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Abstract: The sudden emergence of the COVID-19 pandemic has tested the strength of the public
health system of the most developed nations and created a “new normal”. Many nations are
struggling to curb the epidemic in spite of expanding testing facilities. In this study, we consider
the case of Bangladesh, and fit a simple compartmental model holding a feature to distinguish
between identified infected and infectious with time series data using least square fitting as well
as the likelihood approach; prior to which, dynamics of the model were analyzed mathematically
and the identifiability of the parameters has also been confirmed. The performance of the likelihood
approach was found to be more promising and was used for further analysis. We performed fitting
for different lengths of time intervals starting from the beginning of the outbreak, and examined the
evolution of the key parameters from Bangladesh’s perspective. In addition, we deduced profile
likelihood and 95% confidence interval for each of the estimated parameters. Our study demonstrates
that the parameters defining the infectious and quarantine rates change with time as a consequence
of the change in lock-down strategies and expansion of testing facilities. As a result, the value of the
basic reproduction number R0 was shown to be between 1.5 and 12. The analysis reveals that the
projected time and amplitude of the peak vary following the change in infectious and quarantine rates
obtained through different lock-down strategies and expansion of testing facilities. The identification
rate determines whether the observed peak shows the true prevalence. We find that by restricting the
spread through quick identification and quarantine, or by implementing lock-down to reduce overall
contact rate, the peak could be delayed, and the amplitude of the peak could be reduced. Another
novelty of this study is that the model presented here can infer the unidentified COVID cases besides
estimating the officially confirmed COVID cases.

Keywords: COVID-19; Bangladesh; mathematical modelling; global stability; parameter estimation;
prediction; likelihood fitting

1. Introduction

The disease COVID-19 is caused by SARS-CoV-2, which is a strain of the virus that causes severe
acute respiratory syndrome (SARS) [1]. The other prominent members of this family are severe acute
respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus
(MERS-CoV). Although SARS-CoV-2 seems to be associated with milder infections and low fatality
rate compared to SARS and MERS [2], it has caused far greater morbidity and mortality due to its
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capacity to spread on a pandemic level [3,4]. The COVID-19 was first identified in mid-December 2019
in Wuhan, China. It took just a little over a month to become widespread across mainland China and
soon spread beyond the Chinese borders [5].

Most of the world seemed to be unprepared or did not pay much attention during the early days.
As a result, in about two months since the virus crossed the Chinese borders, the disease hit the world,
and the World Health Organization (WHO) declared it a pandemic on 11 March 2020 [6]. The first
confirmed case of COVID-19 in Bangladesh was on 8 March 2020 [7]. The number of new confirmed
cases continued in single digits until early April 2020. The number began to increase sharply from 5
April 2020, and a severe outbreak was an apparent outcome if the number continued to rise at this rate.
The government of Bangladesh has been taking lots of initiatives to contain and control the disease.
The whole country was in lockdown until the end of April 2020 and then was a bit relaxed until May
15, and finally was withdrawn from May 17 to avoid the financial challenges [8]. During the lockdown,
the government increased testing facilities. Testing as many people as possible is believed to be the
best way to combat COVID-19 as by testing more, the disease could be mapped more accurately,
and action could be taken to quarantine more infected people. However, the present testing capacity is
not sufficient for a country of 170 million [9].

In this circumstance, in order to develop the competent public health policies and economic
activity guidelines, it is essential to have an assessment of the possible future impacts of the
disease through the understanding of its dynamics, predicting future trends, and planning effective
control strategies. Meanwhile, thousands of researchers across the globe have been working to
understand how the virus spreads and find ways to put it under control as quickly as possible [10,11].
The fastly growing COVID literature includes different types of modeling tools, such as compartmental
deterministic models [6,12–16], network models [14], stochastic models [17], and branching process
models [18,19]. Though compartmental models complemented with data fitting techniques have widely
been used, those are occasionally associated with identifiability issues [20–23], which has largely been
ignored in COVID-19 literature [6,12,13,15,16].

Among the different types of deterministic compartmental models, SEIR includes the incubation
period, which is an important feature that needs to be taken into account, especially for a disease
like COVID-19, which has a relatively long incubation period. In addition, there are several other
factors, such as local medical resources, quarantine measures, and the efficiency of confirmation
approaches that are proven to affect the epidemic trend of COVID-19 profoundly [10,11]. The SEIR
model, however, does not take any of these factors into account explicitly. The assumptions of the
model are highly associated with the performance of the model, specially in the case of a pandemic
like COVID-19 [11]. Further, sudden explosion of COVID-19 has already criticized the ability of
the dominating economies to expand sufficient testing facilities. Economically weak countries are
more prone to face challenges to expand the testing, quarantine, and treatment facilities on sudden
emergence of COVID outbreak [9,24,25].

One of the key attributes of the COVID-19 outbreak is the expression of no or mild symptoms,
or delayed symptom-onset in infectious patients. There is a non-zero probability of transmitting the
virus without showing any symptom over the whole infectious period [26,27] and hence infections
may go unnoticed. The COVID-19 patients, especially, patients without symptoms might be roaming
freely due to lack in contact tracing, testing, and timely quarantining. The confirmed patients are
quarantined at the hospital or advised to stay isolated at home. The symptomatic patients may also go
out occasionally if not quarantined. As a result, the actual number of COVID-19 cases is suspected
to be higher than the officially reported confirmed cases [28]. To fill this gap, unidentified infections
were estimated in [29,30]. Though their approach is scientifically impressive, it does not explore the
disease dynamics that can help to develop control strategies. In compartmental framework, the idea
of unidentified COVID-19 patients was introduced in [5,12,15], which in addition to estimating
the amount of unidentified COVID-19 patients, can explain the disease dynamics. We, therefore,
propose a simple extension of the standard SEIR model, which in addition to the identified infected
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can keep an account of the unidentified infected who are mostly responsible for the transmission.
All individuals are divided into five non-intersecting subclasses: Susceptible(S(t)), Exposed(E(t)),
Infectious(I(t)-not officially confirmed), Isolated(Q(t)-officially confirmed and quarantined), and
removed (R(t)-recovered or dead). We use the model to understand the COVID-19 outbreak scenario
of Bangladesh, which may also be used for countries with similar socioeconomic condition.

The rest of this paper is organized as follows: In Section 2, the mathematical model is presented
and the dynamics of the model is analyzed. The background of choosing baseline parameter values
for the model and the model fitting techniques as well as the identifiability issues are discussed in
Section 3. The results are discussed and summarized in Section 4. Finally, the work is concluded in
Section 5. The shortcomings of the work along with the future possible research directions are also
discussed in this section.

2. Model

We assume that all individuals that are at risk of acquiring the infection belong to the subclass
S. When a susceptible individual comes in contact with an infectious individual, s/he may become
exposed at the rate β. We consider density dependent transmission here, hence susceptible individuals
transfer to exposed class is modeled as βSI. The exposed individuals are considered to have latent
infections and cannot infect others. Here, we assume that the isolated individuals are held strictly
quarantined and do not transmit the disease. They start transmitting the disease after a few days and
move to the infectious subclass I at the rate σ. Due to not expressing symptoms, inadequate testing
facilities and widespread outbreak, it is considered that all the infected patients are not identified.
We assume that the infectious individuals may be identified and isolated at an expected rate q and
move to isolated subclass Q, or maybe recovered and move to the subclass R at the rate γ1. The isolated
individuals recover at an average rate of γ2 and are assumed not to transmit the disease. The parameter
π represents the rate of immigration due to birth. The parameters µ and δ represent the intrinsic death
rate and disease related death rate, respectively. It is to be noted that, we assume all the severe
cases are identified, as they seek for medical treatment due to the severity. Further, disease related
deaths are mostly associated with severe cases [31,32]. So, we assume no disease related death rate in
compartment I. The above mentioned transmission mechanism is summarized in the following system
of differential equations. The flow of individuals between compartments are illustrated graphically in
Figure 1.
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Figure 1. Schematic diagram of the flow of individuals between the compartments.
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dS(t)
dt

= π − βIS− µS

dE(t)
dt

= βIS− σE− µE

dI(t)
dt

= σE− γ1 I − qI − µI (1)

dQ(t)
dt

= qI − γ2Q− µQ− δQ

dR(t)
dt

= γ1 I + γ2Q + δQ− µR

2.1. Basic Reproduction Number

The basic reproduction number for the system is R0 = πβσ
kEkI µ , where KE = σ + µ and KI =

γ1 + q + µ. The expression for R0 has been obtained by using the next generation matrix [33] approach
(see the Appendix A for details). The expected infectious lifetime of an infected individual is 1

γ1
,

they are identified and quarantined at rate q, and the normal death rate is µ. Therefore, the average
infectious lifetime reduces to 1

γ1+q+µ = 1
kI

. During this time, the infectious individual can transmit

the infection to π
µ

1
kI

β individuals on average at fully susceptible state. The probability that these
individuals develop infection is σ

σ+µ = σ
kE

. Therefore, the expression for R0 is well justified.

2.2. Existence and Uniqueness of Equilibria

The first three equations of system (1) are independent of the fourth and fifth equations, and therefore
can be decoupled without loss of generality. The system (1) then can be rewritten as

dS(t)
dt

= π − βIS− µS

dE(t)
dt

= βIS− σE− µE (2)

dI(t)
dt

= σE− γ1 I − qI − µI

We, therefore, study the system (2) in the following feasible region:

Ω = {(S, E, I) ∈ R3
+ : S + E + I ≤ π

µ
}.

It can be easily seen that Ω is positively invariant with respect to (2). Let Ω be the interior of Ω.
The following theorem summarizes the existence and uniqueness of the possible equilibria.

Theorem 1. System (2) has two possible equilibria in Ω: the disease-free equilibrium E0 = (π
µ , 0, 0), which

is independent of disease-related parameter values, and an endemic equilibrium E∗ = (S∗, E∗, I∗) ∈ Ω when
R0 > 1.

Proof. Steady states of the system (2) can be obtained by solving the following nullclines

π − βIS− µS = 0

βIS− σE− µE = 0 (3)

σE− γ1 I − qI − µI = 0
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If I = 0, then E = 0 and S = π
µ , therefore the system (2) possesses a disease-free equilibrium

E0 = (π
µ , 0, 0) which is independent of disease-related parameter values. Furthermore, if I 6= 0,

then we have E∗ = (S∗, E∗, I∗) =
(

π
µR0

, π(R0−1)
(σ+µ)R0

, µ(R0−1)
β

)
. It can be seen that the equilibrium E∗ is

biologically acceptable and different from the disease-free equilibrium if and only if R0 > 1. The proof
is thus completed.

2.3. Stability of the Disease-Free Equilibrium

We have the following theorem on the global asymptotic stability of the disease-free equilibrium E0.

Theorem 2. (a): If R0 ≤ 1, then the disease-free equilibrium E0 is globally asymptotically stable.
(b): If R0 > 1, then the disease-free equilibrium is unstable.

Proof. (a) We construct a Lyapunov function as

L = E +
βπ

µ(γ1 + q + µ)
I (4)

Differentiating Equation (4) with respect to time, we obtain

L′ = E′ +
βπ

µ(γ1 + q + µ)
I′

= βIS + (σ + µ)(R0 − 1)E− βπ

µ
I

≤ (σ + µ)(R0 − 1)E as 0 < S <
π

µ

Therefore, R0 ≤ 1 ensures that L′ ≤ 0 for all t > 0, which implies that the system (2) is globally
asymptotically stable for R0 ≤ 1. The proof of claim (a) is thus completed. (b) The Jacobian of the
system (2) at E0 is given by

JE0 =

 −(βI0 + µ) 0 −βS0

βI0 −KE βS0

0 σ −KI

 ,

The Jacobian JE0 has an eigenvalue λ = −µ, besides the following characteristic equation

λ2 + a1λ + a0 = 0 (5)

where a1 = (KE + KI) and a0 = KEKI(1− R0). Since a1 > 0, it is easy to show that Equation (5) has a
real positive root when R0 > 1. Hence E0 is unstable when R0 > 1, thus completing the proof of claim
(b).

2.4. Local Stability of the Endemic Equilibrium

Theorem 3. If R0 > 1, then the endemic equilibrium E∗ is locally asymptotically stable.

Proof. The Jacobian of the system (2) at E∗ is given by

JE∗ =


−µR0 0 − βπ

µR0

µ(R0 − 1) −KE
βπ

µR0
0 σ −KI

 .
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The characteristic equation is

a3λ3 + a2λ2 + a1λ + a0 = 0, (6)

where a3 = 1, a2 = µR0 + KE + KI , a1 = µR0(KE + KI), and a0 = βπσ
R0

(R0 − 1). Here, a3 is always
positive, a0 is positive when R0 > 1. In addition,

a1a2 − a0 = µR0

(
µR0(KE + KI) + (KE − KI)

2
)
+ µ(3R0 + 1)KEKI > 0.

Therefore, according to the Hurwitz’s criterion, E∗ is locally asymptotically stable for R0 > 1,
thus completing the proof.

2.5. Global Stability of the Endemic Equilibrium by Geometrical Approach

In this section, we study the global stability of the endemic equilibrium E∗ by using geometrical
approach based on the second additive compound matrix, developed by Li and Muldowney [34].
We prove the following result first.

Lemma 1. The system (2) is uniformly persistent if and only if R0 > 1.

Proof. Based on the Theorem 2, the disease-free equilibrium E0 = (π
µ , 0, 0) is unstable when R0 > 1.

Since the disease-free equilibrium is on the boundary of Ω, this implies that the system is uniformly
persistent if and only if R0 > 1.

Therefore, there exists a constant c > 0 such that every solution (S, E, I) of system (2),
with (S(0), E(0), I(0)) in Ω satisfies

lim inf
t→∞

S(t) > c, lim inf
t→∞

E(t) > c, lim inf
t→∞

I(t) > c

Here c is independent of the initial data in Ω. Consequently, the uniform persistence of
system (2) in the bounded set Ω implies the existence of a compact subset K of Ω that is absorbing for
system (2) [35,36]. We state our main result in the following theorem.

Theorem 4. Assume R0 > 1. Then the unique endemic equilibrium E∗ is globally asymptotically stable in Ω.

Proof. It is shown that there exists a compact subset K of Ω that is absorbing for system (2), and there
exists a unique endemic equilibrium in Ω. The remaining part of the proof of this theorem involves
checking the following Bendixson criterion [37]

q := lim sup
t→∞

sup
x0∈K

1
t

∫ t

0
µ1(B(x(s, x0)))ds < 0, (7)

where µ(B) = limh→0+
|I+hB|−1

h defines the Lozinskiĭ measure of a (n
2)× (n

2) matrix B with respect to

a suitable matrix norm |.|; see ([38], p. 41). Here B = AF A−1 + A
∂F
∂x

[2]
A−1, x = (S, E, I) and F(x)

denotes the vector field of (2), i.e.,
dx
dt

= F(x). The Jacobian matrix J =
∂F
∂x

with a general solution

x(t) of (2) is

J =

 −(βI + µ) 0 −β S
βI −KE β S
0 σ −KI

 ,
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and its second additive compound matrix J[2] is

J[2] =

 −(βI + µ + KE) βS β S
σ −(βI + µ + KI) 0
0 βI −(KE + KI)

 .

Set the function A(x) = A(S, E, I) = diag
{

1,
E
I

,
E
I

}
. Then

AF A−1 = diag
{

0,
E′

E
− I′

I
,

E′

E
− I′

I

}
,

where the matrix AF is obtained by replacing the entry aij of A(x) by its derivatives in the direction of

F. The matrix B = AF A−1 + A
∂F
∂x

[2]
A−1 can be written in the following block form

B =

(
B11 B12

B21 B22

)
,

where B11 = −(βI + µ + KE),

B12 =

(
βSI
E

,
βSI
E

)
, B21 =

 σE
I
0

 ,

and

B22 =

 E′

E
− I′

I
− (βI + µ + KI) 0

βI
E′

E
− I′

I
− (KE + KI)

 .

We select a norm in R3 as

|(u, v, w)| = max {| u|, |v|+ |w|},

where (u, v, w) denote vectors in R3 and µ denotes the Lozinskiĭ measure with respect to this norm.
Following [39], we estimate µ as follows

µ(B) ≤ sup {g1, g2} ,

where
g1 = µ1(B11) + |B12|,
g2 = |B21|+ µ1(B22),

|B12|, |B21| are matrix norms with respect to l1 vector norm and µ1 denotes the Lozinskiĭ measure with

respect to the l1 norm. We have µ1(B11) = −(βI + µ + KE), |B12| =
βSI
E

and |B21| =
σE
I

.

µ1(B11) =
E′

E
− I′

I
− KI + max {−µ,−(µ + σ)}

≤ E′

E
− I′

I
− KI − µ
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where µ1(B11) is calculated by adding the absolute value of the off-diagonal elements to the diagonal
one in each column of B22, and then the maximum of two sums is taken; see ([38], p. 41). Then

g1 = −(βI + µ + KE) +
βSI
E

g2 ≤ E′

E
− I′

I
− KI − µ

By using the second and third of equations of system (2), the above relations can be written as

g1 ≤ E′

E
− µ

g2 ≤ E′

E
−−µ

Then, we have

µ(B) ≤ E′

E
− µ

System (2) is uniformly persistent when R0 > 1, hence for every solutions (S(t), E(t), I(t)) with
(S(0), E(0), I(0)) ∈ K, there exists c > 0 and T > 0 such that for t > T

c ≤ E(t) ≤ π

µ
, and c ≤ I(t) ≤ π

µ

For t > T we have

1
t

∫ t

0
µ(B)ds ≤ 1

t

∫ T

0
µ(B)ds +

1
t

log
E(t)
E(T)

− µ
t− T

t
=

1
t

log
E(t)
E(0)

− µ,

which implies q < 0 from Equation (7), thus proving Theorem 4.

The global stability of the endemic equilibrium E∗ has also been checked by constructing
a Lyapunov function using the graph-theoretic method developed by Shaui and Driessche [40].
Please refer to the Theorem A1 in Appendix B for details.

3. Fitting Early Epidemic Data of Bangladesh

COVID-19 was officially reported in Bangladesh for the first time on 8 March 2020. Here, we used
data from March 11, 2020, as there were anomalies in the data for the first few days. We fit the identified
Active Cases, which is calculated in terms of several useful data as follows

Active Cases, y(ti) = Total Identified (ti) - Total Recovered (ti) -Total Dead (ti)
The identified cases are considered to be isolated at their residence or at hospital, which

corresponds to Q subclass of our model.

3.1. Parameterization

We assumed that at the beginning of the epidemic, the population was at an equilibrium of
1.6× 108 and the average life expectancy is 72 years. So, we chose µ = 3.8052× 10−5 and π = Hµ =

6088.3, where H = 1.6× 108 represents the total population at the beginning. As there were no
available studies or data regarding the exposed period and total duration of infectious life time, we
chose the expected latency period to be 5 days [41,42], which gives σ = 0.2. The average infectious
life time was chosen as 22 days [43], which gives γ1 = 0.04545. Regarding the infected life time of
identified patients, we used the data of 130 patients treated in the Kuwait–Bangladesh Friendship
Government Hospital from Director General Health, Dhaka, Bangladesh, as given in Table 1. The value
of γ2 + δ, as per data in this table, amounted to 0.066. We can separate γ2 and δ by using the ratio
of total deaths to total recovered by 8 June 2020, as follows: δ = 0.066×total deaths/(total deaths
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+ total recovered) = 0.0039 and γ2 = 0.066×total recovered/(total deaths + total recovered) = 0.062.
The parameter β is the product of the per-capita contact rate and transmission probability on each
contact, both of which are unknown. The parameter q is the product of identification rate (reciprocal of
the duration required to get identified once become infectious) and probability of getting identified,
both of which are unknown as well. So, we leave the parameters β and q to be estimated through
data fitting.

The parameter values are summarized in Table 2. To find the two key parameters β and q, we fit
our model with the early epidemic data of Bangladesh.

Table 1. Duration of hospital stay of identified patients.

Duration Frequency

≤7 days 20
8 to 14 days 38
15 to 21 days 49
≥21 days 23

Mean 15.15 dyas

Table 2. Parameters for numerical simulation.

Symbol Value (day−1) Reference

π 6088.3 Assuming an equilibrium of 1.6× 108 population at the beginning
µ 3.8052× 10−5 Assuming 72 years mean life time
β −− estimated (fitting)
σ 0.2 [41,42]
γ1 0.04545 [43]
q −− estimated (fitting)

γ2 0.062 estimated (data)
δ 0.0039 estimated (data)

3.2. Identifiability and Fitting

Let, X = (S, E, I, Q, R) ∈ R5
+ denotes the state variables, f is the vector containing the right side

of the system (1) and Y is the active identified infectious cases. Then the system (1) can be written as

d
dt

X(t, β, q) = f (X, β, q, t)

Y(t, β, q) = Q(t) (8)

X(0) = X(t0, β, q)

X(0), X(t), β, q ≥ 0

3.2.1. Identifiability

If there exists a unique combination of β and q for which (8) holds, then the model is uniquely
structurally identifiable. To check the identifiability, we used the web application COMBOS [44].
This application is an implementation of the differential algebra-based technique introduced in [45].
Under the above setting, β and q are found uniquely identifiable (details are provided in the
Appendix C).
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3.2.2. Fitting Methods

For the purpose of comparison, we checked the efficiency of two different fitting methods: the
Least Square (LS) Method and Maximum Likelihood (ML) Method (Poisson Distribution). In the LS
method, the error to be minimized is

error =
t f

∑
t1

(y(ti)−Y(ti, β, q))2 .

In the ML method, we assume all y(ti) are independent and follow Poisson distribution with
parameter Y(ti, β, q). Therefore, the likelihood function becomes

L(Y(t)|y(t)) =
t f

∏
t1

Y(ti)
y(ti)e−Y(ti)

y(ti)!
.

Our objective is to find Y(ti, β, q), which maximizes the probability of observing y(ti) i.e., to maximize
the above likelihood function. For computational convenience, we rather minimize the negative log
likelihood function and write it as a function of β and q as follows.

NLL(β, q) = −
t f

∑
t1

(
y(ti)ln(Y(ti))−Y(ti)− ln(y(ti)!)

)
To compare the performance of LS against ML we use Absolute Errors (AE) and Total Relative

Absolute Errors (TRAE) which are defined as follows

AE = |y(ti)−Y(ti)|

TRAE = ∑
|y(ti)−Y(ti)|

y(ti)
.

From Figure 2, it can be seen that the absolute error produced by LS method is significantly higher
than that of ML method in each of the first 30 days. Further, TRAE is 1.494 083× 103 for LS, which is
higher than TRAE, 7.426 629× 102 for ML. In the second and third figure, corresponding estimates of
β̂ and q̂ are shown with 95% confidence intervals. It can be seen from this figure that the confidence
intervals are smaller for ML. Both the methods give different estimate. The value of q estimated by
LS is nearly 2.5, which is practically feasible though, but in the case of Bangladesh, it is obsolete,
as there is deficiency in testing facilities. We, therefore, choose ML method for rest of the analysis of
the COVID-19 data of Bangladesh.
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Figure 2. Absolute errors for least squares (LS) and maximum likelihood (ML) methods are shown
for daily data in the first figure. Associated estimated parameters with confidence interval are shown
on the right side. The red dot is the estimated value and the error bars stands for the 95% confidence
interval. The eye ball test tells us that the confidence interval is smaller if estimated by ML fitting.
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3.2.3. Profile Likelihood

Profile likelihood resembles the dependency of the likelihood function on each of the parameters
and helps extract confidence intervals for the parameters. The profile likelihoods PLβ(β) and PLq(q)
of β and q respectively can mathematically be expressed as

PLβ(β) = min
q

NLL(β, q) and PLq(q) = min
β

NLL(β, q).

Further, 2(NLL(β, q)− NLL(β̂, q̂)) ∼ χ2
2 [46]. Therefore, 95% confidence interval of β and q will

satisfy, NLL(β, q) ≤ NLL(β̂, q̂) + 5.9915/2.

4. Results

We used a SEIQR model to understand COVID-19 outbreak in Bangladesh. Mathematical analysis
confirms that the epidemic can take off iff R0 > 1; and will die out iff R0 < 1, irrespective of the
initial condition.

As discussed in the earlier section, Bangladesh had minimal testing facilities at the initial stage.
After about a month since the detection of the first COVID-19 patient, the minimum number of
COVID-19 tests performed daily in the country significantly improved over the next couple of
months. Besides, the country had nationwide lockdown in different forms for about two months.
The parameters in the model, such as quarantine rate and transmission rate, are therefore expected
to be time-varying. The ML fitting does not provide a time-dependent estimation of parameters.
We thus fit the model with data sets of different time intervals starting from the beginning in order
to understand the evolution of parameter values throughout the epidemic. It is worth mentioning
that we tried to fit the data over non-intersecting window of intervals to understand the change of the
parameters values with time, which lead to under fitting the model and hence avoided. We use the
MATLAB function “fminsearch” for the optimization purpose and the code is available on request.

Figure 3 shows the model fitting with the reported data on the time intervals starting from ti = 0
to t f = 30, 50, 70 and 90 days, respectively. The blue curves in the first and second column shows
the profile likelihood of β and q respectively, for each of which one of the parameters are set to the
value re-tuned by the minimization algorithm and the other is varied over the interval shown on
the horizontal axis. The pattern of the profile likelihood affirms the identifiability of the parameters.
The red dots in the first two columns show the best fit for the parameters β and q, whereas the third
column shows the agreement between the model and data corresponding to these β and q.

We intend to inspect the evolution of parameter values over time and its consequence on R0 and
disease outbreak from Bangladesh perspective. The estimated values of β, q and corresponding R0 is
shown in Figure 4. From this figure, we see that in the first 30 days average R0 was about 6.769 and for
the first 40 days it was 12.05. This implies that β was increased from 30 to 40 days, which is related
to the fact that the lockdown was not maintained properly at the beginning. The country then went
for strict lockdown, law-enforcing agencies, e.g., Police and Army, were deployed to implement the
lockdown properly. As a result, the value of β was decreased and consequently R0 dropped to 6.904.
The value of β started to increase again after 60 days. The lockdown in the country was relaxed around
that time; shopping malls and markets were open before the religious festival (called Eid), some offices
were open as well, which allowed β to increase. However, q is found to increase throughout the
epidemic due to continuous effort in increasing testing facilities by the government. Though, the value
of R0 is observed to increase following an increasing β at the beginning, the value then dropped
following a decrease in β and an increase in q. β is high at the end of 80 days along with a high value
of q (high rate of identification through increasing testing facilities) resulted in decreased transmission
and consequently lowered R0. Following a descending pattern, R0 reached 1.515 at the end.
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Figure 3. Parameters estimation and profile likelihood is shown in the first two columns for β and q
respectively for different time intervals. The last column shows corresponding model fitting with the
reported data.
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Figure 4. Evolution of transmission rate, isolation rate, and basic reproduction number. The error bars
show corresponding 95% confidence intervals.

To understand the relationship better, we plot R0 as a function of β and q in Figure 5, which clearly
shows that R0 increases with an increasing β and a decreasing q. The black dotted line shows the
evolution of R0 in β − q space, a high R0 is observed corresponding to a high β at the beginning.
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Although β was high afterwards, increasing q is observed to act predominantly to decrease the value
of R0. The solid line in the top left corner shows the threshold R0 = 1, above which the combination β

and q gives R0 < 1, resulting in no outbreak, which agree with the mathematical analysis presented in
Section 2 more specifically Theorem 2 (a). The value of β and q can be controlled to reduce R0 below 1,
which will curve the epidemic.

Figure 5. Sensitivity of the Reproduction number to β and q. The dotted line shows the time evolution
of R0 in β− q space in the case of Bangladesh.

With reference to the parameter estimates presented in Figure 4 (for different length of time
intervals t f ), we present the simulation of our model over a period of 365 days in Figure 6. It illustrates
the evolution in prevalence of the disease due to change in human behavior and lockdown scenario.
From here, the association of the peak with R0 can be explained, as well. The figure demonstrates
that the total number of infected people, the peak of the epidemic, and the time when the peak
will appear are strongly associated with R0. The higher the value of R0, the higher the peak of the
epidemic and sooner the peak occurs. As there were minimal testing facilities at the beginning of the
epidemic, the value of q was significantly low, and β was relatively high due to the low quarantine rate.
The value of R0 was, therefore, relatively large. As a result, the peak of the epidemic was observed to
be higher and appeared sooner, and the corresponding number of total infected is high. Due to the
remarkable improvement of testing facilities over the next few months, the value of q continued to
grow, resulting in lowering R0. The peak of the epidemic, therefore, observed to become lower and
appeared lately with relatively lower number of total infected people. During this time, the maximum
number of officially confirmed cases is observed to increase, as expected due to improved testing
facilities. However, the opposite scenario is observed from t f = 70 to t f = 90, where both I and Q
are found to decrease even though q was still increasing. In a nutshell, the combined effect of β and
q on the confirmed cases is perplexing. Also, there are unidentified cases, as well. Therefore, we
investigated the answer to the question: “Do the identified patients represents the actual scenario of
the epidemic?”.
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Figure 6. The figure on the left represents the fraction of cumulative infected people, whereas,
the figures on the middle and right, respectively, represent the total number of unidentified infected
cases and officially confirmed infected cases corresponding to parameters estimated from different
length of data.

We define Qmax := maxt{Q(t)} and Imax := maxt{I(t)} and plot them in q− β plane, as shown
in Figure 7. In the triangular region, where the combination of q and β results in R0 < 1, both Qmax

and Imax are zero. Outside the triangular region, Imax increases as q decreases, in other words, as R0

increases. However, Qmax evolves differently outside the triangular region. The solid blue line, which
is the intersecting line of the Qmax and Imax surface, represents a threshold for q. Qmax decreases as
q moves away from this line. Here, q has two fold role on the difference between Qmax and Imax.
As q decreases, average duration in compartment I increases and influx to compartment Q decreases
simultaneously. Two different scenarios of the epidemic thus can be seen on the two sides of solid
blue line. On the left side, where the quarantine rate is considerably high, Qmax is higher than Imax,
which indicates the fact that most of the infected people are held quarantine and the actual scenario
of the epidemic is mostly known. In contrast, on the right side of this line, where quarantine rate is
significantly low, Qmax is lower than Imax, which indicates that the actual scenario of the epidemic is
poorly known. In such a case, fitting data with SEIR model might yield misleading predictions.

Figure 7. Comparison between Qmax and Imax for different values of β and q.

5. Discussion and Conclusions

The pathogenesis of COVID-19 and the responsible virus strain SARS-CoV-2 are still poorly
understood as it is a new strain. Scientists all over the world are trying to understand the epidemiology
in the context of different countries, as the context of every country is unique from the perspective of
international traffic, trade, local resources, awareness, government planning, etc. In most of the study,
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the available data of cumulative identified, cumulative recovered, and cumulative dead have been used
to fit models, where the input in the I compartment has been accumulated to fit with the cumulative
identified. However, the irony is, the I compartment refers to the infectious compartment responsible
for spreading the infection, where the identified individuals hardly transmit the disease in hospital care
facilities. Even if the identified patients transmit the disease, that will be, on average, very negligible.
In contrast, the unidentified patients, who are not counted at all, are mainly responsible for spreading
the infection. To overcome this limitation, we propose a variant of the SEIR type model, which,
besides the identified infected, can also estimate the unidentified fraction of infected. We confirmed
that the basic reproduction number is the key threshold for disease outbreak.

Many different techniques are used to fit model with data, for example, non-linear least-square
fitting [6,13,14,16], genetic algorithm [15], etc., where the objective function is the Euclidean distance of
the data and model estimates. In this study, we examined the Least Square Technique and Maximum
Likelihood fitting. The latter, which minimizes an objective function other than the Euclidean norm,
outperformed the former. We have analyzed the early epidemic scenario of COVID-19 outbreak in
Bangladesh and intended to predict the plausible future scenarios. In addition, we intended to identify
the required measures to reduce the outbreak.

We analyzed available data from 11 March 2020 to 8 June 2020. The reproduction number was
found to vary between about 1.5 and 12, which is due to the fact that the country had lockdown in
different forms, and the testing facilities were significantly improved during this time. We found that
the peak of the epidemic and the time when the peak will appear are strongly associated with the
reproduction number R0. The peak of the epidemic found to become higher and appear sooner as the
reproduction number increases, which was also reported in [19]. The simulations of the model indicated
that the peak of the epidemic is expected to appear around 2 October 2020. However, the fluctuations
in R0 value seen over the different time intervals suggests that the arrival and amplitude of the peak
might change due to partial lockdown in red zones (areas with highest case load) and improved
testing facilities. As the epidemic advances, with real-time data, our model can be used to estimate
the amplitude and time of the peak as well as the number of unidentified infected people with
reasonable accuracy.

The amplitude and arrival of the epidemic peak depend on the reproduction number R0,
which suggests that the peak can be delayed, and the amplitude of the peak can be reduced by reducing
the reproduction number. This can be achieved, for instance, by identifying potential superspreaders
and reduce their contacts, or by implementing lockdown to reduce overall contact rate, or by increasing
public awareness and mass education. Another factor that can reduce the reproduction number below
one is increasing the identification rate by increasing the testing facility and identifying the persons
that came in contact with the infected person during the course of active infection. It is needless to say
that if the reproduction number can be reduced and maintained below one, the outbreak will be under
control. However, it is worth mentioning that the herd immunity varies with the basic reproduction
number and consequently with transmission rate and isolation rate. Therefore, when the epidemic
curve starts to decrease after the peak or reaches the end of the epidemic, uncontrolled/unplanned
social interaction or relaxed lockdown and decreased testing rate may further initiate a second wave
of the epidemic.

There are several shortcomings of the study. For example, the model only predicts the average
scenario and neglects the impact of plausible randomness. The sample size of hospitalized patients
used to estimate the recovery rate and disease related death rate of identified patients is small. Also,
hospital mediated transmissions have been neglected. The latency period and the course of active
infection may vary with mutation of the virus and immunity of the host, which are not known for the
circulating strain in Bangladesh. In addition, there is no precise information about the mechanisms of
environmental transmission, also it varies greatly within and across the countries [13,47]. We, therefore,
have excluded the environmental transmission from our modeling. Moreover, the method used in
this study gives constant value of the estimating parameters for the whole period, though the key



Mathematics 2020, 8, 1793 16 of 20

parameters like transmission rate and identification rate are likely to vary over time. Due to these
shortcomings, the accuracy of the results and prediction in this paper could vary to some extent.
Our future study aims to investigate these shortcomings.
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Appendix A. Basic Reproduction Number

Following the method and notations developed in [33] we find, F =

(
βI S

0

)
, V =(

kE E
kI I − σ E

)
,

The sub-matrices F and V reduces to, F =

(
0 πβ

µ

0 0

)
, V =

(
kE 0
σ kI

)
The next generation matrix at E0 is given by

K = [Ki,j] = FV−1 =

(
πβσ

kEkI µ
πβ
kI µ

0 0

)

The spectral radius of K is the basic reproduction number, R0 = πβσ
kEkI µ .

Appendix B. Global Stability of the Endemic Equilibrium by Lyapunov’s Method

We state our results in the following theorem.

Theorem A1. The unique endemic equilibrium E∗ of system (2) is globally asymptotically stable when exists.

Proof. Set

D1 = S− S∗ − S∗ ln
S
S∗

D2 = E− E∗ − E∗ ln
E
E∗

D3 = I − I∗ − I∗ ln
I
I∗
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Differentiating with respect to time and using endemic equilibrium values, we have

D′1 =
(S− S∗)

S
S′

= −µ
(S− S∗)2

S
+ βS∗ I∗

(
1− S∗

S
− IS

I∗S∗
+

I
I∗

)
≤ βS∗ I∗

(
1− S∗

S
− IS

I∗S∗
+

I
I∗

)
Using of the inequality 1− x + ln x ≤ 0 with x > 0 with equality holding if and only if x = 1,

we obtain

D′1 ≤ βS∗ I∗
(

I
I∗
− ln

I
I∗
−− IS

I∗S∗
+ ln

IS
I∗S∗

)
=: a13G13

and similarly

D′2 ≤ βS∗ I∗
(

SI
S∗ I∗

− ln
SI

S∗ I∗
− E

E∗
+ ln

E
E∗
−
)
=: a21G21

D′3 ≤ σE∗
(

E
E∗
− ln

E
E∗

+ ln
I
I∗
− I

I∗

)
=: a32G32

Then by Theorems 3.3 and 3.5 in [40], there exists a Lyapunov function for (2) such that V(t) =

c1D1 + c2D2 + c3D3 with c1 = c2 and c3 =
βS∗ I∗

σE∗
c1 =

σ + µ

σ
c1. Hence, we obtain a Lyapunov

candidate function for (2) as

V(t) =

(
S− S∗ − S∗ ln

S
S∗

)
+

(
E− E∗ − E∗ ln

E
E∗

)
+

σ + µ

σ

(
I − I∗ − I∗ ln

I
I∗

)
The derivative of V(t) along the system (2) is

V′(t) ≤ (µ + σ)

(
βS∗ I∗

(µ + σ)E∗
− 1
)(

ln
E
E∗
− ln

I
I∗
− I

I∗
− E

E∗

)
E∗

≤ −2(µ + σ)E∗
(

βS∗ I∗

(µ + σ)E∗
− 1
)

I
I∗

Thus V′(t) is non-positive, which implies that the endemic equilibrium E∗ is globally
asymptotically stable when exists. This completes the proof of the Theorem (A1).

Appendix C. Identifiability

The link to be used for testing identifiability is : “http://biocyb1.cs.ucla.edu/combos/ (accessed
on 8 May 2012).”. We enter the model as follows:
dx1/dt = 6088-beta*x1*x3-0.000038052*x1;
dx2/dt = beta*x1*x3-x2/5-0.000038052*x2;
dx3/dt = x2/5-x3/22-q*x3-0.000038052*x3;
dx4/dt = q*x3-x4/15-0.000038052*x4;
dx5/dt = x3/22+x4/15-0.000038052*x5;
y1 = x4;

and press “Find All Identifiable Combinations” which gives that the parameters β and q are
structurally identifiable.

http://biocyb1.cs.ucla.edu/combos/
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