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Abstract: We are concerned with the following elliptic equations: (−∆)s
pv + V(x)|v|p−2v =

λa(x)|v|r−2v + g(x, v) in RN , where (−∆)s
p is the fractional p-Laplacian operator with 0 < s <

1 < r < p < +∞, sp < N, the potential function V : RN → (0, ∞) is a continuous potential function,
and g : RN ×R→ R satisfies a Carathéodory condition. By employing the mountain pass theorem and a
variant of Ekeland’s variational principle as the major tools, we show that the problem above admits at
least two distinct non-trivial solutions for the case of a combined effect of concave–convex nonlinearities.
Moreover, we present a result on the existence of multiple solutions to the given problem by utilizing the
well-known fountain theorem.
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1. Introduction

The study of problems of elliptic type involving nonlocal fractional Laplacian or more general
integro-differential operators has extensively been considered in light of the pure or applied mathematical
theory to explain some concrete phenomena arising from the thin obstacle problem, crystal dislocation,
ultra-relativistic limits of quantum mechanics, quasi-geostrophic flows, soft thin films, phase transition
phenomena, multiple scattering, image process, minimal surfaces and the Levy process [1–6], and the
references therein. In particular, the fractional Schrödinger equation which was originally introduced by
Laskin [5] has received significant attention in recent years (see, e.g., [7–9]). The Schrödinger equation
plays a basic role in quantum theory, analogous to the role of Newton’s laws of conservation of energy
in classical mechanics. The linear Schrödinger equation describes the evolution of a free non-relativistic
quantum particle. This is one of the main consequences in quantum mechanics. The structure of the
nonlinear Schrödinger equation is substantially complicated and requires more sophisticated analysis;
see [10]. This equation has been studied greatly in accordance with the pure or applied mathematical
theory, because it stands out as a prototypical system that has proven to be essential in modeling and
understanding the characteristics of numerous areas in nonlinear physics. In particular, the considerable
developments of the Bose-Einstein condensate activated the studies on the nonlinear waveforms of the
nonlinear Schrödinger equations with external potentials and associated nonlinear partial differential
equations. For further applications and more details, we infer the reader to [11–17]. The remarkable
mathematical model for the Bose-Einstein condensate with effectively attractive interactions between
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particles under a magnetic trap is the nonlinear Schrödinger equation, which is sometimes called the
Gross-Pitaevskii equation [18,19].

Motivated by huge interest in the current literature, exploiting variational methods, we investigate
the existence of nontrivial weak solutions for the fractional p-Laplacian problems. To be more precise,
we consider the existence results of nontrivial weak solutions for the following nonlinear elliptic equations
of the fractional p-Laplace type involving the concave–convex nonlinearities:

(−∆)s
pv + V(x)|v|p−2v = λa(x)|v|r−2v + g(x, v) in RN , (1)

where λ is a real parameter, 0 < s < 1 < r < p < +∞, sp < N, V : RN → (0, ∞) is potential function
continuous, g : RN ×R→ R is a Carathéodory function, and (−∆)s

p is the fractional p-Laplacian operator
defined as

(−∆)s
pv(x) = 2 lim

ε↘0

∫
RN\BN

ε (x)

|v(x)− v(y)|p−2(v(x)− v(y))
|x− y|N+ps dy

for x ∈ RN , where BN
ε (x) := {y ∈ RN : |y− x| ≤ ε}. Many researchers have extensively studied the

fractional p-Laplacian type problems in various ways; see [2,3,9,20–26] and the references therein.
Since the pioneer work of Ambrosetti and Rabinowitz in [27], the critical point theory has become

one of the most effectual analytic tools to look for solutions to elliptic equations of variational type.
Afterward, lots of important results on the existence and multiplicity of nontrivial solutions to nonlinear
elliptic problems involving the nonlocal operators have been obtained; see, for example, [7,20–24,26,28–31].
The key ingredient for achieving these results is the Ambrosetti and Rabinowitz condition (the
(AR)-condition, in brief) in [27];

(AR) There are C0 > 0 and η > 0, such that η > p and

0 < ηG(x, t) ≤ g(x, t)t, for x ∈ Ω and |t| ≥ C0,

where G(x, t) =
∫ t

0 g(x, s) ds, and Ω is a bounded domain in RN .

As we are well aware, the (AR)-condition is indispensable to ensure the compactness condition of
the Euler-Lagrange functional, which plays a fundamental role in employing the critical point theory.
However, this condition is very restrictive and removes many nonlinearities. In this direction, Liu [32]
studied the existence and multiplicity of weak solutions for the p-Laplacian equation in case of the whole
space RN under the following assumption:

(Je) There exists η ≥ 1, such that
ηG(x, t) ≥ G(x, τt)

for all (x, t) ∈ RN ×R and τ ∈ [0, 1], where G(x, t) = g(x, t)t− pG(x, t) and G(x, t) =
∫ t

0 g(x, s)ds.

Recently, by utilizing the mountain pass theorem under this condition, the existence result for the
fractional p-Laplacian problem was obtained by Torres in [30]. Indeed, the condition above was initially
proposed by L. Jeanjean [33] in the case of p = 2. In the last few decades, there were extensive studies
dealing with p-Laplacian problems by assumption (Je); see [32,34] for the p-Laplacian and [35–38] for the
p(x)-Laplacian. In particular, the authors of [34] provided many examples that did not fulfill the condition
of the nonlinear term g given in [23,32,35,38]; for instance,

g(x, t) = m(x) |t|p−2 t(4 |t|3 + 2t sin t− 4 cos t),

where m ∈ C(RN ,R) and 0 < infRN m ≤ supRN m < ∞. In this respect, authors in [7,28] extended the
existence of infinitely many weak solutions to the fractional Laplacian problems.
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The main aim of the present paper is to establish the existence of multiple solutions for
Schrödinger-type problems in the case where the nonlinear term is concave-convex, by making use
of the variational methods. The concave-convex-type elliptic problems have been extensively investigated
(see [39–44]) since the seminal work of Ambrosetti, Brezis, and Cerami [45] for the Laplacian problem:

−4v = λ|v|q−2v + |v|h−2v in Ω,

v > 0 in Ω,

v = 0 on ∂Ω,

where 1 < q < 2 < h < 2∗ :=

{
2N

N−2 if N > 2,

+∞ if N = 1, 2.
Particularly, the existence of two nontrivial nonnegative

solutions and a sequence of solutions to degenerate p(x)-Laplacian problems involving the concave-convex
nonlinearities with two parameters has been established in [42]. For elliptic problems driven by a nonlocal
integro-differential operator with Dirichlet boundary conditions, by utilizing the Nehari manifold method,
the authors in [41] obtained the existence of multiple solutions to the following problem{

−LKv = λ |v|r + |v|q , v > 0 in Ω;

v = 0 in RN \Ω,

where Ω is a bounded domain in RN with Lipschitz boundary ∂Ω, the exponents r and q satisfy 0 < r <
1 < q ≤ 2∗s − 1, N > 2s with s ∈ (0, 1), 2∗s = 2N/(N − 2s), λ is a positive parameter. Here, the operator
LK is the non-local operator of the fractional type, defined as follows:

LKv(x) = 2
∫
RN
|v(x)− v(y)|p−2(v(x)− v(y))K(x− y)dy for all x ∈ RN , (2)

where K : RN \ {0} → (0,+∞) is a kernel function satisfying some suitable conditions; see [41].
Additionally, the existence of two non-trivial entire solutions for a non-homogeneous fractional p-Kirchhoff
type problem involving concave-convex nonlinear terms was built in [44]. Very recently, Kim et al. [46]
established the existence of at least two distinct nontrivial solutions for a Schrödinger-Kirchhoff type
problem driven by the non-local fractional p(·)-Laplacian with the concave-convex nonlinearities when
the convex term fulfilled the assumption (AR) and (Je), respectively. In order to get the multiplicity
result, they considered the mountain pass theorem in [27] and a variant of Ekeland’s variational principle
(see [47]) as primary tools. In that sense, the first aim of the present article is to get the existence of
two distinct nontrivial solutions for problem (1) for the case of a combined effect of concave-convex
nonlinearities, provided that the condition on convex term g is weaker than (AR) and different from (Je),
which is originally given in [48] even if the considered domain is bounded. The second one is to prove the
result on the existence of multiple solutions to (1) by utilizing the well-known fountain theorem in [49].
As far as we are aware, the present paper is the first attempt to study the multiplicity of nontrivial weak
solutions to Schrödinger-type problems with the concave-convex nonlinearity in these circumstances.

This paper is structured as follows. In Section 2, we recall briefly some fundamental results for the
fractional Sobolev spaces. Under appropriate conditions on g, we also obtain several existence results of
nontrivial weak solutions for problem (1) by utilizing the variational principle as the major tools.
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2. Preliminaries and Main Results

In this section, we briefly recall some definitions and basic properties of the fractional Sobolev spaces.
We refer the reader to [4,25,50,51] for further references. Then, we deal with the existence of a nontrivial
weak solution for the problem (1) under suitable assumptions.

Let s ∈ (0, 1) and p ∈ (1,+∞). We define the fractional Sobolev space Ws,p(RN) as follows:

Ws,p(RN) :=
{

v ∈ Lp(RN) :
∫
RN

∫
RN

|v(x)− v(y)|p
|x− y|N+ps dxdy < +∞

}
,

endowed with the norm

||v||Ws,p(RN) :=
(
||v||pLp(RN)

+ |v|pWs,p(RN)

) 1
p

,

where

||v||pLp(RN)
:=
∫
RN
|v|p dx and |v|pWs,p(RN)

:=
∫
RN

∫
RN

|v(x)− v(y)|p
|x− y|N+ps dxdy.

Let s ∈ (0, 1) and 1 < p < +∞. Then, Ws,p(RN) is a separable and reflexive Banach space.
Additionally, the space C∞

0 (RN) is dense in Ws,p(RN), so that is Ws,p
0 (RN) = Ws,p(RN) (see, e.g., [50]).

Lemma 1. ([51]) Let Ω ⊂ RN be a bounded open set with Lipschitz boundary s ∈ (0, 1) and p ∈ (1,+∞).
Then, we have the following continuous embeddings:

Ws,p(Ω) ↪→ Lq(Ω) for all q ∈ [1, p∗s ], if sp < N;

Ws,p(Ω) ↪→ Lq(Ω) for every q ∈ [1, ∞), if sp = N;

Ws,p(Ω) ↪→ C0,λ
b (Ω) for all λ < s− N/p if sp > N,

where p∗s is the fractional critical Sobolev exponent, that is,

p∗s :=

{ Np
N−sp if sp < N,

+∞ if sp ≥ N.

In particular, the space Ws,p(Ω) is compactly embedded in Lq(Ω) for any q ∈ [p, p∗s ).

Lemma 2. ([25,50]) Let 0 < s < 1 < p < +∞ with ps < N. Then, there exists a positive constant C =

C(N, p, s), such that for all u ∈Ws,p(RN),

||v||Lp∗s (RN)
≤ C |v|Ws,p(RN).

Consequently, the space Ws,p(RN) is continuously embedded in Lq(RN) for any q ∈ [p, p∗s ].

For our analysis, we assume that

(V) V ∈ L∞
loc(R

N \ {0}), ess infx∈RN V(x) > 0 and limx→0 V(x) = lim|x|→∞ V(x) = +∞.

When V satisfies (V), the basic space

Xs(RN) :=
{

v ∈Ws,p(RN) : V|v|p ∈ L1(RN)
}
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denotes the completion of C∞
0 (RN) with respect to the norm

||v||Xs(RN) :=
(
|v|pWs,p(RN)

+ ||v||pLp(V,RN)

) 1
p

.

With the aid of Lemmas 1 and 2, we get the following consequence.

Lemma 3. ([30]) Let 0 < s < 1 < p < +∞ with ps < N and suppose that the assumption (V) holds. Then,
there is a compact embedding Xs(RN) ↪→ Lq(RN) for q ∈ [p, p∗s ).

Definition 1. Let 0 < s < 1 < p < +∞. We say that u ∈ Xs(RN) is a weak solution of the problem (1) if

∫
RN

∫
RN

|v(x)− v(y)|p−2(v(x)− v(y))(ϕ(x)− ϕ(y))
|x− y|N+ps dxdy

+
∫
RN

V(x) |v(x)|p−2 vϕ dx = λ
∫
RN

a(x)|v|r−2vϕ dx +
∫
RN

g(x, v)ϕ dx

for all ϕ ∈ Xs(RN).

Let us define a functional Φs,p : Xs(RN)→ R by

Φs,p(v) =
1
p

∫
RN

∫
RN

|v(x)− v(y)|p
|x− y|N+ps dxdy +

1
p

∫
RN

V(x) |v|p dx.

Then, from Lemma 3.2 of [30], the functional Φs,p is well-defined on Xs(RN), Φs,p ∈ C1(Xs(RN),R) and
its Fréchet derivative is given by, for any ϕ ∈ Xs(RN),

〈Φ′s,p(v), ϕ〉 =
∫
RN

∫
RN

|v(x)− v(y)|p−2(v(x)− v(y))(ϕ(x)− ϕ(y))
|x− y|N+ps dxdy

+
∫
RN

V(x) |v|p−2 vϕ dx.

Lemma 4. ([25,30]) Let 0 < s < 1 < p < +∞ and let the assumption (V) hold. Then, the functional Φ′s,p is of

type (S+), that is, if vn ⇀ v in Xs(RN) and lim supn→∞

〈
Φ′s,p(vn)−Φ′s,p(v), vn − v

〉
≤ 0, then, vn → v in

Xs(RN) as n→ ∞.

Denoting G(x, t) =
∫ t

0 g(x, s) ds and when we assume that for 1 < r < p < q < p∗s and x ∈ RN ,

(A) 0 ≤ a ∈ L
p

p−r (RN) ∩ L∞(RN) with meas
{

x ∈ RN : a(x) 6= 0
}
> 0.

(G1) g : RN ×R→ R satisfies the Carathéodory condition.
(G2) There exists a nonnegative function b ∈ Lq′(RN) ∩ L∞(RN), such that

|g(x, t)| ≤ b(x) |t|q−1

for all (x, t) ∈ RN ×R where 1/q + 1/q′ = 1.

(G3) lim|t|→∞
G(x,t)
|t|p = ∞ uniformly for almost all x ∈ RN .
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(G4) There exist ν > p and M > 0, such that

g(x, t)t− νG(x, t) ≥ −$ |t|p − η(x) for all x ∈ RN and |t| ≥ M,

where $ ≥ 0 and η ∈ L1(RN) ∩ L∞(RN) with η(x) ≥ 0.

Some examples for g satisfying the above assumptions can be found in [34,48]. Under the assumptions
(G1) and (G2), we define the functional Ψλ : Xs(RN)→ R by

Ψλ(v) =
λ

r

∫
RN

a(x)|v|r dx +
∫
RN

G(x, v) dx.

Then, it follows from the similar arguments as those of Proposition 1.12 in [49] that Ψλ ∈ C1(Xs(RN),R)
and its Fréchet derivative is〈

Ψ′λ(v), ϕ
〉
= λ

∫
RN

a(x)|v|r−2vϕ dx +
∫
RN

g(x, v)ϕ dx

for any v, ϕ ∈ Xs(RN). Next, we define a functional Iλ : Xs(RN)→ R by

Iλ(v) = Φs,p(v)−Ψλ(v).

Then, we know that the functional Iλ ∈ C1(Xs(RN),R) and its Fréchet derivative is

〈I ′λ(v), ϕ〉 =
∫
RN

∫
RN

|v(x)− v(y)|p−2(v(x)− v(y))(ϕ(x)− ϕ(y))
|x− y|N+ps dxdy

+
∫
RN

V(x) |v|p−2 uϕ dx− λ
∫
RN

a(x)|v|r−2vϕ dx−
∫
RN

g(x, v)ϕ dx

for any v, ϕ ∈ Xs(RN).
The proof of the following Lemma can be regarded as modifications of those of Lemma 3.3 in [46].

For the convenience of the readers, we will present the proof.

Lemma 5. Let Iλ be defined above. Assume that (V), (A) and (G1)–(G3) hold. In addition, we assume that

(G5) G(x, t) ≥ 0 for all (x, t) ∈ RN ×R.

Then, we have the following:

(i) There is a constant λ∗ > 0, such that for any λ ∈ (0, λ∗), we can choose R > 0 and 0 < δ < 1, such that
Iλ(v) ≥ R for all v ∈ Xs(RN) with ||v||Xs(RN) = δ.

(ii) There exists an element φ in Xs(RN), φ > 0, such that Iλ(tφ)→ −∞ as t→ +∞.
(iii) There is an element ψ in Xs(RN), ψ > 0, such that Iλ(tψ) < 0 for all t→ 0+.
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Proof. Let us prove the condition (i). By Lemma 1, there is a constant C1 > 0, such that ||v||Lγ(RN) ≤
C1||v||Xs(RN) for p ≤ γ < p∗s . Assume that ||v||Xs(RN) < 1. Then, it follows from (A) and (G2) that

Iλ(v) =
1
p

∫
RN

∫
RN

|v(x)− v(y)|p

|x− y|N+sp dx dy +
1
p

∫
RN

V(x) |v|p dx− λ

r

∫
RN

a(x) |v|r dx−
∫
RN

G(x, v) dx

≥ 1
p

∫
RN

∫
RN

|v(x)− v(y)|p

|x− y|N+sp dx dy +
1
p

∫
RN

V(x) |v|p dx

− λC1
r
||a||

L
p

p−r (RN)
||v||rXs(RN) −

||b||L∞(RN)

q
||v||qLq(RN)

≥ 1
p
||v||pXs(RN)

− λC1
r
||a||

L
p

p−r (RN)
||v||rXs(RN) −

C1
q
||b||L∞(RN)||v||

q
Xs(RN)

≥
(

1
p
− λC2

r
||v||r−p

Xs(RN)
− C3

q
||v||q−p

Xs(RN)

)
||v||pXs(RN)

(3)

for positive constants C2, C3. Let us define the function fλ : (0, ∞)→ R by

fλ(t) =
λC2

r
tr−p +

C3

q
tq−p.

Then, it is trivial that fλ has a local minimum at the point t0 =
(

λqC2(p−r)
rC3(q−p)

) 1
q−r , and so

lim
λ→0+

fλ(t0) = 0.

Thus, there is a positive constant λ∗, such that for each λ ∈ (0, λ∗), there are R > 0 and δ > 0 small enough,
such that Iλ(v) ≥ R > 0 for any v ∈ Xs(RN) with ||v||Xs(RN) = δ.

Next, we show the statement (ii). By the condition (G3), for any K > 0, there is a constant t0 > 0,
such that

G(x, t) ≥ K |t|p (4)

for |t| > t0 and for almost all x ∈ RN . Take φ ∈ Xs(RN) \ {0}. Then, the relation (4) implies that

Iλ(tφ) =
1
p

∫
RN

∫
RN

tp|φ(x)− φ(y)|p

|x− y|N+sp dxdy +
1
p

∫
RN

V(x) |tφ|p dx− λ

r

∫
RN

a(x)|tφ|r dx−
∫
RN

G(x, tφ) dx

≤ tp
(

1
p

∫
RN

∫
RN

|φ(x)− φ(y)|p

|x− y|N+sp dxdy +
1
p

∫
RN

V(x) |φ|p dx− K
∫
RN
|φ|p dx

)

for sufficiently large t > 1. If K is large enough, then we infer that Iλ(tφ) → −∞ as t → ∞. Hence,
the functional Iλ is unbounded from below.

Next, we remain to show (iii). Choose ψ ∈ Xs(RN), such that ψ > 0. For sufficiently small t > 0, from
(A) and (G5), we obtain

Iλ(tψ) =
1
p

∫
RN

∫
RN

tp|ψ(x)− ψ(y)|p

|x− y|N+sp dxdy +
1
p

∫
RN

V(x) |tψ|p dx− λ

r

∫
RN

a(x)|tψ|r dx−
∫
RN

G(x, tψ) dx

≤ tp

p

( ∫
RN

∫
RN

|ψ(x)− ψ(y)|p

|x− y|N+sp dxdy +
∫
RN

V(x) |ψ|p dx
)
− λtr

r

∫
RN

a(x)|ψ|r dx.

Since r < p, it follows that Iλ(tψ) < 0 as t→ 0+. This completes the proof.

The proof of the following consequence proceeds in the analogous way, as that of Lemma 3.3 in [46].
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Lemma 6. Assume that (V), (A) and (G1)–(G2) hold. Then, Ψ and Ψ′ are weakly strongly continuous on Xs(RN).

With the aid of Lemmas 4 and 6, we show that the energy functional Iλ satisfies the Cerami condition
((C)-condition for brevity), i.e., any sequence {vn} ⊂ Xs(RN), such that

{Iλ(vn)} is bounded and ||I ′λ(vn)||X∗s (RN)(1 + ||vn||Xs(RN))→ 0 as n→ ∞

has a convergent subsequence. The basic idea of the proofs for the following assertion comes from the
paper [34]. This plays a fundamental role in showing the existence of nontrivial weak solutions for
problem (1).

Lemma 7. Let 0 < s < 1 < p < +∞ with ps < N. Assume that (V), (A) and (G1)–(G4) hold. For any λ > 0,
the functional Iλ satisfies the (C)-condition.

Proof. Let {vn} be a (C)-sequence in Xs(RN), that is,

sup
n∈N
|Iλ(vn)| ≤ K and

〈
I ′λ(vn), vn

〉
= o(1), (5)

where o(1)→ 0 as n→ ∞ and K is a positive constant. It follows from Lemmas 4 and 6 that Φ′s,p and Ψ′

are mappings of type (S+). Since I ′λ is of type (S+) and Xs(RN) is reflexive, it suffices to assure that the
sequence {vn} is bounded in Xs(RN). Suppose on the contrary that the sequence {vn} is unbounded in
Xs(RN). Then, we may suppose that

||vn||Xs(RN) > 1 and ||vn||Xs(RN) → ∞ as n→ ∞.

Define a sequence {wn} by wn = vn/||vn||Xs(RN). Then, it is clear that {wn} ⊂ Xs(RN) and ||wn||Xs(RN) = 1.
Hence, up to a subsequence, still denoted by {wn}, we obtain wn ⇀ w in Xs(RN) as n → ∞, and by
Lemma 3, we have

wn(x)→ w(x) a.e. in x ∈ RN and wn → w in Lκ(RN) as n→ ∞ (6)

for any κ with p ≤ κ < p∗s . Set Ω =
{

x ∈ RN : w(x) 6= 0
}

. Due to the relation (5), we have that

K ≥ Iλ(vn) =
1
p

∫
RN

∫
RN

|vn(x)− vn(y)|p
|x− y|N+sp dxdy +

1
p

∫
RN

V(x) |vn|p dx

− λ

p

∫
RN

a(x)|vn|r dx−
∫
RN

G(x, vn) dx

≥ 1
p
||vn||pXs(RN)

− λ

r
||a||

L
p

p−r (RN)
||vn||rLp(RN) −

∫
RN

G(x, vn)dx.

Since ||vn||Xs(RN) → ∞ as n→ ∞, we arrive at

∫
RN

G(x, vn) ≥
1
p
||vn||pXs(RN)

− λ

r
||a||

L
p

p−r (RN)
||vn||rLp(RN) −K → ∞ (7)
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as n→ ∞. Moreover,

Iλ(vn) =
1
p

∫
RN

∫
RN

|vn(x)− vn(y)|p

|x− y|N+sp dxdy +
1
p

∫
RN

V(x) |vn|p dx− λ

p

∫
RN

a(x)|vn|r dx−
∫
RN

G(x, vn) dx

≤ 1
p

∫
RN

∫
RN

|vn(x)− vn(y)|p

|x− y|N+sp dxdy +
1
p

∫
RN

V(x) |vn|p dx−
∫
RN

G(x, vn) dx.

Then, one has

1
p

∫
RN

∫
RN

|vn(x)− vn(y)|p
|x− y|N+sp dxdy +

1
p

∫
RN

V(x) |vn|p dx ≥
∫
RN

G(x, vn) dx + Iλ(vn). (8)

The assumption (G3) implies that we can choose t0 > 1, such that G(x, t) > |t|p for all x ∈ RN and
|t| > t0. From (G1) and (G2), there is a constant C > 0, such that |G(x, t)| ≤ C for all (x, t) ∈ RN × [−t0, t0].
Therefore, we can choose a real number K0, such that G(x, t) ≥ K0 for all (x, t) ∈ RN ×R, and thus,

G(x, vn)− K0
1
p
∫
RN

∫
RN
|vn(x)−vn(y)|p
|x−y|N+sp dxdy + 1

p
∫
RN V(x) |vn|p dx

≥ 0,

for all x ∈ RN and for all n ∈ N. Using the convergence (6), we know that |vn(x)| = |wn(x)| ||vn||Xs(RN) →
∞ as n→ ∞ for all x ∈ Ω. In addition, we obtain from (G3) that for all x ∈ Ω,

lim
n→∞

G(x, vn)
1
p
∫
RN

∫
RN
|vn(x)−vn(y)|p
|x−y|N+sp dxdy + 1

p
∫
RN V(x) |vn|p dx

≥ lim
n→∞

G(x, vn)
1
p ||vn||pXs(RN)

= lim
n→∞

pG(x, vn)

|vn(x)|p
|wn(x)|p = ∞. (9)

Hence, we get that |Ω| = 0. Indeed, if |Ω| 6= 0, then taking into account (7)–(9) and the Fatou lemma,
we deduce that

1 = lim inf
n→∞

∫
RN G(x, vn) dx∫

RN G(x, vn) dx + Iλ(vn)

≥ lim inf
n→∞

∫
Ω

G(x, vn)

1
p
∫
RN

∫
RN
|vn(x)−vn(y)|p
|x−y|N+sp dxdy + 1

p
∫
RN V(x) |vn|p dx

dx

− lim sup
n→∞

∫
Ω

K0
1
p
∫
RN

∫
RN
|vn(x)−vn(y)|p
|x−y|N+sp dxdy + 1

p
∫
RN V(x) |vn|p dx

dx

= lim inf
n→∞

∫
Ω

G(x, vn)− K0
1
p
∫
RN

∫
RN
|vn(x)−vn(y)|p
|x−y|N+sp dxdy + 1

p
∫
RN V(x) |vn|p dx

dx

≥
∫

Ω
lim inf

n→∞

G(x, vn)− K0
1
p
∫
RN

∫
RN
|vn(x)−vn(y)|p
|x−y|N+sp dxdy + 1

p
∫
RN V(x) |vn|p dx

dx

=
∫

Ω
lim inf

n→∞

G(x, vn)

1
p
∫
RN

∫
RN
|vn(x)−vn(y)|p
|x−y|N+sp dxdy + 1

p
∫
RN V(x) |vn|p dx

dx

−
∫

Ω
lim sup

n→∞

K0
1
p
∫
RN

∫
RN
|vn(x)−vn(y)|p
|x−y|N+sp dxdy + 1

p
∫
RN V(x) |vn|p dx

dx = ∞,

which is a contradiction. Thus, w(x) = 0 for almost all x ∈ RN .
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Notice that V(x)→ +∞ as |x| → ∞, then( 1
p
− 1

ν

) ∫
RN

V(x) |vn|p dx− C4

∫
|vn |≤M

(|vn|p + b(x) |vn|q) dx

≥ 1
2

( 1
p
− 1

ν

) ∫
RN

V(x) |vn|p dx−K0,

where C4 and K0 are positive constants. Combining this with (G2), (G3), and (G4), one has

K1 + o(1) ≥ Iλ(vn)−
1
ν

〈
I ′λ(vn), vn

〉
≥
( 1

p
− 1

ν

) ∫
RN

∫
RN

|vn(x)− vn(y)|p

|x− y|N+sp dxdy +
( 1

p
− 1

ν

) ∫
RN

V(x) |vn|p dx

− λ

(
1
r
− 1

ν

) ∫
RN

a(x)|vn|r dx +
∫
RN

(
1
ν

g(x, vn)vn − G(x, vn)

)
dx

≥
( 1

p
− 1

ν

) ∫
RN

∫
RN

|vn(x)− vn(y)|p

|x− y|N+sp dxdy +
( 1

p
− 1

ν

) ∫
RN

V(x) |vn|p dx

− λ

(
1
r
− 1

ν

) ∫
RN

a(x)|vn|r dx +
∫
|vn |>M

(
1
ν

g(x, vn)vn − G(x, vn)

)
dx

− C4

∫
|vn |≤M

(|vn|p + b(x) |vn|q) dx

≥
( 1

p
− 1

ν

) ∫
RN

∫
RN

|vn(x)− vn(y)|p

|x− y|N+sp dxdy +
1
2

( 1
p
− 1

ν

) ∫
RN

V(x) |vn|p dx

− λ

(
1
r
− 1

ν

) ∫
RN

a(x)|vn|r dx− 1
ν

∫
RN

(
$ |vn|p + η(x)

)
dx−K0

≥ 1
2

( 1
p
− 1

ν

)(∫
RN

∫
RN

|vn(x)− vn(y)|p

|x− y|N+sp dxdy +
∫
RN

V(x) |vn|p dx
)

− λ

(
1
r
− 1

ν

) ∫
RN

a(x)|vn|r dx− 1
ν

∫
RN

(
$ |vn|p + η(x)

)
dx−K0

≥ 1
2

( 1
p
− 1

ν

)
||vn||pXs(RN)

− λ

(
1
r
− 1

ν

)
||a||

L
p

p−r (RN)
||vn||rLp(RN)

− $

ν
||vn||pLp(RN)

− 1
ν
||η||L1(RN) −K0,

which implies

1 ≤ $

ν C9
2

(
1
p −

1
ν

) lim sup
n→∞

||wn||pLp(RN)
=

$

ν C9
2

(
1
p −

1
ν

) ||w||pLp(RN)
. (10)

Hence, it follows from (10) that w 6= 0. Thus, we can conclude a contradiction. Therefore, {vn} is bounded
in Xs(RN). This completes the proof.

Lemma 8. ([36,47]) Let X be a Banach space and x0 be a fixed point of X. Suppose that f : E → R ∪ {+∞} is
a lower semi-continuous function, not identically +∞, bounded from below. Then, for every ε > 0 and y ∈ X,
such that

f (y) < inf
X

f + ε,

and every λ > 0, there exists some point z ∈ X, such that

f (z) ≤ f (y), ||z− x0||X ≤ (1 + ||y||X)(eλ − 1),
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and
f (x) ≥ f (z)− ε

λ(1 + ||z||X)
||x− z||X for all x ∈ X.

Theorem 1. Assume that (V), (A) and (G1)–(G5) hold. Then, there is a constant λ∗ > 0, such that for any
λ ∈ (0, λ∗), problem (1) possesses at least two different nontrivial solutions in Xs(RN).

Proof. In accordance with Lemmas 5 and 7, there is a positive number λ∗, such that Iλ has the mountain
pass geometry and (C)-condition for any λ ∈ (0, λ∗). By invoking the mountain pass theorem, we assert
that there exists a critical point v0 ∈ Xs(RN) of Iλ with Iλ(v0) = ` > 0 = Iλ(0). Hence, we know that v0

is a nontrivial weak solution of the problem (1). According to Lemma 5, for a fixed λ ∈ (0, λ∗), we can
choose R > 0 and 0 < δ < 1, such that Iλ(v) ≥ R if ||v||Xs(RN) = δ. Let us denote ` := infz∈Bδ

Iλ(v), where
Bδ := {v ∈ Xs(RN) : ||v||Xs(RN) < δ} with a boundary ∂Bδ. Then, taking (3) and Lemma 5 (3) into account,
we have −∞ < ` < 0. Putting 0 < ε < infz∈∂Bδ

Iλ(v)− `, owing to Lemma 8, we can choose vε ∈ Bδ,
such that Iλ(vε) ≤ `+ ε

Iλ(vε) < Iλ(v) + ε
1+||vε ||Xs(RN )

||v− vε||Xs(RN), for all v ∈ Bδ v 6= vε.
(11)

Then, it holds that vε ∈ Bδ since Iλ(vε) ≤ `+ ε < infv∈∂Bδ
Iλ(v). From these facts, we have that vε is

a local minimum of Ĩλ(v) = Iλ(v) + ε
1+||vε ||Xs(RN )

||v− vε||Xs(RN). Now, by taking v = vε + tw for w ∈ B1

with t > 0 that is small enough, from (11), we deduce

0 ≤ Ĩλ(vε + tw)− Ĩλ(vε)

t
=
Iλ(vε + tw)− Iλ(vε)

t
+

ε

1 + ||vε||Xs(RN)
||w||Xs(RN).

Therefore, letting t→ 0+, we get〈
I ′λ(vε), w

〉
+

ε

1 + ||vε||Xs(RN)
||w||Xs(RN) ≥ 0.

Substituting −w for w in the argument above, we derive

−
〈
I ′λ(vε), w

〉
+

ε

1 + ||vε||Xs(RN)
||w||Xs(RN) ≥ 0.

Thus, one has
(1 + ||vε||Xs(RN))

∣∣〈I ′λ(vε), w
〉∣∣ ≤ ε||w||Xs(RN)

for any w ∈ B1. Hence, we get

(1 + ||vε||Xs(RN))||I ′λ(vε)||Xs(RN)∗ ≤ ε. (12)

Combining (11) with (12), we can choose a sequence {vn} ⊂ Bδ, such that{
Iλ(vn)→ ` as n→ ∞

(1 + ||vn||Xs(RN))||I ′λ(vn)||Xs(RN)∗ → 0 as n→ ∞.
(13)

Thus, {vn} is a bounded Cerami sequence in Xs(RN). Due to Lemma 7, {vn} admits a subsequence {vnk},
such that vnk → v1 in Xs(RN) as k → ∞. With the help of this and (13), we obtain that Iλ(v1) = ` and
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I ′λ(v1) = 0. Hence, v1 is a nontrivial solution of the given problem with Iλ(v1) < 0, which is different
from v0. This finishes the proof.

Next, employing the fountain theorem in [49] (Theorem 3.6), we demonstrate the existence of a
sequence of nontrivial weak solutions to problem (1). Let X be a separable and reflexive Banach space.
It is well-known that there are {en} in X and { f ∗n} in X∗, such that

X = span{en : n = 1, 2, · · · }, X∗ = span{ f ∗n : n = 1, 2, · · · },

and

〈
f ∗i , ej

〉
=

{
1 if i = j,

0 if i 6= j.

Let us denote Xn = span{en}, Yk =
⊕k

n=1 Xn, and Zk =
⊕∞

n=k Xn. Then, we recall the fountain theorem.

Lemma 9. ([49]) Let X be a real reflexive Banach space, E ∈ C1(X ,R) satisfies the (C)c-condition for any c > 0,
and E is even. If, for each sufficiently large k ∈ N, there exist ρk > δk > 0, such that the following conditions hold:

(1) bk := inf{E(v) : v ∈ Zk, ||v||X = δk} → ∞ as k→ ∞;
(2) ak := max{E(v) : v ∈ Yk, ||v||X = ρk} ≤ 0,

then, the functional E has an unbounded sequence of critical values—that is, there exists a sequence {vn} ⊂ X ,
such that E ′(vn) = 0 and E(vn)→ ∞ as n→ ∞.

Using Lemma 9, the existence of infinitely many nontrivial weak solutions for problem (1) is stated as
follows:

Theorem 2. Let 0 < s < 1 < p < +∞ and ps < N. Assume that (V), (A) and (G1)–(G4) hold. If g(x,−t) =
−g(x, t) satisfies for all (x, t) ∈ RN ×R, then, problem (1) possesses a sequence of nontrivial weak solutions {vn}
in Xs(RN), such that Iλ(vn)→ ∞ as n→ ∞ for any λ > 0.

Proof. Obviously, Iλ is an even functional, and fulfils the (C)c-condition for any c ∈ R by Lemma 7.
Note that Xs(RN) is a separable and reflexive Banach space. Thanks to Lemma 9, it suffices to prove that
there exist ρk > δk > 0, such that

(1) bk := inf{Iλ(v) : v ∈ Zk, ||v||Xs(RN) = δk} → ∞ as k→ ∞;
(2) ak := max{Iλ(v) : v ∈ Yk, ||v||Xs(RN) = ρk} ≤ 0,

for a sufficiently large k. We denote

ϑk := sup
v∈Zk ,||v||Xs(RN )

=1

( ∫
RN
|v(x)|q dx

)
, p < q < p∗s .

Then, we know ϑk → 0 as k→ ∞. Indeed, suppose on the contrary that there is a positive constant ε0 and
the sequence {vk} in Zk, such that

||vk||Xs(RN) = 1,
∫
RN
|vk(x)|q dx ≥ ε0,



Mathematics 2020, 8, 1792 13 of 17

for all k ≥ k0. Since the sequence {vk} is bounded in Xs(RN), there exists an element v in Xs(RN),
such that vk ⇀ v in Xs(RN) as k→ ∞, and

〈 f ∗j , v〉 = lim
k→∞
〈 f ∗j , vk〉 = 0

for j = 1, 2, · · · . Hence, we get v = 0. However, we know

ε0 ≤ lim
k→∞

∫
RN
|vk(x)|q dx =

∫
RN
|v(x)|q dx = 0,

that it is a contradiction.
For any v ∈ Zk, it follows from

Iλ(v) =
1
p
(|v|pWs,p(RN)

+ ||v||pLp(V,RN)
)− λ

∫
RN

a(x) |v(x)|r dx−
∫
RN

G(x, v) dx

≥ 1
p
(|v|pWs,p(RN)

+ ||v||pLp(V,RN)
)− λ

∫
RN

a(x) |v(x)|r dx−
∫
RN

b(x)
q
|v(x)|q dx

≥ 1
p
(|v|pWs,p(RN)

+ ||v||pLp(V,RN)
)− λ||a||

L
p

p−r (RN)
||v||rLp(RN) −

1
q
||b||L∞(RN)

∫
RN
|v(x)|q dx

≥ 1
p
(|v|pWs,p(RN)

+ ||v||pLp(V,RN)
)− λC5||v||rXs(RN) −

C6

q
||v||qLq(RN)

≥ 1
p
||v||pXs(RN)

− λC5||v||rXs(RN) −
C6

q
ϑ

q
k ||v||

q
Xs(RN)

,

where C5 and C6 are positive constants. Choosing δk = (C6ϑ
q
k)

1/(p−q), we assert δk → ∞ as k → ∞,
since p < q and ϑk → 0 as k→ ∞. Hence, if v ∈ Zk and ||v||Xs(RN) = δk, then, we deduce that

Iλ(v) ≥
(

1
p
− 1

q

)
δ

p
k − λC5δr

k → ∞ as k→ ∞,

which implies (1).
Next, suppose that condition (2) is not satisfied for some k. Then, there exists a sequence {vn} in Yk,

such that
||vn||Xs(RN) > 1 and ||vn||Xs(RN) → ∞ as n→ ∞ and Iλ(vn) ≥ 0. (14)

Let wn = vn/||vn||Xs(RN). Then, it is obvious that ||wn||Xs(RN) = 1. Since dim Yk < ∞, there exists
w ∈ Yk \ {0}, such that up to a subsequence,

||wn − w||Xs(RN) → 0 and wn(x)→ w(x)

for almost all x ∈ RN as n → ∞. For x ∈ Ω :=
{

x ∈ RN : w(x) 6= 0
}

, we obtain |vn(x)| → ∞ as n → ∞.
Hence, we deduce from the assumption (G3) that

lim
n→∞

G(x, vn)

||vn||pXs(RN)

≥ lim
n→∞

G(x, vn)

|vn(x)|p
|wn(x)|p = ∞. (15)

As shown in the proof of Lemma 7, we can choose C1 ∈ R, such that

G(x, vn)− C1

||vn||pXs(RN)

≥ 0 (16)
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for x ∈ Ω. Considering (15) and (16) and the Fatou lemma, we assert by a similar argument to (9) that

lim
n→∞

∫
Ω

G(x, vn)

||vn||pXs(RN)

dx ≥ lim inf
n→∞

∫
Ω

G(x, vn)− C1

||vn||pXs(RN)

dx

≥
∫

Ω
lim inf

n→∞

G(x, vn)

||vn||pXs(RN)

dx = ∞. (17)

Consequently, using the relation (17), we have

Iλ(vn) ≤
1
p
||vn||pXs(RN)

− λ
∫
RN

a(x) |vn(x)|r dx−
∫

Ω
G(x, vn) dx

≤ 1
p
||vn||pXs(RN)

1− p
∫

Ω

G(x, vn)

||vn||pXs(RN)

dx

→ −∞

as n→ ∞, which yields a contradiction to (14). The proof is complete.

3. Conclusions

In this paper, we used the variational methods to get the existence of nontrivial distinct solutions
to problem (1) for the case of a combined effect of concave-convex-type nonlinearities. As far as we are
aware, the present paper is the first attempt to study the multiplicity of nontrivial weak solutions to
Schrödinger-type problems with the concave-convex nonlinearity in these circumstances. Additionally,
we address to the readers several comments and perspectives.

I. We point out that with a similar analysis, our main consequences continue to hold when (−∆)s
pv in (1)

is changed into any non-local integro-differential operator LK in (2), where K : RN \ {0} → (0,+∞)

is a kernel function satisfying properties that

(K1) mK ∈ L1(RN), where m(x) = min{|x|p, 1};
(K2) there exists θ > 0, such that K(x) ≥ θ|x|−(N+ps) for all x ∈ RN \ {0};
(K3) K(x) = K(−x) for all x ∈ RN \ {0}.

II. A new research direction which has a strong relationship with several related applications is the study
of Kirchhoff-type equations

M
( ∫

RN

∫
RN

|v(x)− v(y)|p
|x− y|N+ps dx dy

)
(−∆)s

pv + V(x)|v|p−2v = λa(x)|v|r−2v + g(x, v) in RN ,

where M ∈ C(R+
0 ,R+) is a Kirchhoff-type function and M : R+

0 → R+ satisfies the
following conditions:

(M1) M ∈ C(R+
0 ,R+) fulfils inft∈R+

0
M(t) ≥ m0 > 0, where m0 is a constant.

(M2) There is a positive constant θ ∈ [1, N
N−ps ), such that θM(t) ≥ M(t)t for any t ≥ 0, where

M(t) :=
∫ t

0 M(τ)dτ.
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