
mathematics

Article

Fixed Point Results of Expansive Mappings in
Metric Spaces
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Abstract: In this study, we introduce the concept of θ-expansive mapping in ordered metric spaces
and prove a fixed point theorem for such mappings. We give some fixed point results for θ-expansive
mapping in metric spaces and prove fixed point theorems for such mappings. These results extend
the main results of many comparable results from the current literature. We also obtain a common
fixed point theorem of two weakly compatible mappings in metric spaces. Finally, the examples are
presented to support the new theorems and results proved.
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1. Introduction

The study of expansive mappings is a very interesting research area in the fixed point theory.
Wang et al. [1] proved some fixed point theorems for expansion mappings, which correspond to some
contractive mappings in metric spaces. Rhoades [2] and Taniguchi [3] generalized the results of Wang
for pair of mappings. Thereafter, several authors obtained many fixed point theorems for expansive
mappings. For more details see [4–8]. Sessa [9] defined weak commutativity and proved a common
fixed point theorem for weakly commuting maps. Further, Jungck [10] introduced the concept of
weakly compatible maps by giving the notion of compatibility.

Definition 1 ([9]). Let A and B be self mappings of a set Y. A point y P Y is called a coincidence point of A
and B iff Ay “ By. In this case, s “ Ay “ By is called a point of coincidence of A and B.

Definition 2 ([10]). Two self mappings A and B of a metric space pY, dq are said to be weakly compatible iff
there is a point y P Y which is a coincidence point of A and B at which A and B commute; that is, ABy “ BAy.

Theorem 1 ([1]). Let pY, dq be a complete metric space and A a self mapping on Y. If A is surjective and satisfies

dpAx, Azq ě qdpx, zq (1)

for all x, z P Y, with q ą 1 then A has a unique fixed point in Y.

Ran and Reurings [11] proved a fixed point theorem on a partially ordered metric space as follow:
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Theorem 2 ([11]). Let pY, ĺq be an ordered set and d be a metric on Y such that pY, dq is a complete metric
space. Let A : Y Ñ Y be a nondecreasing mapping such that there exists x0 P Y with x0 ĺ Ax0. Suppose that
there exists L P r0, 1q such that

dpAx, Ayq ď Ldpx, yq @x, y P Y with x ĺ y.

If A is continuous then has a fixed point in Y.

Then several authors considered the problem of the existence of a fixed point for contraction type
operators on partially ordered sets. Some of these works may be noted in [12–16].

Lately, Jleli and Samet [17] introduced a new type of contractions called θ-contraction. They denote
by Θ the set of functions θ : p0,8q Ñ p1,8q satisfying the following conditions:

(Θ1) θ is non-decreasing;
(Θ2) for each sequence ttnu Ă p0,8q, limnÑ8 θptnq “ 1 if and only if limnÑ8 tn “ 0`;
(Θ3) there exist r P p0, 1q and l P p0,8s such that limtÑ0`

θptq´1
tr “ l .

Lemma 1 ([7]). Let pY, dq be a metric spaces and A : Y Ñ Y a surjective mapping. Then, A has a right inverse
mapping i.e., a mapping A˚ : Y Ñ Y, such that A ˝ A˚ “ IA.

Let pY, ĺq be an ordered set and d be a metric on Y. Then we say that the tripled pY, ĺ, dq is an
ordered metric space. We will say that Y is regular, if the ordered metric spaces pY, ĺ, dq provides the
following condition:

If txnu Ď Y is an increasing sequence with xn Ñ a P Y, then xn ĺ a for all n P N.
In Section 1, some basic definitions, lemma, and theorems in the literature that will be used later in

the paper are given. In Section 2, following by Wang et al. [1], Jungck [10], Sessa [9], Jleli and Samet [17],
we introduce a new approach to expansion mappings in fixed point theory and establish some fixed
point theorems. We show illustrative examples where the theorems are applicable. In Section 3,
we give conclusions.

2. Main Results

In this section, we introduce a fixed point theorem for θ-expansive mapping on ordered metric
spaces. Then, we give some fixed point results for θ-expansive mappings in metric spaces. We also
obtain a common fixed point theorem of two weakly compatible mappings in metric spaces. First, let us
start with the definition of θ-expansive mappings on ordered metric spaces.

Definition 3. Let pY, ĺ, dq be an ordered metric space. A mapping A : Y Ñ Y is said to be surjective
θ-expansive if there exists θ P Θ and η ą 1 such that

θpdpAx, Azqq ě rθpdpx, zqqsη , (2)

for all px, zq P M, where

M “ tpx, zq P YˆY : x ĺ z, dpAx, Azq ą 0u. (3)

Theorem 3. Let pY, ĺ, dq be an ordered complete metric space, A : Y Ñ Y a surjective θ-expansive mapping
and A˚ a right inverse of A such that A˚ is ĺ increasing. Suppose that there exists x0 P Y such that x0 ĺ A˚x0.
If A is continuous or Y is regular, then A has a fixed point.

Proof. Let x0 be an arbitrary point in Y. Since A is surjective, there exists x1 P Y such that x0 “ Ax1.
In general, having chosen xn P Y, we choose xn`1 P Y such that xn “ Axn`1 for all n “ 0, 1, 2, ... If there
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exists n P N such that xn “ xn`1, then xn`1 is a fixed point of A. Now assume that xn ‰ xn`1 for all
n P N. Since x0 ĺ A˚x0 and A˚ is ĺ increasing, we obtain

x0 ĺ x1 ĺ x3 ĺ ¨ ¨ ¨ ĺ xn ĺ . . .

Now since xn´1 ĺ xn and dpxn´1, xnq ą 0 for all n P N, then pxn´1, xnq P M and so, from (2)
we obtain

θpdpxn´1, xnqq “ θpdpAxn, Axn`1qq ě rθpdpxn, xn`1qqs
η (4)

for all n P N. Letting n Ñ8 in (4), we get

θpdpxn´1, xnqq ě rθpdpxn, xn`1qqs
η . (5)

Let s “ 1
η . Since η ą 1, we obtain s ă 1. Therefore since xn´2 ĺ xn´1 and dpxn´2, xn´1q ą 0 for all

n P N, we have

θpdpxn, xn`1qq ďrθpdpxn´1, xnqqs
s

ďrθpdpxn´2, xn´1qqs
s2

...

ďrθpdpx0, x1qqs
sn

. (6)

Letting n Ñ8 in the above inequality, we obtain

lim
nÑ8

θpdpxn, xn`1qq “ 1, (7)

which implies from (Θ2) that
lim

nÑ8
dpxn, xn`1q “ 0`.

Let
kn “ dpxn, xn`1q.

From condition (Θ3), there exists c P p0, 1q and G P p0,8s such that

lim
nÑ8

θpknq ´ 1
pknqc

“ G. (8)

Suppose that G ă 8. In this case, let J “ G
2 ą 0. From the definition of the limit, there exists

n0 P N such that
ˇ

ˇ

ˇ

ˇ

θpknq ´ 1
pknqc

´ G
ˇ

ˇ

ˇ

ˇ

ď J, for all n ě n0.

This implies that

θpknq ´ 1
pknqc

ě G´ J “ J, for all n ě n0.

Then for all n ě n0, we obtain

npknq
c ď Hnrθpknq ´ 1s,
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where H “ 1
J . Now assume that G “ 8. Let J ą 0 be an arbitrary positive number. From the definition

of the limit, there exists n0 P N such that

θpknq ´ 1
pknqc

ě J,

for all n ě n0. This implies that for all n ě n0,

npknq
c ď Hnrθpknq ´ 1s,

where H “ 1
J . Therefore, in all cases, there exists H ą 0 and n0 P N such that, for all n ě n0,

npknq
c ď Hnrθpknq ´ 1s.

Using (6), we have

npknq
c ď Hnprθpk0qs

sn
´ 1q, (9)

for all n ě n0. Letting n Ñ8 in (9), we obtain

lim
nÑ8

npknq
c “ 0.

Therefore, there exists n1 P N such that

kn ď
1

n
1
c

, for all n ě n1. (10)

In order to show that txnu is a Cauchy sequence consider n, m P N such that m ą n ě n1. Using the
triangular inequality for the metric and from (10), we have

dpxn, xmq ďdpxn, xn`1q ` dpxn`1, xn`2q ` ¨ ¨ ¨ ` dpxm´1, xmq

ďkn ` kn`1 ` ¨ ¨ ¨ ` km´1

ď

m´1
ÿ

i“n

1

i
1
c
ď

8
ÿ

i“n

1

i
1
c

.

By the convergence of the series
ř8

i“n
1

i
1
c

, in the limit n Ñ 8, we get dpxn, xmq Ñ 0. This yields

that txnu is a Cauchy sequence in pY, dq. Since pY, dq is a complete metric space, the sequence txnu

converges to some point a P Y, that is,

lim
nÑ8

xn “ a. (11)

Now we shall show that a is a fixed point of A. If A is continuous, then we have

a “ lim
nÑ8

xn “ Ap lim
nÑ8

xn`1q “ Aa.

Therefore a “ Aa, that is, a is a fixed point of A. Now we suppose that Y is regular, then xn ĺ a
for all n P N. We consider the following two cases:

Case 1. If there exists b P N for which xb “ a, then, we obtain

A˚a “ A˚xb “ xb`1 ĺ a.

We also get
a “ xb ĺ xb`1 “ A˚xb “ A˚a,
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then we obtain, a “ A˚a.
Case 2. Suppose that xn ‰ a for every n P N and dpa, A˚aq ą 0. Therefore, from (2) we obtain

θpdpxn, aqq “ θpdpAxn`1, AA˚aqq ě rθpdpxn`1, A˚aqqsη ě θpdpxn`1, A˚aqq,

which yields
dpxn, aq ą dpxn`1, A˚aq.

Taking limit as n Ñ8, we obtain that

dpa, A˚aq ă dpa, aq,

a contradiction. Thus, conclude that dpa, A˚aq “ 0, that is, a “ A˚a. Therefore, we obtain
Aa “ ApA˚aq “ a. This concludes the proof.

Remark 1. In Theorem 3, if every pair of elements has a lower bound and upper bound, then the fixed point of
A is unique. To see this, it is sufficient to show that for every x P Y, limnÑ8 Anx “ a where a is the fixed point
of A such that limnÑ8 Anx0 “ a. Let x0 P Y. So, here two cases arise.

Case 1. If x ĺ x0 or x0 ĺ x, then Anx ĺ Anx0 or Anx0 ĺ Anx for all n P N. If An0 x “ An0 x0 for
some n0 P N then, Anx Ñ a. Afterwards, let Anx ‰ Anx0 for all n P N then, dpAnx, Anx0q ą 0 and so
pAnx, Anx0q P M for all n P N. Accordingly, from (2), we obtain

θpdpAnx, Anx0qq ě rθpdpAn`1x, An`1x0qqs
η . (12)

Let s “ 1
η . Since η ą 1, we obtain s ă 1. Subsequently, we have

θpdpAnx, Anx0qq ď rθpdpx, x0qqs
sn

. (13)

Letting n Ñ8 in (13) we obtain

lim
nÑ8

θpdpAnx, Anx0qq “ 1. (14)

Taking into account (Θ2), we have limnÑ8 dpAnx, Anx0q “ 0`. Thus we obtain limnÑ8 Anx “

limnÑ8 Anx0 “ a.
Case 2. If x ł x0 or x0 ł x, then, from every pair of elements has a lower bound and upper bound that

there exists x1, x2 P Y such that x2 ĺ x ĺ x1 and x2 ĺ x0 ĺ x1. Thus, as in the case 1 we show that

lim
nÑ8

Anx1 “ lim
nÑ8

Anx2 “ lim
nÑ8

Anx “ lim
nÑ8

Anx0 “ a.

Example 1. Let Y “ txr “
1

r`1 , r P Nu Y t0u be endowed with the usual metric d. Define an order relation
ĺ on Y as

x ĺ z ô rx “ z or x ď z with x, z P Ys,

whereď is usual order. Clearly, pY, ĺ, dq be an ordered complete metric spaces. Define a mapping A : Y Ñ Y by

Ax “

$

&

%

1
r , x “ xr

0, x “ 0.
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Then, A˚ is ĺ increasing. We claim that A is a θ-expanding mapping with θppq “ epep
and η “ 3

2 ą 1.
To see this, we have to show that A satisfies the condition (2). Then we obtain

edpAx,AzqedpAx,Azq
ě eηdpx,zqedpx,zq

for η “ 3
2 . Let x “ xr, z “ xr`1. So, we obtain

dpAx, Azq
dpx, zq

edpAx,Azq´dpx,zq “
r` 2

r
e

2
rpr`1qpr`2q ě η.

Thus, Theorem 3 is satisfied with η “ 3
2 ą 1. Therefore, implies that A has a unique fixed point.

On the other hand, it is not an expansive mapping in metric spaces. To see this, we obtain

lim
rÑ8

dpAx, Azq
dpx, zq

“ lim
rÑ8

r` 2
r

“ 1.

Then

dpAx, Azq ě qdpx, zq (15)

does not hold for q ą 1. Hence the condition of Theorem 1 is not satisfied. This example shows that the new class
of θ-expanding mapping is not included in expanding mapping known in literature.

Example 2. Let Y “ p0,8q be endowed with the usual metric d. Define a mapping A : Y Ñ Y by

Ax “

$

&

%

x
2 , 0 ă x ď 1

2x´ 3
2 , 1 ď x ă 8.

Then, A is a surjective and having a right inverse A˚ given by

A˚x “

$

&

%

2x, 0 ă x ď 1
2

x
2 `

3
4 , 1

2 ď x ă 8.

Define an order relation ĺ on Y as x ĺ z if and only if either x “ z or 1 ď x ď z with x, z P Q, where
ď is usual order. Clearly, pY, ĺ, dq is an ordered complete metric space. Then, A˚ is ĺ increasing. A is a
θ-expanding mapping with θppq “ ep and η “ 3

2 . Thus, the hypotheses of Theorem 3 is satisfied and A has a
fixed point (namely x “ 3

2 q.

Now, we give some fixed point results for θ-expansive mapping in metric spaces and prove
fixed point theorems for such mappings. Using the same argument as in the proof of the Theorem 3,
we prove the following result.

Corollary 1. Let pY, dq be a complete metric space and A : Y Ñ Y a continuous surjective θ-expansive
mapping. If there exists a constant η ą 1 such that

θpdpAx, Azqq ě rθpdpx, zqqsη (16)

for all x, z P Y, then A has a unique fixed point in Y.

Note that Θ contains a large class of functions. For example, if we take

θpwq “ 2´
2
π

arctan
ˆ

1
wλ

˙

,



Mathematics 2020, 8, 1800 7 of 10

where λ P p0, 1q, w ą 0 and from Corollary 1 we obtain the following result.

Corollary 2. Let pY, dq be a complete metric space and A be a self mapping on Y. If there exists λ P p0, 1q and
a constant η ą 1 such that

2´
2
π

arctan
ˆ

1
dpAx, Azqλ

˙

ě

„

2´
2
π

arctan
ˆ

1
dpx, zqλ

˙η

(17)

for all x, z P Y with Ax ‰ Az, then A has a fixed point.

Theorem 4. Let pY, dq be a complete metric space and A : Y Ñ Y a continuous surjective θ-expansive mapping.
If there exists a constant η ą 1 such that

θpdpAx, Azqq ě rθpmintdpx, zq, dpx, Axq, dpz, Azquqsη (18)

for all x, z P Y, then A has a fixed point.

Proof. Let x0 be an arbitrary point in Y. Since A is surjective, there exists x1 P Y such that x0 “ Ax1.
In general, having chosen xn P Y, we choose xn`1 P Y such that xn “ Axn`1 for all n “ 0, 1, 2, ... If there
exists n P N such that xn “ xn`1, then xn`1 is a fixed point of A. Now assume that xn ‰ xn`1 for all
n P N. Then from (18) for x “ xn and z “ xn`1 we obtain

θpdpxn´1, xnqq “ θpdpAxn, Axn`1qq ě rθpmintdpxn, xn`1q, dpxn, Axnq, dpxn`1, Axn`1quqqs
η , (19)

where mintdpxn, xn`1q, dpxn, Axnq, dpxn`1, Axn`1qu “ mintdpxn, xn`1q, dpxn, xn´1qu.
Thus, here two cases arise.

Case 1. Let mintdpxn, xn`1q, dpxn, xn´1qu “ dpxn, xn´1q. So, from (18),

θpdpxn´1, xnqq ě rθpdpxn´1, xnqqqs
η ,

which is a contradiction, since η ą 0, so, mintdpxn, xn`1q, dpxn, xn´1qu “ dpxn, xn`1q.
Then, by using (18), we obtain

θpdpxn´1, xnqq ě rθpdpxn, xn`1qqqs
η .

Let s “ 1
η . Since η ą 1, we obtain s ă 1. The rest of the proof can be completed as in the proof of

Theorem 3.

Theorem 5. Let pY, dq be a complete metric space. Let A and B be weakly compatible self mappings of Y and
BpYq Ď ApYq. Suppose that θ P Θ and there exists a constant η ą 1 such that

θpdpAx, Azqq ě rθpdpBx, Bzqqsη , (20)

for all x, z P Y. If one of the subspaces BpYq or ApYq is complete, then A and B have a unique common fixed
point in Y.



Mathematics 2020, 8, 1800 8 of 10

Proof. Let x0 be an arbitrary point in Y. Since BpYq Ď ApYq, choose x1 P Y such that ρ1 “ Ax1 “ Bx0.
In general, choose xn`1 such that ρn`1 “ Axn`1 “ Bxn. Let s “ 1

η . Since η ą 1 we obtain s ă 1.
Then from (20) we obtain

θpdpρn`1, ρn`2qq “ θpdpBxn, Bxn`1qq ď rθpdpAxn, Axn`1qqs
s

“ rθpdpBxn´1, Bxnqqs
s

“ rθpdpρn, ρn`1qqs
s.

Therefore, it can be seen that the pρnq is Cauchy with similar operations in Theorem 3.
Since BpYq Ď ApYq and BpYq or ApYq is a complete subspace of Y then from Corollary 1, pApYq, dq is
complete and so, the sequence ρn “ Bxn´1 Ď ApYq is converges in the metric spaces pApYq, dq, that is,
there exists a w in ApYq such that limnÑ8 dpρn, wq “ 0.

So, we can find k P Y such that Ak “ w. Accordingly, from Corollary 1, we have

dpAk, wq “ dpw, wq “ lim
nÑ8

dpρn, wq “ lim
nÑ8

dpρn, ρmq.

This yields that pρnq is a Cauchy sequence in the metric spaces pApYq, dq.
Now, we show that Bk “ w. According to (20) we obtain

θpdpBxn´1, Akqq “ θpdpAxn, Akqq ě rθpdpBxn, Bkqqsη

“ rθpdpρn`1, Bkqqsη

that is, we can write
θpdpw, Akqq ě rθpdpw, Bkqqsη .

Thus, we have θpdpw, Bkqq ď rθpdpw, wqqss then, we obtain w “ Ak “ Bk. Since A and B are
weakly compatible, ABk “ BAk, that is, Aw “ Bw.

Now, we shall show that w is a common fixed point of A and B. In view of (20), we obtain

θpdpAw, Axnqq ě rθpdpBw, Bxnqqs
η “ rθpdpBw, ρn`1qqs

η

the limit as n Ñ8, we obtain

θpdpAw, wqq ě rθpdpBw, wqqsη “ rθpdpAw, wqqsη

which implies that dpAw, wq “ 0, that is, Aw “ Bw “ w. To prove uniqueness, suppose that t ‰ w is
also another common fixed point of A and B, that is, At “ Bt “ t. Then, we obtain

θpdpt, wqq “ θpdpAt, Awqq ě rθpdpBt, Bwqqsη “ rθpdpt, wqqsη ,

which is a contraction. Therefore, w is a unique common fixed point of A and B. This complete
the proof.

Example 3. Let Y “ r0, 1s and define dpx, zq “ |x ´ z|, for all x, z P Y. pY, dq is a complete metric space.
Define Ax “ x

4 and Bx “ x
12 , then BpYq Ď ApYq and ApYq is complete. θppq “ ep belong to Θ, for all

x P r0, 1s with x ě z from (20), we obtain

e
1
4 |x´z| ě e

η
12 |x´z|,

for 1 ă η ă 3 and (20) is satisfied. In this example, A and B are weakly compatible mappings and 0 is the
unique common fixed point. Therefore, Theorem 5 is satisfied.
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Example 4. Let Y “ r0, 1s and define dpx, zq “ |x ´ z|, for all x, z P Y. pY, dq is a complete metric space.
Let Ax “ 1´x

2 , Bx “ 1´x
4 . Then BpYq Ď ApYq and ApYq is complete. θppq “ epep

belong to Θ, for all
x P r0, 1s with x ě z. From (20), we obtain

2e
1
4 |x´z| ě η

for 1 ă η ă 2 and (20) is satisfied. A1 “ B1 “ 0 but AB1 “ 1
2 and BA1 “ 1

4 , then A and B are not weakly
compatible. It follows that, except for the weak compatibility of A and B, all other hypotheses of Theorem 5
are satisfied. However, they do not have a common fixed point. This example shows that the weak compatible
condition of Theorem 5 cannot be removed.

3. Conclusions

Wang et al. [1], proved some fixed point theorems for expansive mappings, which correspond to
some contractive mappings in metric spaces. Jleli and Samet [17] introduced a new type of contractions
called θ-contraction. In the present article, we introduce a new approach to expansive mappings in
fixed point theory by combining the ideas of Wang, Jleli and Samet. We introduce the concept of
θ-expansive mappings in ordered metric spaces and prove a fixed point theorem for such mappings.
We give some fixed point results for θ-expansive mappings in metric spaces and prove fixed point
theorems for such mappings. Some examples are presented to support the new theorems and results
proved. Further, these examples show that the new class of θ-expansive mapping is not included in
expansive mappings known in the literature.
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