.
Here, |F1

e |+ |F2
e |+ · · ·+ |Fn−1

e | = 1. Without loss of generality, let |F1
e | = 1. Next, we consider

a = (1i) for 2 ≤ i ≤ n − 1. Without loss of generality, let a = (12). We can find Pa′1
=

〈a′1, a
′
1(23), a

′
1(23)(34)〉 in CW2

n and Pa′2
= 〈a′2, a

′
2(23), a

′
2(23)(34)〉 in CWn−1

n , where a
′
1 = (12)(1n)

and a
′
2 = (12)(n− 1, n). Since |F2

e | = |Fn−1
e | = 0, Pa′1

and Pa′2
do not contain a missing edge. We can

choose a 2-path Pa′ from Pa′1
and Pa′2

. Since Pa′1
and Pa′2

are in different CWi
n’s and |F∗| = 1, connect Pa′

to a to obtain a 3-path Pa that does not contain a missing edge. By Claim 1 and |Fi
e | ≤ 1 for i = 1, 2, n− 1,

we can find (2n− 6) 3-paths that do not contain a missing edge in CWi
n, and any two of these 3-paths

have no common node except u (resp. v, w). Notice that v /∈ V(Pa′ ), w /∈ V(Pa′ ) and 2n− 6 > 3 for
n ≥ 6. If Pa′ = Pa′1

, then we can find a 3-path Pv that does not contain a missing edge in CW2
n , and Pv

and Pa′ have no common node, and we can find a 3-path Pu (resp. Pw) that does not contain a missing
edge in CW1

n (resp. CWn−1
n ) as well. If Pa′ = Pa′2

, then we can find a 3-path Pw that does not contain

a missing edge in CWn−1
n , and Pw and Pa′ have no common node, and we can find a 3-path Pu (resp.

Pv) that does not contain a missing edge in CW1
n (resp. CW2

n) as well. We connect Pa, Pu, Pv, Pw to x.
Notice that each of Pa, Pu, Pv and Pw does not contain a missing edge, and any two of them have no
common node. Combining them with A, an extended star ES(x; dCWn−Fe(x)) is found in CWn − Fe

at x, (with ES(x; dCWn−Fe(x)) written simply as B). Notice that |F∗| = 1. If F̃ = ∅, then B satisfies
the lemma. If F̃ 6= ∅, then we find an extended star to satisfy the lemma by removing any path that
contains any edge of F̃ and starts at x from B. The case of a = (i, i + 1) for 2 ≤ i ≤ n − 2 can be
proved similarly.

Case 4.2.2.3. |F∗| = 2.
Here, |F1

e | + |F2
e | + · · · + |Fn−1

e | = 0. Now we consider a = (1i) for 2 ≤ i ≤ n − 1.
Without loss of generality, let a = (12). We can find Pa′1

= 〈a′1, a
′
1(23), a

′
1(23)(34)〉 in CW1

n , Pa′2
=

〈a′2, a
′
2(23), a

′
2(23)(34)〉 in CW2

n and Pa′3
= 〈a′3, a

′
3(23), a

′
3(23)(34)〉 in CWn−1

n , where a
′
1 = (12)(2n),

a
′
2 = (12)(1n) and a

′
3 = (12)(n− 1, n). Since |F1

e | = |F2
e | = |Fn−1

e | = 0, then Pa′1
, Pa′2

and Pa′3
do not

contain a missing edge. Notice that Pa′1
, Pa′2

and Pa′3
are in different CWi

n’s and |F∗| = 2, then we

can choose a 2-path Pa′ from Pa′1
, Pa′2

and Pa′3
, and attach the 2-path Pa′ to a to obtain a 3-path Pa that

does not contain a missing edge. By Claim 1 and |Fi
e | = 0 for i = 1, 2, n− 1, we can find (2n− 5)

3-paths that do not contain a missing edge in CWi
n, and any two of these 3-paths have no common

node except u (resp. v, w). Notice that u, v, w /∈ V(Pa′ ), and 2n− 5 > 3 for n ≥ 6. If Pa′ = Pa′1
, then

we can find a 3-path Pu that does not contain a missing edge in CW1
n such that Pu and Pa′ have no
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common node, and we can find a 3-path Pv (resp. Pw) that does not contain a missing edge in CW2
n

(resp. CWn−1
n ) as well. If Pa′ = Pa′2

, then we can find a 3-path Pv in CW2
n that does not contain a

missing edge, and Pv and Pa′ have no common node, and we can find a 3-path Pu (resp. Pw) that does
not contain a missing edge in CW1

n (resp. CWn−1
n ) as well. If Pa′ = Pa′3

, then we can find a 3-path Pw

in CWn−1
n that does not contain a missing edge, and Pw and Pa′ have no common node, and we can

find a 3-path Pu (resp. Pv) that does not contain a missing edge in CW1
n (resp. CW2

n). Notice that each
of Pa, Pu, Pv and Pw does not contain a missing edge, and any two of them have no common node.
We connect Pa, Pu, Pv, Pw to x. Combining them with A, an extended star ES(x; dCWn−Fe(x)) is found
in CWn − Fe at x, (with ES(x; dCWn−Fe(x)) written simply as B). Notice that |F∗| = 2. If F̃ = ∅, then B
satisfies the lemma. If F̃ 6= ∅, then we find an extended star to satisfy the lemma by removing any
path that contains any link of F̃ and starts at x from B. The case of a = (i, i + 1) for 2 ≤ i ≤ n− 2 can
be proved similarly.

Case 5. |Fn
e | = 2n− 5, |Fe| = 2n− 5.

Here, |F∗| + |F1
e | + |F2

e | + · · · + |Fn−1
e | = 0. By Claim 1, we can choose a 3-path Pu (resp. Pv,

Pw) from at least (2n− 5) 3-paths that do not contain a missing edge in CW1
n (resp. CW2

n , CWn−1
n ).

Let f , f
′

be any two elements of Fn
e and F

′
e = Fn

e \{ f , f
′}. Then |F′e | = 2n− 7, so there exists an extended

star ES(x; dCWn
n−F′e

(x)) in CWn
n − F

′
e by Claim 1. Let A

′
= ES(x; dCWn

n−F′e
(x)).

Case 5.1. Neither f nor f ′ belongs to A
′
.

Here, A
′

is one of extended star ES(x; dCWn
n−Fn

e (x)) at x in CWn
n − Fn

e . Notice that |F∗| = 0, so we
connect Pu, Pv and Pw to x. Combining them with A

′
, we can get an extended star ES(x; dCWn−Fe(x))

in CWn − Fe.
Case 5.2. A

′
contains f or f ′.

Without loss of generality, we assume that A
′

contains only f . Let Px be a 4-path containing f
and starting at x in A

′
. A graph is obtained by removing Px from A

′
, denoted by A. Next we discuss

whether f is incident with x or not. If f is incident with x, then it can be proved as Case 2.2.1. If f is
not incident with x, then it can be proved as Case 2.2.2.

Case 5.3. A
′

contains f and f ′.
Case 5.3.1. f and f

′
are both incident with x.

Let Px (resp. Px′ ) be a 4-path containing f (resp. f
′
) and starting at x in A

′
. A graph is obtained by

removing Px and Px′ from A
′
, denoted by A. Notice that |F∗| = 0, so we connect Pu, Pv and Pw to x.

Combining them with A, we can get an extended star ES(x; dCWn−Fe(x)) in CWn − Fe.
Case 5.3.2. Just one of f and f

′
is incident with x.

Without loss of generality, assumes that only f
′

is incident with x. Let Px (resp. Px′ ) be a 4-path
containing f (resp. f

′
) and starting at x in A

′
. A graph is obtained by removing Px and Px′ from A

′
,

denoted by A. Let Pa be a 3-path containing f and starting at a, and then a is adjacent to x. The next
proof can be completed as Case 2.2.2.

Case 5.3.3. Neither f nor f
′

is incident with x.
Next we discuss whether f and f

′
belong to the same path or not.

Case 5.3.3.1. f and f
′

belong to the same path in A
′
.

Then we can complete the proof as Case 2.2.2.
Case 5.3.3.2. f and f

′
belong to different paths in A

′
.

Let Pa (resp. Pb) be a 3-path starting at a (resp. b), and it contains f (resp. f
′
). Then a and b are

both incident with x. Notice that |Fn
e | = 2n− 5, |Fe| = 2n− 5. It is easy to find a 3-path Pa′ (resp. Pb′ )

that does not contain a missing edge in CW1
n (resp. CW2

n), and Pa′ (resp. Pb′ ) and Pu (resp. Pv) have
no common vertices. Connecting Pa′ (resp. Pb′ ) to a (resp. b), we can obtain a 3-path Pa (resp. Pb).
Notice that |F∗| = 0, so we connect Pa, Pb, Pu, Pv and Pw to x. Combining them with A, we can get an
extended star ES(x; dCWn−Fe(x)) in CWn − Fe.

Case 6. |Fn
e | = 2n− 5, |Fe| = 2n− 4.
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Here, |F∗| + |F1
e | + |F2

e | + · · · + |Fn−1
e | = 1. By Claim 1, we can choose a 3-path Pu (resp. Pv,

Pw) from at least (2n− 6) 3-paths that do not contain a missing edge in CW1
n (resp. CW2

n , CWn−1
n ).

Let f , f
′

be any two elements of Fn
e and F

′
e = Fn

e \{ f , f
′}. Then |F′e | = 2n− 7, there exists an extended

star ES(x; dCWn
n−F′e

(x)) in CWn
n − F

′
e by Claim 1. Let A

′
= ES(x; dCWn

n−F′e
(x)).

Case 6.1. Neither f nor f
′

belongs to A
′
.

Here, A
′

is one of extended star ES(x; dCWn
n−Fn

e (x)) at x in CWn
n − Fn

e . Connect Pu, Pv and
Pw to x. Combining them with A

′
, an extended star ES(x; dCWn−Fe(x)) is found in CWn − Fe at x,

(with ES(x; dCWn−Fe(x)) written simply as B). Notice that |F∗| ≤ 1. If F̃ = ∅, then B satisfies the
lemma. If F̃ 6= ∅, then we find an extended star to satisfy the lemma by removing any path that
contains any link of F̃ and starts at x from B.

Case 6.2. A
′

contains f or f
′
.

Without loss of generality, we suppose that A
′

contains only f . Let Px be a 4-path containing f
and starting at x in A

′
. A graph is obtained by removing Px from A

′
, denoted by A. Next we consider

whether f is incident with x or not. If f is incident with x, then the next proof can be completed as
Case 3.2.1. If f is not incident with x, then the next proof can be completed as Case 3.2.2.

Case 6.3. A
′

contains f and f
′
.

Case 6.3.1. f and f
′

are both incident with x.
Let Px (resp. Px′ ) be a 4-path containing f (resp. f

′
) and starting at x in A

′
. A graph is obtained

by removing Px and Px′ from A
′
, denoted by A. Connect Pu, Pv and Pw to x. Combining them with A,

an extended star ES(x; dCWn−Fe(x)) at x is found in CWn − Fe, (with ES(x; dCWn−Fe(x)) written simply
as B). Notice that |F∗| ≤ 1. If F̃ = ∅, then B satisfies the lemma. If F̃ 6= ∅, then we find an extended
star to satisfy the lemma by removing any path that contains any link of F̃ and starts at x from B.

Case 6.3.2. Just one of f and f
′

is incident with x.
Without loss of generality, assume that only f

′
is incident with x. Let Px (resp. Px′ ) be a 4-path

containing f (resp. f
′
) and starting at x in A

′
. A graph is obtained by removing Px and Px′ from A

′
,

denoted by A. Let Pa be a 3-path containing f and starting at a, and then a is adjacent to x. We can
complete the proof as in Case 3.2.2.

Case 6.3.3. Neither f nor f
′

is incident with x.
Then we consider whether f and f

′
belong to the same path or not.

Case 6.3.3.1. f and f
′

belong to the same path in A
′
.

Then we can complete the proof as in Case 3.2.2.
Case 6.3.3.2. f and f

′
belong to different paths in A

′
.

Let Pa (resp. Pb) be a 3-path starting at a (resp. b), and it contains f (resp. f
′
). Then a and b

are both incident with x. Notice that |Fn
e | = 2n− 5, |Fe| = 2n− 4, then |F∗| ≤ 1. Note that |Fi

e | ≤ 1,
i = 1, 2, n− 1. There is a 2-path Pa′ (resp. Pb′ ) that do not contain a missing edge in CW1

n , or CW2
n or

CWn−1
n , and the edge aa

′
/∈ F (resp. bb

′
/∈ F), where a

′
(resp. b

′
) is an outside neighbor of a (resp. b).

Connecting Pa′ (resp. Pb′ ) to a (resp. b), we can obtain a 3-path Pa (resp. Pb). Connect Pa, Pb, Pu, Pv and
Pw to x. Combining them with A, we can get an extended star ES(x; dCWn−Fe(x)) in CWn − Fe.

Case 7. |Fn
e | = 2n− 4, |Fe| = 2n− 4.

Here, |F∗|+ |F1
e |+ |F2

e |+ · · ·+ |Fn−1
e | = 0. By Claim 1, we can choose a 3-path Pu (resp. Pv, Pw)

from at least (2n − 5) 3-paths that do not contain a missing edge in CW1
n (resp. CW2

n , CWn−1
n ).

Let f , f
′
, f
′′

be any three elements of Fn
e and F

′
e = Fn

e \{ f , f
′
, f
′′}. Then |F′e | = 2n − 7, by Claim 1,

there exists an extended star ES(x; dCWn
n−F′e

(x)) in CWn
n − F

′
e . Let A

′
= ES(x; dCWn

n−F′e
(x)).

Case 7.1. None of f , f
′

and f
′′

belongs to A
′
.

We can complete the proof as in Case 5.1.
Case 7.2. A

′
contains just one of f , f

′
and f

′′
.

We can complete the proof as in Case 5.2.
Case 7.3. A

′
contains just two of f , f

′
and f

′′
.

We can complete the proof as in Case 5.3.
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Case 7.4. A
′

contains f , f
′

and f
′′
.

Case 7.4.1. f , f
′

and f
′′

are all incident with x.
Let Px (resp. Px′ , Px′′ ) be a 4-path containing f (resp. f

′
, f
′′
) and starting at x in A

′
. A graph is

obtained by removing Px, Px′ and Px′′ from A
′
, denoted by A. Notice that |F∗| = 0, so we connect Pu,

Pv and Pw to x. Combining them with A, we can get an extended star ES(x; dCWn−Fe(x)) in CWn − Fe.
Case 7.4.2. Just two of f , f

′
and f

′′
are incident with x.

Without loss of generality, assumes that f
′

and f
′′

are incident with x. Let Px (resp. Px′ , Px′′ ) be a
4-path containing f (resp. f

′
, f
′′
) and starting at x in A

′
. A graph is obtained by removing Px, Px′ and

Px′′ from A
′
, denoted by A. Let Pa be a 3-path containing f and starting at a, and then a is adjacent to

x. The next proof can be completed as in Case 5.3.2.
Case 7.4.3. Just one of f , f

′
and f

′′
is incident with x.

Without loss of generality, assumes that only f
′

is incident with x. Let Px (resp. Px′ , Px′′ ) be a
4-path containing f (resp. f

′
, f
′′
) and starting at x in A

′
. A graph is obtained by removing Px, Px′ and

Px′′ from A
′
, denoted by A. Let Pa be a 3-path containing f and starting at a, and then a is adjacent to

x. The next proof can be completed as in Case 5.3.3.
Case 7.4.4. None of f , f

′
and f

′′
is incident with x.

Then we consider whether f , f
′

and f
′′

belong to the same path or not.
Case 7.4.4.1. f , f

′
and f

′′
belong to the same path in A

′
.

Then we can complete the proof as in Case 2.2.2.
Case 7.4.4.2. f , f

′
and f

′′
belong to different paths in A

′
.

Case 7.4.4.2.1. Just two of f , f
′

and f
′′

belong to a path in A
′
.

Without loss of generality, assumes Pa is a 3-path containing f and f
′′

and starting at a, Pb is a
3-path containing f

′
and starting at b. Then a and b are both incident with x. Then we can complete

the proof as in Case 5.3.3.
Case 7.4.4.2.2. Each of f , f

′
and f

′′
belong to a path in A

′
separately. Let Pa (resp. Pb, Pc) be a

3-path starting at a (resp. b, c), and it contains f (resp. f
′
, f
′′
). Then a, b and c are all incident with x.

Notice that |Fn
e | = 2n− 4, |Fe| = 2n− 4. It is easy to find a 3-path Pa′ (resp. Pb′ , Pc′ ) that does contain

a missing edge in CW1
n (resp. CW2

n , CWn−1
n ), and Pa′ (resp. Pb′ , Pc′ ) and Pu (resp. Pv, Pw) have no

common vertices. Connecting Pa′ (resp. Pb′ , Pc′ ) to a (resp. b, c), we can obtain a 3-path Pa (resp. Pb, Pc).
Notice that |F∗| = 0, so we connect Pa, Pb, Pc, Pu, Pv and Pw to x. Combining them with A

′
, we can get

an extended star ES(x; dCWn−Fe(x)) in CWn − Fe.

Theorem 2. Let CWn be the n-dimensional wheel network with n ≥ 6, and let Fe be an arbitrary set of missing
edges with |Fe| ≤ 2n− 4. Then the diagnosability of CWn − Fe has the strong local diagnosability feature for
each node x in CWn with missing edges Fe, and the result is optimal with respect to the number of missing edges.

Proof. By Lemmas 5 and 10, the local diagnosability of each node x in CWn − Fe is equivalent to its
remaining degree for n ≥ 6 and |Fe| ≤ 2n− 4. By Lemma 6, each node in CWn− Fe possesses the strong
local diagnosability feature. By Lemma 7, CWn − Fe possesses the strong local diagnosability feature.

Now a sample is provided to demonstrate that a wheel network CWn may not keep the strong
diagnosability feature if there are 2n− 3 missing edges F. For an arbitrary node x in CWn, x is labeled
as a permutation on [n]. Suppose that there are 2n− 3 missing edges F in CWn that are incident to x.
Then, the remaining degree node adjacent to x in this incomplete wheel network with missing edges
is 1. Let y be the just node adjacent to x. Let F1 be the set of nodes ({y} ∪N(y))\{x}with |F1| = 2n− 2,
and F2 be the set of nodes N(y) with |F2| = 2n− 2. Notice no link exist between V(CWn − F)\(F1 ∪ F2)

and F14F2. Then the node set pair (F1, F2) is not satisfied with the conditions (1)–(3) in Lemma 6,
and hence CWn − Fe is not (2n− 2)-local diagnosable at y under the MM∗ model. Because the local
diagnosability of y (which is less than 2n − 2) is not equivalent to its degree (which is 2n − 2) in
this incomplete wheel network CWn, the node y has no strong local diagnosability feature anymore.
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Thus, an incomplete wheel network CWn − F with 2n− 3 missing edges cannot be guaranteed to have
the strong local diagnosability feature.

5. Conclusions

We considered the diagnosis of an n-dimensional wheel network under the MM∗ model.
Succeeding the notion of local diagnosability and the extended star structure suggested by Hsu
and Tan [14], the diagnosability of a system may be derived straightforwardly. From the definition of
the strong local diagnosability feature [14], we showed that an n-dimensional wheel network possesses
the feature, and it preserves this strong feature even with up to 2n− 4 missing edges in it. Consequently,
the diagnosability of a wheel network with arbitrary missing edges can be obtained as the minimum
value among the remaining degree of each CPU, if the cardinality of the set of missing edges is not
larger than 2n− 4.
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