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Abstract: In 2020, El-Morshedy et al. introduced a bivariate extension of the Burr type X
generator (BBX-G) of distributions, and Muhammed presented a bivariate generalized inverted
Kumaraswamy (BGIK) distribution. In this paper, we propose a more flexible generator of bivariate
distributions based on the maximization process from an arbitrary three-dimensional baseline
distribution vector, which is of interest for maintenance and stress models, and expands the
BBX-G and BGIK distributions, among others. This proposed generator allows one to generate new
bivariate distributions by combining non-identically distributed baseline components. The bivariate
distributions belonging to the proposed family have a singular part due to the latent component which
makes them suitable for modeling two-dimensional data sets with ties. Several distributional and
stochastic properties are studied for such bivariate models, as well as for its marginals, conditional
distributions, and order statistics. Furthermore, we analyze its copula representation and some
related association measures. The EM algorithm is proposed to compute the maximum likelihood
estimations of the unknown parameters, which is illustrated by using two particular distributions of
this bivariate family for modeling two real data sets.

Keywords: bivariate distribution generator; copula; reversed hazard gradient; maximum likelihood
estimation; EM algorithm; multivariate distribution generator

MSC: 60E05; 62H05; 62H10

1. Introduction

Gumbel [1], Freund [2], and Marshall and Olkin [3] in their pioneering papers developed bivariate
exponential distributions. Since then, an extensive amount of work has been done on these models
and their different generalizations, which have played a crucial role in the construction of multivariate
distributions and modeling in a wide variety of applications, such as physic, economy, biology,
health, engineering, computer science, etc. Several continuous bivariate distributions can be found in
Balakrishnan and Lai [4], and some generalizations and multivariate extensions have been studied
by Franco and Vivo [5], Kundu and Gupta [6], Franco et al. [7], Gupta et al. [8], Kundu et al. [9],
among others, and recently by Muhammed [10], Franco et al. [11], and El-Morshedy et al. [12], also
see the references cited therein.

Kundu and Gupta [13] introduced a bivariate generalized exponential (BGE) distribution by
using the trivariate reduction technique with generalized exponential (GE) random variables, which
is based on the maximization process between components with a latent random variable, suitable
for modeling of some stress and maintenance models. This procedure has also been applied in the
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literature to generate other bivariate distributions, for example, the bivariate generalized linear failure
rate (BGLFR) given by Sarhan et al. [14], the bivariate log-exponentiated Kumaraswamy (BlogEK)
introduced by Elsherpieny et al. [15], the bivariate exponentiated modified Weibull extension (BEMWE)
given by El-Gohary et al. [16], the bivariate inverse Weibull (BIW) studied by Muhammed [17]
and Kundu and Gupta [18], the bivariate Dagum (BD) provided by Muhammed [19], the bivariate
generalized Rayleigh (BGR) depicted by Sarhan [20], the bivariate Gumbel-G (BGu-G) presented
by Eliwa and El-Morshedy [21], the bivariate generalized inverted Kumaraswamy (BGIK) given
by Muhammed [10], and the bivariate Burr typeX-G (BBX-G) proposed by El-Morshedy et al. [12].
Some associated inferential issues have been discussed in these articles, and all of them are based on
considering the same kind of baseline components. In each of these bivariate models, the baseline
components belong to the proportional reversed hazard rate (PRH) family with a certain underlying
distribution (Gupta et al. [22] and Di Crescenzo [23]). It is worth mentioning that Kundu and
Gupta [24] extended the BGE model by using components within the PRH family, called a bivariate
proportional reversed hazard rate (BPRH) family, and a multivariate extension of the BPRH model
was studied by Kundu et al. [9].

The main aim of this paper is to provide a more flexible generator of bivariate distributions based
on the maximization process from an arbitrary three-dimensional baseline continuous distribution
vector, i.e., not necessarily identical continuous distributions. Hence, this proposed generator allows
researchers and practitioners to generate new bivariate distributions even by combining non-identically
distributed baseline components, which may be interpreted as a stress model or as a maintenance
model. We refer to the bivariate models from this generator as the generalized bivariate distribution
(GBD) family, which contains as special cases the aforementioned bivariate distributions. Note that a
two-dimensional random variable (X1, X2), belonging to the GBD family, has dependent components
due to a latent factor, and its joint cumulative distribution function (cdf) is not absolutely continuous,
i.e., the joint cdf is a mixture of an absolutely continuous part and a singular part due to the positive
probability of the event X1 = X2, whereas the line x1 = x2 has two-dimensional Lebesgue measure
zero. In general, the maximum likelihood estimation (MLE) of the unknown parameters a GBD model
cannot be obtained in closed form, and we propose using an EM algorithm to compute the MLEs of
such parameters.

The rest of the paper is organized as follows. The construction of the GBD family is given
in Section 2, and we obtain its decomposition in absolutely continuous and singular parts and its
joint probability density function (pdf). In Section 3, several special bivariate models are presented.
The cdf and pdf of the marginals and conditional distributions are derived in Section 4, as well as
for its order statistics. Some dependence and two-dimensional ageing properties for the GBD family,
and stochastic properties of their marginals and order statistics are studied in Section 5, as well as
its copula representation and some related association measures. The EM algorithm is proposed in
Section 6, which is applied in Section 7, for illustrative purposes, to find the MLEs of particular models
of the GBD family in the analysis of two real data sets. Finally, the multivariate extension is discussed
in Section 8, as well as the concluding remarks. Some of the proofs are relegated to Appendix A for
a fluent presentation of the results, and some technical details of the applications can be found in
Appendix B.

2. The GBD Family

In this section, we define the generalized bivariate distribution family as a generator system
from any three-dimensional baseline continuous distribution, and then we provide its joint cdf,
decomposition, and joint pdf.

Let U1, U2, and U3 be mutually independent random variables with any continuous distribution
functions FU1 , FU2 and FU3 , respectively. Let X1 = max(U1, U3) and X2 = max(U2, U3). Then,
the random vector (X1, X2) is said to be a GBD model with baseline distribution vector (FU1 , FU2 , FU3).
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Theorem 1. Let (X1, X2) be a GBD model with baseline distribution vector (FU1 , FU2 , FU3), then its joint cdf
is given by

F(x1, x2) = FU1(x1)FU2(x2)FU3(z), (1)

where z = min(x1, x2), for all x1, x2 ∈ R.

Proof. It is immediate since

F(x1, x2) = P(X1 ≤ x1, X2 ≤ x2) = P(max(U1, U3) ≤ x1, max(U2, U3) ≤ x2)

= P(U1 ≤ x1, U2 ≤ x2, U3 ≤ min(x1, x2)) = FU1(x1)FU2(x2)FU3(min(x1, x2)).

For instance, a stress model may lead to the GBD family, as in Kundu and Gupta [13]. Suppose
a two-component system where each component is subject to an individual independent stress, say
U1 and U2, respectively. The system has an overall stress U3 which has been equally transmitted to
both the components, independent of their individual stresses. Then, the observed stress for each
component is the maximum of both, individual and overall stresses, i.e., X1 = max(U1, U3) and
X2 = max(U2, U3), and (X1, X2) is a GBD model.

Analogously, a GBD model is also plausible for a maintenance model. Suppose a system has two
components, and it is assumed that each component has been maintained independently and there is
also an overall maintenance. Due to component maintenance, the lifetime of the individual component
is increased by a random time, say U1 and U2 respectively, and, because of the overall maintenance,
the lifetime of each component is increased by another random time U3. Then, the increased lifetime
of each component is the maximum of both individual and overall maintenances, X1 = max(U1, U3)

and X2 = max(U2, U3), respectively.
As mentioned before, a bivariate model belonging to the GBD family does not have an absolutely

continuous cdf. Let us see now the decomposition of a GBD model as a mixture of bivariate absolutely
continuous and singular cdfs, the proof is provided in Appendix A.

Theorem 2. Let (X1, X2) be a GBD model with baseline distribution vector (FU1 , FU2 , FU3). Then,

F(x1, x2) = αFs(x1, x2) + (1− α)Fac(x1, x2) (2)

where
Fs(x1, x2) =

1
α

∫ z

−∞
FU1(u)FU2(u)dFU3(u) (3)

and

Fac(x1, x2) =
1

1− α

(
FU1(x1)FU2(x2)FU3(z)−

∫ z

−∞
FU1(u)FU2(u)dFU3(u)

)
(4)

with z = min(x1, x2), are the singular and absolutely continuous parts, respectively, and

α =
∫ ∞

−∞
FU1(u)FU2(u)dFU3(u).

In addition, due to the singular part Fs in (2), the GBD family does not have a pdf with respect to
the two-dimensional Lebesgue measure even when the distribution functions FU1 , FU2 , and FU3 are
absolutely continuous. However, it is possible to construct a joint pdf for (X1, X2) through a mixture
between a pdf with respect to the two-dimensional Lebesgue measure and a pdf with respect to the
one-dimensional Lebesgue measure (the proof is provided in Appendix A).
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Theorem 3. If (X1, X2) is a GBD model with joint cdf given by (1), then the joint pdf with respect to µ,
the measure associated with F, is

f (x1, x2) =


f1(x1, x2), if x1 < x2

f2(x1, x2), if x1 > x2

f0(x), if x1 = x2 = x,

where
fi(x1, x2) = fUj(xj)

(
fUi (xi)FU3(xi) + FUi (xi) fU3(xi)

)
, with i 6= j ∈ {1, 2},

and
f0(x) = fU3(x)FU1(x)FU2(x),

when the pdf fUi of Ui exists, i = 1, 2, 3.

3. Special Cases

In this section, we derive new bivariate models from Theorem 1, taking into account particular
baseline distribution vectors (FU1 , FU2 , FU3).

Note that, if the baseline components Uis belong to the same distribution family, say FU , then the
proposed generator provides novel extended bivariate versions of that distribution FU . Furthermore,
under certain restrictions on the underlying parameters of each Ui, bivariate distributions given in the
literature are obtained. From now on, it is assumed that all parameters of each FUi are positive unless
otherwise mentioned.

Extended bivariate generalized exponential model. A random variable U follows a GE distribution,
U ∼ GE(θ, λ) (see Gupta and Kundu [25]), if its cdf is given by

FGE(u; θ, λ) =
(

1− e−λu
)θ

, for u > 0.

If Ui ∼ GE(θi, λi) i = 1, 2, 3, then the GBD model with the GE baseline distribution vector is
an extended BGE model with θ = (θ1, θ2, θ3) and λ = (λ1, λ2, λ3) parameter vectors, denoted as
(X1, X2) ∼ EBGE(θ, λ), and its joint cdf is

FEBGE(x1, x2) = FGE(x1; θ1, λ1)FGE(x2; θ2, λ2)FGE(z; θ3, λ3), for x1 > 0, x2 > 0,

where z = min(x1, x2).
As a particular case, if λ = λi, i = 1, 2, 3, (X1, X2) ∼ BGE(θ, λ) given by Kundu and Gupta [13].

Extended bivariate proportional reversed hazard rate model. If Ui ∼ PRH(θi) with base distribution
FBi i = 1, 2, 3, i.e., its cdf can be expressed as FUi = Fθi

Bi
(see Gupta et al. [22] and Di Crescenzo [23]), then

the GBD model with PRH baseline distribution vector provides an extended BPRH model, (X1, X2) ∼
EBPRH(θ, λ), with θ = (θ1, θ2, θ3) parameter vector of the PRH components and λ = (λ1, λ2, λ3)

parameter vector of the underlying distributions FBi ’s. From (1), its joint cdf is given by

FEBPRH(x1, x2) = Fθ1
B1
(x1; λ1)Fθ2

B2
(x2; λ2)Fθ3

B3
(z; λ3), for x1 > 0, x2 > 0,

where z = min(x1, x2).
In particular, if the PRH components have the same base distribution, FB = FBi i = 1, 2, 3, then

(X1, X2) ∼ BPRH(θ, λ) with baseline distribution FB(·; λ) introduced by Kundu and Gupta [24].

Extended bivariate generalized linear failure rate model. It is said that a random variable U follows a
GLFR distribution, U ∼ GLFR(θ, λ, γ) (see Sarhan and Kundu [26]), if its cdf is given by

FGLFR(u; θ, λ, γ) =
(

1− exp
(
−λu− γ

2
u2
))θ

, for u > 0.
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If Ui ∼ GLFR(θi, λi, γi) i = 1, 2, 3, then the GBD model with GLFRs baseline distribution vector
is an extended BGLFR model, (X1, X2) ∼ EBGLFR(θ, λ, γ), with parameters θ = (θ1, θ2, θ3), λ =

(λ1, λ2, λ3), and γ = (γ1, γ2, γ3), having joint cdf

FEBGLFR(x1, x2) = FGLFR(x1; θ1, λ1, γ1)FGLFR(x2; θ2, λ2, γ2)FGLFR(z; θ3, λ3, γ3), for x1 > 0, x2 > 0,

where z = min(x1, x2).
When λi = λ and γi = γ, i = 1, 2, 3, it is obtained that (X1, X2) ∼ BGLFR(θ, λ, γ) given by

Sarhan et al. [14].

Extended bivariate log-exponentiated Kumaraswamy model. Let U be a random variable with logEK
distribution, U ∼ logEK(θ, λ, γ) (see Lemonte et al. [27]), then its cdf

FlogEK(u; θ, λ, γ) =
(

1−
(

1−
(
1− e−u)λ

)γ)θ
, for u > 0.

If Ui ∼ logEK(θi, λi, γi) i = 1, 2, 3, then the GBD model with logEKs baseline distribution
vector is an extended BlogEK model, (X1, X2) ∼ EBlogEK(θ, λ, γ) with parameters θ = (θ1, θ2, θ3),
λ = (λ1, λ2, λ3), and γ = (γ1, γ2, γ3), and its joint cdf is given by

FEBlogEK(x1, x2) = FlogEK(x1; θ1, λ1, γ1)FlogEK(x2; θ2, λ2, γ2)FlogEK(z; θ3, λ3, γ3), for x1 > 0, x2 > 0,

where z = min(x1, x2).
Clearly, it can be seen that (X1, X2) ∼ BlogEK(θ, λ, γ) given by Elsherpieny et al. [15], when

λi = λ and γi = γ, i = 1, 2, 3.

Extended bivariate exponentiated modified Weibull extension model. A random variable U follows an
EMWE distribution, U ∼ EMWE(θ, α, β, λ) (see Sarhan and Apaloo [28]), if its cdf can be expressed as

FEMWE(u; θ, α, β, λ) =
(

1− exp
(

αλ
(

1− e(u/α)β
)))θ

, for u > 0.

If Ui ∼ EMWE(θi, αi, βi, λi) i = 1, 2, 3, then the GBD model with EMWEs baseline distribution
vector is an extended BEMWE model, (X1, X2) ∼ EBEMWE(θ, α, β, λ) with θ = (θ1, θ2, θ3) and
α = (α1, α2, α3), β = (β1, β2, β3), and λ = (λ1, λ2, λ3) parameter vectors, and its joint cdf is given by

FEBEMWE(x1, x2) = FEMWE(x1; θ1, α1, β1, λ1)FEMWE(x2; θ2, α2, β2, λ2)FEMWE(z; θ3, α3, β3, λ3),

for x1 > 0 and x2 > 0, where z = min(x1, x2).
Note that, if αi = α, βi = β and λi = λ, i = 1, 2, 3, then (X1, X2) ∼ BEMWE(θ, α, β, λ) given by

El-Gohary et al. [16].

Extended bivariate inverse Weibull model. The cdf of the IW distribution (e.g., see Keller et al. [29]) is
defined by

FIW(u; θ, λ) = e−λu−θ
, for u > 0.

If Ui ∼ IW(θi, λi) i = 1, 2, 3, then the GBD model with IWs baseline distribution vector is
an extended BIW model with θ = (θ1, θ2, θ3) and λ = (λ1, λ2, λ3) parameter vectors, denoted as
(X1, X2) ∼ EBIW(θ, λ), and its joint cdf can be written as

FEBIW(x1, x2) = e−λ1x
−θ1
1 −λ2x−θ2

2 −λ3z−θ3 , for x1 > 0, x2 > 0,

where z = min(x1, x2).
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In particular, (X1, X2) ∼ BIW(θ, λ) studied by Muhammed [17] and Kundu and Gupta [18],
when θi = θ for i = 1, 2, 3.

Extended bivariate Dagum model. It is said that a random variable U follows a Dagum
distribution [30], U ∼ D(θ, λ, γ), if its cdf is given by

FD(u; θ, λ, γ) = (1 + λu−γ)−θ , for u > 0.

If Ui ∼ D(θi, λi, γi) i = 1, 2, 3, then the GBD model with Dagum baseline distribution vector is
an extended BD model with θ = (θ1, θ2, θ3), λ = (λ1, λ2, λ3) and γ = (γ1, γ2, γ3) parameter vectors,
denoted as (X1, X2) ∼ EBD(θ, λ, γ), having joint cdf

FEBD(x1, x2) = FD(x1; θ1, λ1, γ1)FD(x2; θ2, λ2, γ2)FD(z; θ3, λ3, γ3), for x1 > 0, x2 > 0,

where z = min(x1, x2).
Note that, when λi = λ and γi = γ for i = 1, 2, 3, it is simplified to the model (X1, X2) ∼

BD(θ, λ, γ) defined by Muhammed [19].

Extended bivariate generalized Rayleigh model. The cdf of the GR distribution, also called Burr type
X model [31], is

FGR(u; θ, λ) =
(

1− e−(λu)2
)θ

, for u > 0.

If Ui ∼ GR(θi, λi) i = 1, 2, 3, then the GBD model with a GR baseline distribution vector is an extended
BGR model with θ = (θ1, θ2, θ3) and λ = (λ1, λ2, λ3) parameter vectors, (X1, X2) ∼ EBGR(θ, λ),
with joint cdf

FEBGR(x1, x2) = FGR(x1; θ1, λ1)FGR(x2; θ2, λ2)FGR(z; θ3, λ3), for x1 > 0, x2 > 0,

where z = min(x1, x2).
Hence, if λi = λ, i = 1, 2, 3, it is obtained that (X1, X2) ∼ BGR(θ, λ) given by Sarhan [20].

Extended bivariate Gumbel-G model. Alzaatrech et al. [32] proposed a transformed-transformer
method for generating families of continuous distributions. From such method, it is said that a random
variable U follows a Gumbel-G model, U ∼ Gu-G(θ, α, λ) if its cdf can be expressed as

FGu−G(u; G, θ, α, λ) = exp
(
−θ

(
1− G(u; λ)

G(u; λ)

)α)
, for u > 0

where G is the transformer distribution with parameter vector λ. If Ui ∼ Gu-G(θi, αi, λi) i = 1, 2, 3,
then the GBD model with Gu-Gs baseline distribution vector is an extended BGu-G model, (X1, X2) ∼
EBGu-G(θ, α, λG), with parameters θ = (θ1, θ2, θ3), α = (α1, α2, α3), and λG = (λ1, λ2, λ3), where λG
encompasses all parameter vectors of G in each baseline component. Thus, its joint cdf is given by

FEBGu−G(x1, x2) = FGu−G(x1; G, θ1, α1, λ1)FGu−G(x2; G, θ2, α2, λ2)FGu−G(z; G, θ3, α3, λ3),

for x1 > 0, x2 > 0, where z = min(x1, x2).
In particular, when αi = α and λi = λ for i = 1, 2, 3, (X1, X2) ∼ BGu-G(θ, α, λ) given by Eliwa

and El-Morshedy [21].

Extended bivariate generalized inverted Kumaraswamy model. A random variable U is said to be a
GIK distribution defined by Iqbal et al. [33], if its cdf is given by

FGIK(u; θ, α, γ) =
(
1− (1 + uγ)−α

)θ , for u > 0.
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If Ui ∼ GIK(θi, αi, γi) i = 1, 2, 3, then the GBD model with GIKs baseline distribution vector is an
extended BGIK model, (X1, X2) ∼ EBGIK(θ, α, γ), with parameters θ = (θ1, θ2, θ3), α = (α1, α2, α3),
and γ = (γ1, γ2, γ3), and its joint cdf can be written as

FEBGIK(x1, x2) = FGIK(x1; θ1, α1, γ1)FGIK(x2; θ2, α2, γ2)FGIK(z; θ3, α3, γ3), for x1 > 0, x2 > 0,

where z = min(x1, x2).
It is straightforward to see that (X1, X2) ∼ BGIK(θ, α, γ) analyzed by Muhammed [10] when

α = αi and γ = γi for i = 1, 2, 3.

Extended bivariate Burr type X-G model. From the transformed-transformer method of
Alzaatrech et al. [32], it is said that a random variable U follows a Burr X-G model, U ∼ BX-G(θ, λ) if
its cdf can be expressed as

FBX−G(u; G, θ, λ) =

(
1− exp

(
−
(

G(u; λ)

1− G(u; λ)

)2
))θ

, for u > 0

where λ is the parameter vector of the transformer distribution G.
If Ui ∼ BX-G(θi, λi) i = 1, 2, 3, then the GBD model with BX-Gs baseline distribution vector is

an extended BBX-G model, (X1, X2) ∼ EBBX-G(θ, λG), with parameters θ = (θ1, θ2, θ3), and λG =

(λ1, λ2, λ3), where λG encompasses all parameter vectors of G in each baseline component. Then, its
joint cdf can be expressed as

FEBBX−G(x1, x2) = FBX−G(x1; θ1, λ1)FBX−G(x2; θ2, λ2)FBX−G(z; θ3, λ3), for x1 > 0, x2 > 0,

where z = min(x1, x2).
In particular, if λ = λi for i = 1, 2, 3, then (X1, X2) ∼ BBX-G(θ, λ) introduced by

El-Morshedy et al. [12].

GBD models from different baseline components. In addition, a GBD model can be derived from
baseline components Uis belonging to different distribution families, which allows one to generate
new bivariate distributions.

For illustrative purposes, Figure 1a–d display 3D surfaces of different joint pdfs given by
Theorem 3, along with their contour plots. Here, U1 and U2 are taken identically distributed GE(θ, λ)

with different shape and scale parameter values, and U3 having a Weibull distribution with scale
parameter λ3 and shape parameter α = 6, W(λ3, 6).

Figure 1 shows that some of these GBD models are multi-modal bivariate models. It indicates a
variety of shapes for the GBD family depending on the different baseline distribution components and
for different parameter values.

(a) U1, U2 ∼ GE(6, 0.5) and U3 ∼W(2, 6). (b) U1, U2 ∼ GE(4, 0.5) and U3 ∼W(0.5, 6).

Figure 1. Cont.
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(c) U1, U2 ∼ GE(6, 1) and U3 ∼W(1, 6). (d) U1, U2 ∼ GE(3, 0.5) and U3 ∼W(0.5, 6).

Figure 1. Surface and contour plots of the joint pdf of GBD models (X1, X2) with different components
(U1, U2, U3).

4. Distributional Properties

Here, we derive the marginal and conditional distributions of the GBD family, and the order
statistics. Furthermore, some properties for particular baseline distribution vectors are provided.

4.1. Marginal and Conditional Distributions

From Theorem 1, it is easy to obtain the marginal cdfs of the components Xi’s, which can be
written as

FXi (xi) = FUi (xi)FU3(xi), with i = 1, 2, (5)

and, when the pdf fUi of Ui exists, i = 1, 2, 3, the corresponding pdfs are given by

fXi (xi) = fUi (xi)FU3(xi) + FUi (xi) fU3(xi), with i = 1, 2. (6)

For instance, we shall now suppose that Uis have PRH distributions, in order to provide some
preservation results of the PRH property on the marginals, and its closure under exponentiation of the
underlying distributions.

Proposition 1. If (X1, X2) has a GBD model formed by Ui ∼ PRH(θi) with baseline distribution FBi

(i = 1, 2, 3), then Xi ∼ PRH(θi + θ3) with base distribution FB∗i
= Fθi/(θi+θ3)

Bi
Fθ3/(θi+θ3)

B3
. Moreover, when

the base distribution is common, FB = FBi , then Xis also have the same baseline distribution FB.

Proof. It immediately follows from (5) and the EBPRH model, since FUi = Fθi
Bi

.

Corollary 1. If Ui ∼ PRH(θi) with base distribution FBi , having FBi ∼ PRH(λi) with base distribution FB̃i

(i = 1, 2, 3), then Xi ∼ PRH(θiλi + θ3λ3) with base distribution FB∗i
= Fθiλi/(θiλi+θ3λ3)

B̃i
Fθ3λ3/(θiλi+θ3λ3)

B̃3
.

Moreover, if FB̃ = FB̃i
(i = 1, 2, 3), then Xis also have the same base distribution FB̃.

In addition, Figure 2 displays the plots of the marginal pdfs of the GBD models depicted in
Figure 1a–d.

Note that Figure 2a–d show some bimodal shapes for the marginal pdfs given by (6) of the GBD
models represented in Figure 1a–d, which also exhibit some multi-modal shapes of the joint pdfs.
In this setting, Proposition 1 might be used to generate bimodal distributions from the marginals of
the GBD family by mixing different baseline distribution components as in Figure 1.
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(a) U1, U2 ∼ GE(6, 0.5) and U3 ∼W(2, 6).
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(b) U1, U2 ∼ GE(4, 0.5) and U3 ∼W(0.5, 6).
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(c) U1, U2 ∼ GE(6, 1) and U3 ∼W(1, 6).
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(d) U1, U2 ∼ GE(3, 0.5) and U3 ∼W(0.5, 6).

Figure 2. Plots of the marginal pdfs of the GBD models (X1, X2) with different components (U1, U2, U3).

Furthermore, we provide some results about the conditional distributions of a GBD model whose
proof can be found in Appendix A.

Theorem 4. If (X1, X2) has a GBD model with baseline distribution vector (FU1 , FU2 , FU3), then

1. The conditional distribution of Xi given Xj ≤ xj (i 6= j), say Fi|Xj≤xj
, is an absolutely continuous cdf

given by

Fi|Xj≤xj
(xi) =

 FUi (xi)
FU3 (xi)

FU3 (xj)
, if xi < xj

FUi (xi), if xi ≥ xj

.

2. The conditional pdf of Xi given Xj = xj (i 6= j), say fi|Xj=xj
, is a convex combination of an absolutely

continuous cdf and a degenerate cdf given by

fi|Xj=xj
(xi) = αj Ixj(xi) + (1− αj) fi|xj ,ac(xi),

where Ixj is the indicator function of the given point xj, and fi|xj ,ac is the absolutely continuous part

fi|Xj=xj ,ac(xi) =
1

1− αj


fXi (xi)

fUj
(xj)

fXj
(xj)

, if xi < xj

fUi (xi), if xi > xj
0, if xi = xj
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and the mixing weight αj is constant with respect to xi

αj = FU1(xj)FU2(xj)
fU3(xj)

fXj(xj)
.

4.2. Minimum and Maximum Order Statistics

Now, we provide the cdfs of the maximum and minimum order statistics of a GBD model, which
may be interpreted as the lifetimes of parallel and series systems based on the components of (X1, X2).

Theorem 5. If T1 = min(X1, X2) and T2 = max(X1, X2) of a GBD model (X1, X2) with baseline distribution
vector (FU1 , FU2 , FU3), then their cdfs are given by

FT1(x) = FU3(x)FU1:2(x) and FT2(x) = FU3:3(x) (7)

where U1:2 = min(U1, U2) and U3:3 = max(U1, U2, U3).

Proof. It is trivial from (1) and (5) by taking into account that FT2(x) = F(x, x) and FT1(x) = FX1(x) +
FX2(x)− FT2(x).

The pdfs fT1 and fT2 of the minimum and maximum statistics can be readily obtained by
differentiation of (7).

Furthermore, the PRH property is preserved by the maximum order statistic of a GBD model,
which is immediately derived from Theorem 5.

Corollary 2. If Ui ∼ PRH(θi) with baseline distribution FBi (i = 1, 2, 3), then T2 ∼ PRH(θ) with base
FB(2)

= Fθ1/θ
B1

Fθ2/θ
B2

Fθ3/θ
B3

and θ = θ1 + θ2 + θ3. Moreover, when FB = FBi (i = 1, 2, 3), then T2 also has the
same base distribution FB.

5. Dependence and Stochastic Properties

In this section, we study various dependence and stochastic properties on the GBD family, its
marginals and order statistics, and its copula representation. Notions of dependence and ageing for
bivariate distributions can be found in Lai and Xie [34] and Balakrishnan and Lai [4]; see also Shaked
and Shantikumar [35] for univariate and multivariate stochastic orders.

5.1. GBD Model

Proposition 2. If (X1, X2) ∼ GBD model, then (X1, X2) is positive quadrant dependent (PQD).

Proof. From (1) and (5), it is readily obtainable that F(x1, x2) ≥ FX1(x1)FX2(x2), which is equivalent to
say that all random vector (X1, X2), having a GBD model, is PQD.

An immediate consequence of the PQD property is that Cov(X1, X2) > 0. Other important
bivariate dependence properties are the following, whose proofs are provided in Appendix A.

Proposition 3. Let (X1, X2) be a random vector having a GBD model:

1. (X1, X2) is left tail decreasing (LTD).
2. (X1, X2) is left corner set decreasing (LCSD).
3. Its joint cdf F is totally positive and of order 2 (TP2).

Proof. Note that F is TP2 is equivalent to (X1, X2) is LCSD, which implies LTD (e.g., see Balakrishnan
and Lai [4]). Thereby, we only have to prove (3). From the definition of TP2 property, it is equivalent to
check that the following inequality holds:
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F(x)F(x′)
F(x ∨ x′)F(x ∧ x′)

≤ 1, (8)

for all x and x′, where x ∨ x′ = (max(x1, x′1), max(x2, x′2)), and x ∧ x′ = (min(x1, x′1), min(x2, x′2)).
Hence, from (1), the inequality (8) can be expressed as

FU3(u)FU3(v)
FU3(w)FU3(y)

≤ 1,

where u = x1 ∧ x2, v = x′1 ∧ x′2, w = (x1 ∨ x′1) ∧ (x2 ∨ x′2) and y = u ∧ v. Moreover, one can observe
that y ≤ u ∨ v = max(u, v) ≤ w.

Therefore, when u ≤ v, i.e., y = u ≤ v ≤ w, the inequality (8) can be simplified as follows:

FU3(v)
FU3(w)

≤ 1,

which is trivial, since v ≤ w and FU3 is a cdf. An analogous development follows for u > v, which
completes the proof.

Let us see now some results related to the reversed hazard gradient of a random vector from the
GBD family, which is defined as an extension of the univariate case, see Domma [36],

r(x) = (r1(x), r2(x)) =
(

∂

∂x1
,

∂

∂x2

)
ln F(x1, x2)

where each ri(x) represents the reversed hazard function of (Xi|Xj ≤ xj), i 6= j = 1, 2, and assuming
that F is differentiable. In addition, it is said that (X1, X2) has a bivariate decreasing (increasing)
reversed hazard gradient, BDRHG (BIRHG), if all components ris are decreasing (increasing) functions
in the corresponding variables.

Proposition 4. If (X1, X2) has a GBD model with baseline distribution vector (FU1 , FU2 , FU3), then its reversed
hazard gradient r(x) is given by

ri(x) =

{
rUi (xi) + rU3(xi), if xi < xj
rUi (xi), if xi ≥ xj

for i 6= j = 1, 2, when the reversed hazard function of Ui, rUi = fUi /FUi exists, i = 1, 2, 3.

Proof. The proof is straightforward from the definition of reversed hazard rate function corresponding
to the conditional cdf Fi|Xj≤xj

given by (1) of Theorem 4.

Theorem 6. Let (X1, X2) be a random vector having a GBD model. If Uis have decreasing reversed hazard
functions (DRH), then (X1, X2) ∈ BDRHG.

Proof. It is straightforward from Proposition 4.

Note that Theorem 6 provides the closure of the DRH property under the formation of a GBD
model. Thus, the bivariate extension of a DRH distribution FU generated by the GBD family is BDRHG.

Nevertheless, it does not hold for the increasing reversed hazard (IRH) property, since both ri(x)
given in Proposition 4 have a negative jump discontinuity at xi = xj for i 6= j = 1, 2. Therefore,
if Ui ∈ IRH, then (X1, X2) cannot be BIRHG.

Finally, we present some interesting stochastic ordering results between bivariate random vectors
of GBD type.
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Theorem 7. Let X = (X1, X2) and Y = (Y1, Y2) have GBD models with baseline distribution vectors
(FU1 , FU2 , FU3) and (FV1 , FV2 , FV3), respectively. If Ui ≤st Vi (i = 1, 2, 3), then X ≤lo Y .

Proof. The result immediately follows from the stochastic ordering between components and (1), since
Ui ≤st Vi is equivalent to FUi (x) ≥ FVi (x), and the lower orthant ordering is defined by the inequality
FX(x) ≥ FY (x) for all x = (x1, x2).

Corollary 3. Let X ∼ EBPRH(θ, λ) and Y ∼ EBPRH(θ∗, λ∗) with base distributions FBi and FB∗i
(i =

1, 2, 3), respectively. If θi ≤ θ∗i and FBi ≤st FB∗i
(i = 1, 2, 3), then X ≤lo Y .

Proof. It is obvious that Fθi
Bi
(xi) ≥ Fθ∗i

Bi
(xi) ≥ Fθ∗i

B∗i
(xi), i.e., Ui ≤st Vi, and then the proof readily follows

from Theorem 7.

Remark 1. From Corollary 3, if both EBPRH models are based on a common base distribution vector, FBi = FB∗i
(i = 1, 2, 3), then it is only necessary that θi ≤ θ∗i to hold the lower orthant ordering.

5.2. Marginals and Order Statistics

Now, we study some stochastic properties of the marginals and the minimum and maximum
order statistics of the GBD model.

Firstly, from (5) and (6), the reversed hazard function of the marginal Xis can be expressed as

rXi (x) =
fXi (x)
FXi (x)

= rUi (x) + rU3(x), i = 1, 2. (9)

Therefore, the DRH (IRH) property is preserved to the marginals.

Theorem 8. If (X1, X2) has a GBD model formed by Ui ∈ DRH (i = 1, 2, 3), then Xi ∈ DRH (i = 1, 2).

Remark 2. Note that the IRH distributions have upper bounded support [37]. Thus, if any Ui is not upper
bounded, its reversed hazard function is always decreasing at the end, and then the marginal cannot be IRH.
Therefore, it is necessary that Ui ∈ IRH (i = 1, 2, 3) and they have the same upper bounds to be Xi ∈ IRH
(i = 1, 2).

Example 1. Suppose Uis have extreme value distributions of type 3 with a common support, Ui ∼
EV3(β, λi, ki), whose cdf is defined by

FUi (u) = exp
(
−λi(β− u)ki

)
, for u ≤ β

and FUi (u) = 1 otherwise. Its reversed hazard function is given by

rUi (u) = λiki(β− u)ki−1, for u ∈ (−∞, β],

which is increasing (decreasing) in its support for ki ≤ (≥)1. Thus, if ki ≤ (≥)1 (i = 1, 2, 3), then
Ui ∈ IRH(DRH), and, consequently, Xi ∈ IRH(DRH) (i = 1, 2).

Example 2. If (X1, X2) has an EBGE model, then its marginals are DRH, since rXi given by (9) is the sum of
two decreasing functions because of each Ui ∼ GE(θi, λi) is a PRH(θi) with exponential baseline distribution

rUi (u) = θirExp(λi)
(u) =

θiλi

eλiu − 1
,

which is evidently a decreasing function. Here, Exp(λ) denotes an exponential random variable with mean 1/λ.
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Remark 3. From (9), when the Uis have a common distribution FU , then the marginals Xi ∼ PRH(2) with base
distribution FU . Therefore, rXi (x) = 2rU(x) has the same monotonicity. In particular, if FU ∈ DRH (IRH),
then Xi ∈ DRH (IRH).

Remark 4. From (9), if Ui ∼ PRH(θi) with the same base distribution FB, then Xi ∼ PRH(θi + θ3) with
base FB, i.e., rXi (x) = (θi + θ3)rB(x). Thus, Remark 3 also holds by using FB instead of FU .

Secondly, the mean inactivity time (MIT), also called mean waiting time [37], of a random variable
X is defined as

mX(x) = E(x− X|X ≤ x) =
∫ x

−∞

FX(y)
FX(x)

dy.

Thus, from (5), the MIT of the marginal Xis of a GBD model can be derived by

mXi (x) =
1

FUi (x)FU3(x)

∫ x

−∞
FUi (y)FU3(y)dy, i = 1, 2. (10)

Here, we shall focus on two particular cases of GBD models, having baseline components with
monotonous MIT, which is preserved by the marginals.

Example 3. Suppose Ui ∼ Exp(λ), then its MIT can be expressed as

mUi (u) =
u

1− e−λu −
1
λ

,

which is an increasing MIT function (IMIT), i.e., Ui ∈ IMIT. From (10), we obtain the MIT function of the
marginals Xis for the bivariate exponential version of GBD type,

mXi (x) =
(2λx− 3 + 4e−λx)− e−2λx

2λ(1− e−λx)2 .

Then, upon differentiation, m′Xi
(x) has the same sign as the expression 1− e−2λx − 2λxe−λx, which is positive,

and therefore Xi ∈ IMIT (i = 1, 2).

Example 4. Suppose Ui ∼ EV3(β, λi, k = 2), then its MIT can be expressed as

mUi (u) =
1

e−λi(β−u)2

∫ u

−∞
e−λi(β−y)2

dy =
Φ(u; µ, σi)

φ(u; µ, σi)
, for u ≤ β

where Φ(u; µ, σi) and φ(u; µ, σi) are the cdf and pdf of a normal model with µ = β and σi =
1√
2λi

, respectively.
Moreover, taking into account that a random variable and its standardized version have PRH functions, and the
standard normal distribution has the DRH property [38], we obtain that Ui ∈ IMIT.

Upon considering the cdf of Uis and (5), the marginal Xi ∼ EV3(β, λi + λ3, 2) (i = 1, 2). Thus, their
MIT can be written as

mXi (x) =
Φ(x; µ, σ̃i)

φ(x; µ, σ̃i)
, for x ≤ β

where σ̃i =
1√

2(λi+λ3)
for i = 1, 2, and, consequently, Xi ∈ IMIT.

On the other hand, the following stochastic orderings among the three baseline components of
two GBD models are preserved by their corresponding marginals. The proof immediately follows
from the definitions of the stochastic orderings.

Theorem 9. Let (X1, X2) and (Y1, Y2) have GBD models with base distribution vectors (FU1 , FU2 , FU3) and
(FV1 , FV2 , FV3), respectively.
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1. If Ui ≤st Vi (i = 1, 2, 3), then Xi ≤st Yi (i = 1, 2).
2. If Ui ≤rh Vi (i = 1, 2, 3), then Xi ≤rh Yi (i = 1, 2).

Finally, we discuss some stochastic properties of the minimum and maximum order statistics
of the GBD family. In this setting, from (7), the reversed hazard function of the maximum statistic
T2 of (X1, X2) of GBD type is determined by the sum of the reversed hazard rates of the baseline
distribution vector:

rT2(x) = rU1(x) + rU2(x) + rU3(x) (11)

when the pdf fUi of Ui exists, i = 1, 2, 3. Hence, it is immediate the following result.

Theorem 10. If Ui ∈ DRH(IRH) (i = 1, 2, 3), then T2 ∈ DRH(IRH).

Example 5. Suppose Ui ∼ EV3(β, λi, ki) (i = 1, 2, 3). Then, the reversed hazard function of T2 is given by

rT2(x) =
3

∑
i=1

λiki(β− x)ki−1,

and, therefore, if every ki ≤ (≥)1, i = 1, 2, 3, then rT2 is increasing (decreasing) in x, i.e., T2 ∈ IRH(DRH).

Example 6. If Ui ∼ GE(θi, λi), then the maximum statistic of the EBGE model is DRH, T2 ∈ DRH,
since (11) is the sum of three decreasing functions.

Remark 5. When Uis have a common distribution FU , the GBD model has a maximum statistic whose
cdf is FU cube, and (11) can be written as rT2(x) = 3rU(x). In particular, if FU ∈ DRH (IRH), then
T2 ∈ DRH (IRH).

Remark 6. From Corollary 2, if Ui ∼ PRH(θi) with the same base distribution FB, T2 ∼ PRH(θ) with base
FB and θ = θ1 + θ2 + θ3 , i.e., rT2(x) = θrB(x). Thus, T2 ∈ DRH (IRH) if and only if FB ∈ DRH (IRH).

Furthermore, the MIT of the maximum statistic of a GBD model (X1, X2) can be derived by

mT2(x) =
1

FU1(x)FU2(x)FU3(x)

∫ x

−∞
FU1(y)FU2(y)FU3(y)dy,

for each specific baseline distribution vector (FU1 , FU2 , FU3), when the integral exists. For instance, we
will consider a particular case, similar to one used in Example 4.

Example 7. Suppose (X1, X2) has a GBD model with Ui ∼ PRH(θi) and base distributions FBi ∼
EV3(β, λi, k = 2) for i = 1, 2, 3, then each component Ui ∼ EV3(β, θiλi, 2), and consequently, Ui ∈
IMIT for i = 1, 2, 3. Moreover, from Corollary 2, the maximum statistic T2 ∼ EV3(β, θ∗, 2) with
θ∗ = θ1λ1 + θ2λ2 + θ3λ3. Thus, T2 ∈ IMIT which is obtained along the same line as Example 4, since

mT2(x) =
Φ(x; β, (2θ∗)−1/2)

φ(x; β, (2θ∗)−1/2)
, for x ≤ β.

Regarding the minimum statistic T1 of (X1, X2) of GBD type, some preservation results are also
obtained based on its reversed hazard rate rT1 , the proofs are given in Appendix A, and from (7) rT1

can be written as
rT1(x) = rU1:2(x) + rU3(x). (12)

Theorem 11. If Ui ∈ DRH (i = 1, 2, 3) and U1:2 ≤rh Ui (i = 1, 2), then T1 ∈ DRH.
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Corollary 4. If Ui ∈ DRH (i = 1, 2, 3) and U1 =st U2, then T1 ∈ DRH.

Example 8. Suppose Ui ∼ GE(θ, λ) for i = 1, 2 and U3 ∼ GE(θ3, λ3), then Ui ∈ DRH, and, consequently,
T1 ∈ DRH from Corollary 4.

Remark 7. Note that, when Uis have a common distribution FU , (12) can be expressed as rT1(x) = rU(x)(3−
2/(2− FU(x))), and from Corollary 4, it is immediate to have that, if FU ∈ DRH, then T1 ∈ DRH.

Theorem 12. Let (X1, X2) be a GBD model. Then, T1 ≤rh T2.

Proof. From (11) and (12), the statement is equivalent to rU1:2(x) ≤ rU2:2(x), which readily follows
from Theorem 1.B.56 of Shaked and Shanthikumar [35], since the baseline components Uis are
independent.

5.3. Copula and Related Association Measures

Let us see now the copula representation of the GBD family and some related dependence
measures of interest in the analysis of two-dimensional data.

It is well known that the dependence between the random variables X1 and X2 is completely
described by the joint cdf F(x1, x2), and it is often represented by a copula which describes the
dependence structure in a separate form from the marginal behaviour. In this setting, from Sklar’s
theorem (e.g., see [39]), if its marginal cdfs FXi s are absolutely continuous, then the joint cdf has a
unique copula representation for

F(x1, x2) = C
(

FX1(x1), FX2(x2)
)

,

and reciprocally, if F−1
Xi

is the inverse function of FXi (i = 1, 2), then there exists a unique copula C in
[0, 1]2, such that

C(u1, u2) = F
(

F−1
X1

(u1), F−1
X2

(u2)
)

.

Now, we can derive the copula representation for the joint cdf of the GBD family as a function
of its base distribution vector (FU1 , FU2 , FU3). In order to do this, by using (5), the joint cdf (1) can be
expressed as

F(x1, x2) = FX1(x1)FX2(x2)
FU3(min(x1, x2))

FU3(x1)FU3(x2)

and taking ui = FXi (xi), the associated copula for an arbitrary base distribution vector (FU1 , FU2 , FU3)

can be written as

C(u1, u2) = u1u2
min(A1(u1), A2(u2))

A1(u1)A2(u2)
, (13)

where
Ai(ui) = FU3

(
(FUi × FU3)

−1(ui)
)

, i = 1, 2,

which allows us to give an additional result.

Theorem 13. Let X = (X1, X2) and Y = (Y1, Y2) be two GBD models with baseline distribution vectors
(FU1 , FU2 , FU3) and (FV1 , FV2 , FV3), respectively. If X and Y have the same associated copula and Ui ≤st Vi,
then X ≤st Y .

Proof. It is immediate by using Theorem 6.B.14 of Shaked and Shanthikumar [35] and (5), since
Ui ≤st Vi implies Xi ≤st Yi.

Corollary 5. Let X = (X1, X2) and Y = (Y1, Y2) be two GBD models with common baseline distributions,
FU and FV , respectively. If U ≤st V, then X ≤st Y .
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Note that (13) provides a general formula to establish the specific copula upon considering
two particular continuous and increasing bijective functions A1 and A2 from [0, 1] onto [0, 1].
Fang and Li [40] analyzed some stochastic orderings for an equivalent copula representation to (13)
with interesting applications in network security and insurance. In the last section, we shall use the
bivariate copula representation (13) to discuss the multivariate extension of the GBD family.

Furthermore, (13) may be considered a generalization of the Marshall–Olkin copula, as displayed
in the following results whose proofs are omitted.

Corollary 6. If (X1, X2) has a GBD model with a common base distribution FU , then the copula representation
of its joint cdf is

C(u1, u2) = min(u1u1/2
2 , u1/2

1 u2).

Corollary 7. If (X1, X2) has a GBD model with PRHs baseline distribution vector of the same base FB,
i.e., (X1, X2) ∼ BPRH(θ1, θ2, θ3), then the copula representation of its joint cdf is

C(u1, u2) = min
(

u1uθ2/(θ2+θ3)
2 , uθ1/(θ1+θ3)

1 u2

)
.

Some association measures for a bivariate random vector (X1, X2) of GBD type can be derived
from the dependence structure described by the general expression (13) for each particular pair
of continuous and increasing bijective functions A1 and A2 determined by the specific baseline
distribution vector. For instance, for the special GBD models given in Corollaries 6 and 7, the measures
of dependence namely Kendall’s tau, Spearman’s rho, Blomqvist’s beta, and tail dependence
coefficients, see Nelsen [39] among others, can be calculated as follows.

Kendall’s tau. The Kendall’s τ is defined as the probability of concordance minus the probability of
discordance between two pairs of independent and identically distributed random vectors, (X1, X2)

and (Y1, Y2), as follows:

τ = P ((X1 −Y1)(X2 −Y2) > 0)− P ((X1 −Y1)(X2 −Y2) < 0) ,

and it can be calculated through its copula representation C(u1, u2) by

τ = 4E (C(U1,U2))− 1 = 1− 4
∫∫

[0,1]2

∂C(u1, u2)

∂u1

∂C(u1, u2)

∂u2
du1du2 (14)

with Uis uniform [0, 1] random variables whose joint cdf is C.
For example, if (X1, X2) has a GBD model with a common baseline FU , upon substituting from

the copula of Corollary 6 in (14), it is easy to check that Kendall’s τ = 1/3.
Analogously, from the copula given in Corollary 7 of the GBD model for PRH(θi) components

with a common base FB, the Kendall’s τ coefficient (14) can be written as

τ =
θ3

θ1 + θ2 + θ3
.

Spearman’s rho. The Spearman’s ρ coefficient measures the dependence by three pairs of independent
and identically distributed random vectors, (X1, X2), (Y1, Y2) and (Z1, Z2). It is defined as

ρ = 3 (P((X1 −Y1)(X2 − Z2) > 0)− P((X1 −Y1)(X2 − Z2) < 0)) ,

which can be computed by its copula representation C(u1, u2) by

ρ = 12E (U1U2)− 3. (15)
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Thus, if there is a common base distribution as in Corollary 6, the Spearman’s ρ coefficient between
X1 and X2 is ρ = 3/7.

In the case of Ui ∼ PRH(θi) with a common base distribution FB, from (15) and Corollary 7, this
association measure is

ρ =
3θ3

2θ1 + 2θ2 + 3θ3

which coincides with one obtained by Kundu et al. [9] for this specific GBD model, (X1, X2) ∼
BPRH(θ1, θ2, θ3). As remarked by Kundu et al. [9] for the BPRH model, both coefficients, τ and ρ, vary
between 0 and 1 as θ3 varies from 0 to ∞.

Blomqvist’s Beta. The Blomqvist’s β coefficient, also called the medial correlation coefficient, is
defined as the probability of concordance minus the probability of discordance between (X1, X2) and
its median point, say (m1, m2), taking the following form:

β = P ((X1 −m1)(X2 −m2) > 0)− P ((X1 −m1)(X2 −m2) < 0) = 4F(m1, m2)− 1,

and from the copula of its joint cdf F, it can be expressed as

β = 4C(1/2, 1/2)− 1. (16)

In the case of Corollary 6, it is immediate that the medial correlation coefficient between X1 and
X2 is β =

√
2− 1 when it follows a GBD model with a common baseline distribution.

In the other case, from Corollary 7, the Blomqvist’s β coefficient (16) is also readily obtainable
between the marginals of a BPRH model:

β =

{
2θ3/(θ2+θ3), if θ1 ≤ θ2

2θ3/(θ1+θ3), if θ1 > θ2,

which takes values between 0 and 1 as θ3 varies from 0 to ∞.

Tail Dependence. The tail dependence measures the association of extreme events in both directions,
the upper (lower) tail dependence λU (λL) provides an asymptotical association measurement in the
upper (lower) quadrant tail of a bivariate random vector, given by (if it exists)

λU(λL) = lim
u→1−(0+)

P
(

X2 > (≤)F−1
X2

(u)|X1 > (≤)F−1
X1

(u)
)

.

Similar to the above association coefficients, the tail dependence indexes can be calculated from
the copula representation C(u1, u2) of the joint cdf of (X1, X2), as follows:

λU = 2− lim
u→1−

1− C(u, u)
1− u

and λL = lim
u→0+

C(u, u)
u

. (17)

In particular, if (X1, X2) follows a GBD model with a common baseline distribution,
upon substituting from the copula of Corollary 6 in (17), it is easy to check that λL = 0 and λU = 1/2.

In the case of Ui ∼ PRH(θi) with the same base, from (17) and Corollary 7, it is clear that the tail
dependence indexes of the BPRH model are λL = 0 and

λU =

{
θ3

θ2+θ3
, if θ1 ≤ θ2

θ3
θ1+θ3

, if θ1 > θ2,

which takes values between 0 and 1 as θ3 varies from 0 to ∞.



Mathematics 2020, 8, 1776 18 of 30

6. Maximum Likelihood Estimation

In this section, we address the problem of computing the maximum likelihood estimations (MLEs)
of the unknown parameters based on a random sample. The problem can be formulated as follows.
Suppose {(x1i, x2i); i = 1, . . . , n} is a random sample of size n from a GBD model, where it is assumed
that, for j = 1, 2, 3, Uj has the pdf fUj(u; θj) and θj is of dimension pj. The objective is to estimate the
unknown parameter vector θ = (θ1, θ2, θ3). We use the following partition of the sample:

I1 = {i : x1i < x2i}, I2 = {i : x1i > x2i}, I0 = {i : x1i = x2i = xi}.

Based on the above observations, the log-likelihood function becomes

`(θ) = ∑
i∈I0

ln f0(xi; θ) + ∑
i∈I1

ln f1(x1i, x2i; θ) + ∑
i∈I2

ln f2(x1i, x2i; θ),

where f0(xi; θ), f1(x1i, x2i; θ), f2(x1i, x2i; θ) have been defined in Theorem 3.
Here, it is difficult to compute the MLEs of the unknown parameter vector θ by solving a

p1 + p2 + p3 optimization problem. To avoid that, we suggest using the EM algorithm, and the basic
idea is based on considering a random sample of size n from (U1, U2, U3), instead of the random sample
of size n from (X1, X2). From the observed sample {(x1i, x2i}, the sample {(u1i, u2i, u3i); i = 1, . . . , n}
has missing values as shown in Table 1. It is immediate that the MLEs of θ1, θ2 and θ3 can be obtained
by solving the following three optimization problems of dimensions p1, p2 and p3, respectively,

`j(θj) =
n

∑
i=1

ln fUj(uji; θj); j = 1, 2, 3,

which are computationally more tractable.

Table 1. Relation between (x1i, x2i) and (u1i, u2i, u3i).

Ik Ordering of Uj X1 X2 Missing

I0 u1i < u2i < u3i u3i u3i u1i, u2i
I0 u2i < u1i < u3i u3i u3i u1i, u2i
I1 u1i < u3i < u2i u3i u2i u1i
I1 u3i < u1i < u2i u1i u2i u3i
I2 u2i < u3i < u1i u1i u3i u2i
I2 u3i < u2i < u1i u2i u1i u3i

From Table 1, if, i ∈ I0, then u3i is known, and u1i and u2i are unknown. Similarly, if i ∈ I1

(i ∈ I2), then u2i (u1i) and max{u1i, u3i} (max{u2i, u3i}) are known. Hence, in the E-step of the EM
algorithm, the ‘pseudo’ log-likelihood function is formed by replacing the missing uji by its expected
value, ujim(θ), for i = 1, . . . , n and j = 1, 2, 3:

1. If i ∈ I0, then

ujim(θ) = E(Uj|Uj < xi) =
1

FUj(xi)

∫ xi

−∞
u fUj(u)du, j = 1, 2.

2. If i ∈ I1 and j, k ∈ {1, 3}, j 6= k, then

ujim(θ) = E(Uj|max{U1, U3} = x1i)

= x1iP(Uj > Uk) + P(Uj < Uk)
1

FUj(x1i)

∫ x1i

−∞
u fUj(u)du

= x1i

∫ ∞

−∞
fUj(u)FUk (u)du +

1
FUj(x1i)

∫ ∞

−∞
fUk (u)FUj(u)du

∫ x1i

−∞
u fUj(u)du.
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3. If i ∈ I2 and j, k ∈ {2, 3}, j 6= k, then

ujim(θ) = E(Uj|max{U2, U3} = x2i)

= x2iP(Uj > Uk) + P(Uj < Uk)
1

FUj(x2i)

∫ x2i

−∞
u fUj(u)du

= x2i

∫ ∞

−∞
fUj(u)FUk (u)du +

1
FUj(x2i)

∫ ∞

−∞
fUk (u)FUj(u)du

∫ x2i

−∞
u fUj(u)du.

Therefore, we propose the following EM algorithm to compute the MLEs of θ. Suppose at the k-th
iteration of the EM algorithm, the value of θ is θ(k) = (θ

(k)
1 , θ

(k)
2 , θ

(k)
3 ), then the following steps can be

used to compute θ(k+1):

E-step

• At the k-th step for i ∈ I0, obtain the missing u1i and u2i as u1im(θ
(k)) and u2im(θ

(k)),
respectively. For i ∈ I1 obtain the missing u1i and u3i as u1im(θ

(k)) and u3im(θ
(k)), respectively.

Similarly, for i ∈ I2, obtain the missing u2i and u3i as u2im(θ
(k)) and u3im(θ

(k)), respectively.
• Form the ’pseudo’ log-likelihood function as `(k)s (θ) = `

(k)
1s (θ1) + `

(k)
2s (θ2) + `

(k)
3s (θ3), where

`
(k)
1s (θ1) = ∑

i∈I0

ln fU1(u1im(θ
(k)); θ1) + ∑

i∈I1

ln fU1(u1im(θ
(k)); θ1) + ∑

i∈I2

ln fU1(u1i; θ1)

`
(k)
2s (θ2) = ∑

i∈I0

ln fU2(u2im(θ
(k)); θ2) + ∑

i∈I1

ln fU2(u2i; θ2) + ∑
i∈I2

ln fU2(u2im(θ
(k)); θ2)

`
(k)
3s (θ3) = ∑

i∈I0

ln fU3(u3i; θ3) + ∑
i∈I1

ln fU3(u3im(θ
(k)); θ3) + ∑

i∈I2

ln fU3(u3im(θ
(k)); θ3).

M-step

• θ(k+1) = (θ
(k+1)
1 , θ

(k+1)
2 , θ

(k+1)
3 ) can be obtained by maximizing `

(k)
1s (θ1), `

(k)
2s (θ2) and `

(k)
3s (θ3)

with respect to θ1, θ2 and θ3, respectively.

Mainly for illustrative purposes, two particular GBD models will be applied in the next section to
show the usefulness of the above EM algorithm. Firstly, we shall consider a GBD model with baseline
components having the same distribution type and different underlying parameters. Secondly, we
shall use a GBD model with baseline components from different distribution families. The technical
details of both of them can be found in Appendix B.

7. Data Analysis

In this section, we present the analysis of two-dimensional data sets in order to show how the
proposed EM algorithm can be applied to fit particular GBD models. For that, we shall suppose
the following two models described in Appendix B: Model I is the GBD model with the exponential
baseline distributions and different underlying parameters, Uj ∼ Exp(λj) (j = 1, 2, 3). Model II is
the GBD model with baseline components from Weibull and generalized exponential distributions,
U1 ∼W(λ1, α1), U2 ∼W(λ2, α2) and U3 ∼ GE(α3, λ3).

7.1. Soccer Data

We have analyzed a UEFA Champion’s League data set [41], played during the seasons 2004–2005
and 2005–2006. This set represents the soccer data where at least one goal has been scored by a kick
goal (penalty kick, foul kick or any other direct kick) by any team and one goal has been scored by the
home team. Here, in the bivariate data, (X1, X2), X1 represents the time in minutes of the first kick
goal and X2 represents the time in minutes scored by the home team. Clearly, all possibilities exist in
the data set, namely X1 < X2, X1 > X2 and X1 = X2.
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Meintanis [41] analyzed this data set using the Marshall–Olkin bivariate exponential model.
The marginals of the Marshall–Olkin bivariate exponential distribution are exponential, and then
they have constant hazard functions. A preliminary data analysis indicated that the empirical hazard
function of both the marginals are increasing and their reversed hazard functions are decreasing. Hence,
it may not be proper to use the Marshall–Olkin bivariate exponential model to analyze this data.

Example 9. In order to use Model I, we have started the initial guess as λ
(0)
1 = λ

(0)
2 = λ

(0)
3 = 1.

The algorithm stops after eight iterations, the final estimates and the associated 95% confidence intervals
are λ̂1 = 0.03126 (±0.01121), λ̂2 = 0.04630 (±0.01563) and λ̂3 = 0.04269 (±0.01875), with −257.8871
being the pseudo log-likelihood value. To check whether it has converged to the maximum or not, the performance
of the EM algorithm may be compared with the experimental results obtained by using a quasi-Newton method
for solving constrained nonlinear optimization problem, which have been summarized in Appendix C as well as
the corresponding ones to the subsequent examples.

One natural question is whether Model I fits the bivariate data or not. We have computed the
Kolmogorov–Smirnov (KS) distances with the corresponding p-values between the empirical and fitted cdfs for
the marginals and the maximum order statistic. The results are reported in Table 2, and, from them, we cannot
reject the null hypothesis that this data are coming from the GBD model with exponential baseline distributions.

Example 10. Let us consider now Model II. We have started the EM algorithm with the initial guesses
as α

(0)
1 = α

(0)
2 = α

(0)
3 = 1, λ

(0)
1 = 0.03, λ

(0)
2 = 0.05 and λ

(0)
3 = 0.04. The algorithm converges in

nineteen iterations, the final estimates and the associated 95% confidence intervals are α̂1 = 1.2987 (±0.3124),
λ̂1 = 0.0097 (±0.0005), α̂2 = 0.8047 (±0.2823), λ̂2 = 0.0093 (±0.0021), α̂3 = 1.0037 (±0.2879),
λ̂3 = 0.0369 (±0.008), with −201.1141 being the pseudo log-likelihood value.

The KS distances with the corresponding p-values for the marginals and the maximum statistic are reported
in Table 2. Thus, based on the p-values, we can say that the GBD model with two baseline Weibull distributions
and the third GE one fits the data reasonably well.

Summarizing, it is clear that both of the GBD models provide a good fit to the given data set and
the EM algorithm also works quite effectively in both the cases. Now, to compare Models I and II of
Examples 9 and 10, which provide a better fit, we compute the Akaike’s information criterion (AIC)
and Bayesian information criterion (BIC) values and they are also presented in Table 2. Therefore,
based on the AIC and BIC values, it is clear that Model I provides a better fit than Model II to the UEFA
Champion’s League data set.

Table 2. Goodness-of-fit results for UEFA Champion’s League data.

GBD Model
KS (p-Value)

X1 X2 max{X1, X2} AIC BIC

Model I 0.1491 (0.3830) 0.1099 (0.7622) 0.1530 (0.3517) 604.8663 609.6990
Model II 0.0976 (0.8719) 0.0839 (0.9565) 0.1139 (0.7228) 708.5430 718.2085

7.2. Diabetic Retinopathy Data

Let us consider now the diabetic retinopathy data set [42], available in the R package
“SurvCor” [43]. Such data were investigated by the National Eye Institute to assess the effect of
laser photocoagulation in delaying the onset of severe visual loss such as blindness in 197 patients
with diabetic retinopathy. For each patient, one eye was randomly selected for laser photocoagulation
and the other was given no treatment, being used as the control. The times to blindness in both eyes
were recorded in months and the censoring was caused by death, dropout, or the end of the study.

For illustrative purposes, we have considered those patients for which complete data are available.
Here, X1 denotes the time to the blindness of the untreated or control eye and X2 denotes the time
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to blindness of the treated eye. Out of 197 patients, we have complete information of X1 and X2 for
38 patients.

Example 11. As in Example 9, we have used Model I to analyze the data set. In this case, we have also used the
same initial guess as λ

(0)
1 = λ

(0)
2 = λ

(0)
3 = 1. We have used the proposed EM algorithm, the iteration stops

after 14 iterations, and the estimates of unknown parameters and the corresponding 95% confidence intervals
are λ̂1 = 0.0653 (±0.0175), λ̂2 = 0.0737(±0.0210) and λ̂3 = 0.1345(±0.3879), with −172.2314 being the
associated pseudo log-likelihood value.

The KS distances with the corresponding p-values between the empirical and fitted cdfs for the marginals
and the maximum statistic are presented in Table 3.

Example 12. As in Example 10, we have analyzed the data set by using Model II. We have started the EM
algorithm with the initial guesses α

(0)
1 = α

(0)
2 = α

(0)
3 = 1, λ

(0)
1 = 0.06, λ

(0)
2 = 0.07 and λ

(0)
3 = 0.13.

The algorithm stops after 27 iterations, the final estimates and the corresponding 95% confidence intervals
are α̂1 = 1.0937 (±0.2563), λ̂1 = 0.0447 (±0.0146), α̂2 = 0.5851 (±0.1345), λ̂2 = 0.2369 (±0.0763),
α̂3 = 0.8995 (±0.2787), λ̂3 = 0.1898 (±0.0478), with −125.4519 being the associated pseudo log-likelihood
value.

The KS distances with the corresponding p-values for the marginals and the maximum order statistic are
presented in Table 3.

From Table 3, we can also say that the estimated GBD models fit the diabetic retinopathy data
reasonably well in both the cases. Moreover, we also present the AIC and BIC values of the two models
in Table 3. Therefore, based on the AIC and BIC values, it is clear that Model I provides a better fit
than Model II for the diabetic retinopathy data.

Table 3. Goodness-of-fit results for diabetic retinopathy data.

GBD Model
KS (p-Value)

X1 X2 max{X1, X2} AIC BIC

Model I 0.1033 (0.8244) 0.1848 (0.1598) 0.1229 (0.6310) 585.9757 590.8884
Model II 0.0920 (0.8960) 0.0952 (0.8706) 0.1152 (0.6778) 592.1515 601.9770

8. Discussion and Conclusions

In this paper, we have presented the generalized bivariate distribution family by a
generator system based on the maximization process from any three-dimensional baseline
continuous distribution vector with independent components, providing bivariate models with
dependence structure.

For the proposed GBD family, several distributional and stochastic properties have been
established. The preservation of the PRH property for the marginals and the maximum order statistic
has been obtained. The positive dependence has been shown between both marginals of the GBD
models, some results about stochastic orders and on the preservation of the monotonicity of the
reversed hazard function and of the mean inactivity time. Furthermore, the copula representation
of the GBD model has been discussed, providing a general formula, and some related dependence
measures have been also calculated for specific copulas of particular bivariate distributions of the
GBD family. In addition, new bivariate distributions can be generated by combining independent
baseline components from different distribution families, and several bivariate distributions given in
the literature are derived as particular cases of the GBD family.

Note that, even in the simple case, the MLEs cannot be obtained in explicit forms, and it is
required solving a multidimensional nonlinear optimization problem. We have proposed using an
EM algorithm to compute the MLEs of the unknown parameters, and it is observed that the proposed
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EM algorithm perform quite satisfactorily in the two data analyses by using two different models of
the GBD family. The experimental results summarized in Table A1 disclose such efficiency of the EM
algorithm with respect to a conventional numerical iterative procedure of the Newton-type. In more
detail, Table A1 presents the experimental results obtained by the Broyden–Fletcher–Goldfarb–Shanno
algorithm for maximizing the log-likelihood function, available in the R package “maxLik” [44].

It is worth mentioning that the bivariate copula representation (13) allows us to discuss its
multivariate extension. Let Uis for i = 1, . . . , q + 1 be a set of q + 1 mutually independent random
variables with any continuous distribution functions, denoting by FUi the cdf of each Ui. Similarly
to (1), the joint cdf of the q-dimensional random vector (X1, . . . , Xq) with Xi = max(X1, X2) is given by

F(x1, ...xq) = FUq+1(min(x1, . . . , xq))
q

∏
i=1

FUi (xi)

which can be considered as a generator of q-dimensional distribution models, called generalized
multivariate distribution (GMD) family with baseline distribution vector (FU1 , ..., FUq+1). Hence,
the q-dimensional copula representation of this GMD family can be expressed as

C(u1, ..., uq) =

(
q

∏
i=1

ui

)
mini=1,...,q Ai(ui)

∏
q
i=1 Ai(ui)

,

where
Ai(ui) = FUq+1

(
(FUi × FUq+1)

−1(ui)
)

, for i = 1, ..., q.

From these q-dimensional joint cdf and copula, many distributional and stochastic properties
established for the GBD family are extensible to the GMD family. Furthermore, by using this generator
of multivariate distributions, the special bivariate models given in Section 3 can be easily extended
to the multivariate case, which contain multivariate versions of bivariate distributions given in
the literature.
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Appendix A

Proof of Theorem 2. First, taking into account the event A = (U3 > max(U1, U2)), the joint cdf can
be expressed as

F(x1, x2) = P(U1 ≤ x1, U2 ≤ x2, U3 ≤ min(x1, x2)|A)P(A)

+ P(U1 ≤ x1, U2 ≤ x2, U3 ≤ min(x1, x2)|A′)P(A′)

where A′ is the complementary event of A. For z = min(x1, x2), note that

P(U1 ≤ x1, U2 ≤ x2, U3 ≤ z|A) = P(U1 ≤ x1, U2 ≤ x2, U3 ≤ z|U1 < U3, U2 < U3)

= P(U1 ≤ U3, U2 ≤ U3, U3 ≤ z) =
∫ z

−∞
FU1(u)FU2(u)dFU3(u).
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Hence, it is immediate that Fs(x1, x2) given by (3) is a singular cdf as its mixed second partial
derivatives are zero when x1 6= x2.

Thus, α = P(A) may be established as follows:

α = P(U3 > max(U1, U2)) =
∫ ∞

−∞
P(U1 < u, U2 < u)dFU3(u)

=
∫ ∞

−∞
FU1(u)FU2(u)dFU3(u),

and, consequently, the bivariate cdf F(x1, x2) can be rewritten as (2), where the absolutely continuous
part Fac(x1, x2) can be obtained by subtraction:

Fac(x1, x2) = P(U1 ≤ x1, U2 ≤ x2, U3 ≤ min(x1, x2)|A′)

=
1

1− α
(F(x1, x2)− αFs(x1, x2))

=
1

1− α

(
FU1(x1)FU2(x2)FU3(z)−

∫ z

−∞
FU1(u)FU2(u)dFU3(u)

)
,

which completes the proof of the theorem.

Proof of Theorem 3. Let µ, µs and µac be the measures associated with F, Fs and Fac, respectively.
Obviously, µac is an absolutely continuous measure with respect to the two-dimensional Lebesgue
measure since

µac ((−∞, x1]× (−∞, x2]) = Fac(x1, x2) =
∫ x1

−∞

∫ x2

−∞
fac(u, v)dudv

where the pdf associated with Fac in (4), fac(u, v) = ∂2

∂u∂v Fac(u, v), can be written as

fac(x1, x2) =


1

1−α f1(x1, x2), if x1 < x2
1

1−α f2(x1, x2), if x1 > x2

0, if x1 = x2 = x.

On the other hand, µs is given by

µs ((−∞, x1]× (−∞, x2]) = Fs(x1, x2) = Fs(z, z) =
1
α

∫ z

−∞
FU1(u)FU2(u)dFU3(u)

where z = min(x1, x2), and so it can be expressed as an absolutely continuous measure µ∗s with respect
to the one-dimensional Lebesgue measure on the projection onto the line R of the intersection between
(−∞, x1]× (−∞, x2] and the line x1 = x2:

µs ((−∞, x1]× (−∞, x2]) = µ∗s ((−∞, z]) =
∫ z

−∞
f ∗s (u)du,

where f ∗s (u) =
1
α FU1(u)FU2(u) fU3(u), which can be also written as f ∗s (u) =

1
α f0(u).

Furthermore, it is trivial that the line x1 = x2 is a null set under the two-dimensional Lebesgue
measure, and hence with respect to µac. In addition, its complement {(x1, x2) ∈ R2|x1 6= x2} is a null
set with respect to µs, since its projection onto the line R is the empty set,

µs

(
{(x1, x2) ∈ R2|x1 6= x2}

)
= µ∗s (∅) = 0,

and, consequently, the measures µs and µac are mutually singular. Therefore, the measure associated
with F
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µ ((−∞, x1]× (−∞, x2]) = F(x1, x2) = αµs ((−∞, x1]× (−∞, x2])

+ (1− α)µac ((−∞, x1]× (−∞, x2])

allows us to have the pdf of a GBD model with respect to µ, given by

f (x1, x2) = α f ∗s (x1)I(x1=x2)
(x1, x2) + (1− α) fac(x1, x2)

where I(x1=x2)
is the indicator function of x1 = x2. Hence, it is easy to check that

∫ x1

−∞

∫ x2

−∞
f (u, v)dµ = F(x1, x2)

for all (x1, x2) ∈ R2.

Proof of Theorem 4. From (1) and (5), the proof of (1) of Theorem 4 is straightforward.
In order to prove (2) of Theorem 4, from the joint pdf of a GBD model given in Theorem 3 and its

marginal pdf (6), the conditional pdf fi|Xj=xj
can be expressed as

fi|Xj=xj
(xi) =


fXi

(xi) fUj
(xj)

fXj
(xj)

, if xi < xj

fUi (xi), if xi > xj
FU1 (xj)FU2 (xj) fU3 (xj)

fXj
(xj)

, if xi = xj,

by using the notation αj = fi|Xj=xj
(xj), this conditional pdf can be readily rewritten as in the statement

of Theorem 4.

Proof of Theorem 11. The reversed hazard function (12) of the minimum statistic can be rewritten as

rT1(x) = rU1(x)g2(x) + rU2(x)g1(x) + rU3(x),

where each gi is a positive function (i = 1, 2) defined by

gi(x) = 1−
FUi (x)

FU1:2(x)
.

Here, observe that U1:2 ≤rh Ui implies the decreasing monotonicity of gi(x), and therefore rT1 is a sum
of three decreasing functions, which completes the proof.

Proof of Corollary 4. The proof readily follows along the same line as Theorem 11, taking into account
that (12) can be simplified by using

rU1:2(x) = 2rUi (x)gi(x)

where gi(x) = 1− 1
2−FUi

(x) decreases in x.

Appendix B

For practical implementation of the EM algorithm in the data analysis applications, we give the
technical details of the EM algorithm for two particular GBD models, first with baseline component
vector with the same distribution (Model I), and then with different baseline distributions (Model II).

Model I.
Suppose U1 ∼ Exp(λ1), U2 ∼ Exp(λ2) and U3 ∼ Exp(λ3). To compute the MLEs of the unknown

parameter vector θ = (λ1, λ2, λ3), one needs to solve a three-dimensional optimization problem.
For implementation of the EM algorithm, we need the following expected values:
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1. If i ∈ I0, then

u1im(θ) = E(U1|U1 < xi) = H(xi; λ1)

u2im(θ) = E(U2|U2 < xi) = H(xi; λ2),

where

H(x; λ) =
1
λ
− xe−λx

1− e−λx .

2. If i ∈ I1, then

u1im(θ) = E(U1|max{U1, U3} = x1i) =
λ3

λ1 + λ3
x1i +

λ1

λ1 + λ3
H(x1i; λ1)

u3im(θ) = E(U3|max{U1, U3} = x1i) =
λ1

λ1 + λ3
x1i +

λ3

λ1 + λ3
H(x1i; λ3).

3. If i ∈ I2, then

u2im(θ) = E(U2|max{U2, U3} = x2i) =
λ3

λ2 + λ3
x2i +

λ2

λ2 + λ3
H(x2i; λ2)

u3im(θ) = E(U3|max{U2, U3} = x2i) =
λ2

λ2 + λ3
x2i +

λ3

λ2 + λ3
H(x2i; λ3).

Hence, the ’pseudo’ log-likelihood function in this case becomes

`
(k)
s (λ1, λ2, λ3) = `

(k)
1s (λ1) + `

(k)
2s (λ2) + `

(k)
3s (λ3),

where

`
(k)
1s (λ1) = n ln λ1 − λ1

[
∑

i∈I0∪I1

u(k)
1im + ∑

i∈I2

x1i

]

`
(k)
2s (λ2) = n ln λ2 − λ2

[
∑

i∈I0∪I2

u(k)
2im + ∑

i∈I1

x2i

]

`
(k)
3s (λ3) = n ln λ3 − λ3

[
∑

i∈I1∪I2

u(k)
3im + ∑

i∈I0

xi

]
,

and the u(k)
jims are obtained from ujim(θ), j = 1, 2, 3, by replacing θ = (λ1, λ2, λ3) with θ(k) =

(λ
(k)
1 , λ

(k)
2 , λ

(k)
3 ). Therefore,

λ
(k+1)
1 =

n[
∑i∈I0∪I1

u(k)
1im + ∑i∈I2

x1i

]
λ
(k+1)
2 =

n[
∑i∈I0∪I2

u(k)
2im + ∑i∈I1

x2i

]
λ
(k+1)
3 =

n[
∑i∈I1∪I2

u(k)
3im + ∑i∈I0

xi

] .

Note that, in this case, the maximization can be performed analytically at each M-Step.
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Model II.
Suppose U1 ∼W(λ1, α1), U2 ∼W(λ2, α2) and U3 ∼ GE(α3, λ3). The pdf of a Weibull distribution

W(λ, α) with scale parameter λ > 0 and the shape parameter α > 0 can be written as

fW(u; λ, α) = αλuα−1e−λuα
, for u > 0,

and zero otherwise. Similarly, the GE(α, λ) model defined in Section 3 has the pdf

fGE(u; α, λ) = αλe−λu(1− e−λu)α−1; for u > 0,

and zero otherwise. Hence, one needs to solve a six-dimensional optimization problem to compute the
MLEs of the unknown parameter vector θ = (θ1, θ2, θ3) where each θi represents the parameter vector
of Ui.

We need the following expected values for implementation of the EM algorithm:

1. If i ∈ I0, then
ujim(θ) = E(Uj|Uj < xi) = HW(xi; αj, λj), j = 1, 2,

where

HW(x; α, λ) =
1

1− e−λxα

∫ λxα

0

( u
λ

)1/α
e−udu.

2. If i ∈ I1, then

u1im(θ) = E(U1|max{U1, U3} = x1i) = p13x1i + (1− p13)HW(x1i; α1, λ1)

u3im(θ) = E(U3|max{U1, U3} = x1i) = (1− p13)x1i + p13HG(x1i; α3, λ3),

where p13 = P(U1 > U3) = K(α1, λ1) and

K(α, λ) =
∫ ∞

0
αλxα−1e−λxα

(1− e−λ3x)α3 dx, HG(x; α, λ) = x− 1
λ(1− e−λx)α

∫ 1−e−λx

0

tα

1− t
dt

3. If i ∈ I2, then

u2im(θ) = E(U2|max{U2, U3} = x2i) = p23x2i + (1− p23)HW(x2i; α2, λ2)

u3im(θ) = E(U3|max{U2, U3} = x2i) = (1− p23)x2i + p23HG(x2i; α3, λ3),

where p23 = P(U2 > U3) = K(α2, λ2).

In this case, the terms of the ‘pseudo’ log-likelihood function `
(k)
s (θ) can be written as

`
(k)
1s (α1, λ1) = n ln α1 + n ln λ1 + (α1 − 1)

[
∑

i∈I0∪I1

ln u(k)
1im + ∑

i∈I2

ln x1i

]

− λ1

[
∑

i∈I0∪I1

(u(k)
1im)

α1 + ∑
i∈I2

xα1
1i

]
(A1)

`
(k)
2s (α2, λ2) = n ln α2 + n ln λ2 + (α2 − 1)

[
∑

i∈I0∪I2

ln u(k)
2im + ∑

i∈I1

ln x2i

]

− λ2

[
∑

i∈I0∪I2

(u(k)
2im)

α2 + ∑
i∈I1

xα2
2i

]
(A2)

`
(k)
3s (α3, λ3) = n ln α3 + n ln λ3 + (α3 − 1)

[
∑

i∈I1∪I2

ln(1− e−λ3u(k)
3im) + ∑

i∈I0

ln(1− e−λ3xi )

]

− λ3

[
∑
i∈I0

xi + ∑
i∈I1∪I2

u(k)
3im

]
. (A3)
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Therefore, u(k)
1im, u(k)

2im, u(k)
3im can be obtained from u1im(θ), u2im(θ) and u3im(θ) by replacing

θ = (α1, λ1, α2, λ2, α3, λ3) with θ(k) = (α
(k)
1 , λ

(k)
1 , α

(k)
2 , λ

(k)
2 , α

(k)
3 , λ

(k)
3 ). Thus, θ

(k+1)
1 = (α

(k+1)
1 , λ

(k+1)
1 ),

θ
(k+1)
2 = (α

(k+1)
2 , λ

(k+1)
2 ) and θ

(k+1)
3 = (α

(k+1)
3 , λ

(k+1)
3 ) can be obtained by maximizing (A1)–(A3),

respectively. Hence, we obtain them as follows:

λ
(k+1)
1 =

n

∑i∈I0∪I1
(u(k)

1im)
α
(k+1)
1 + ∑i∈I2

x
α
(k+1)
1

1i

,

λ
(k+1)
2 =

n

∑i∈I0∪I2
(u(k)

2im)
α
(k+1)
2 + ∑i∈I1

xα
(k+1)
2

2i

,

α
(k+1)
3 = − n

∑i∈I1∪I2
ln(1− e−λ

(k+1)
3 u(k)

3im) + ∑i∈I0
ln(1− e−λ

(k+1)
3 xi )

,

α
(k+1)
1 = arg max p1(α1),

α
(k+1)
2 = arg max p2(α2),

λ
(k+1)
3 = arg max p3(λ3),

where

p1(α1) = n ln α1 − n ln

[
∑

i∈I0∪I1

(u(k)
1im)

α1 + ∑
i∈I2

xα1
1i

]

+ (α1 − 1)

[
∑

i∈I0∪I1

ln u(k)
1im + ∑

i∈I2

ln x1i

]
,

p2(α2) = n ln α2 − n ln

[
∑

i∈I0∪I2

(u(k)
2im)

α2 + ∑
i∈I1

xα2
2i

]

+ (α2 − 1)

[
∑

i∈I0∪I2

ln u(k)
2im + ∑

i∈I1

ln x2i

]
,

p3(λ3) = n ln λ3 − n ln

[
− ∑

i∈I1∪I2

ln(1− e−λ3u(k)
3im)− ∑

i∈I0

ln(1− e−λ3xi )

]

− λ3

[
∑
i∈I0

xi + ∑
i∈I1∪I2

u(k)
3im

]
−
[

∑
i∈I1∪I2

ln(1− e−λ3u(k)
3im) + ∑

i∈I0

ln(1− e−λ3xi )

]
.

Note that, in this case, one needs to solve three one-dimensional optimization problems
numerically at each M-Step.
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Appendix C

Table A1. Summary of fitted GBD models for the two real data. EM rows are the parameters
estimated with the EM algorithm for maximizing the pseudo log-likelihood function, along with
the log-likelihood, AIC and BIC values, and BFGS rows correspond to the results obtained by applying
the Broyden–Fletcher–Goldfarb–Shanno algorithm for maximizing the log-likelihood function.

GBD Model
θ

α1 λ1 α2 λ2 α3 λ3 `(θ) AIC BIC

Soccer data

Model I
EM 0.03126 0.04630 0.04269 −299.4331 604.8663 609.6990

BFGS 0.03116 0.04636 0.04283 −299.4328 604.8656 609.6984

Model II
EM 1.2987 0.0097 0.8047 0.0093 1.0037 0.0369 −348.2715 708.5430 718.2085

BFGS 1.3808 0.00698 0.5652 0.25469 1.53813 0.05219 −295.3057 602.6114 612.2770

Diabetic retinopathy data

Model I
EM 0.0653 0.0737 0.1345 −289.9878 585.9757 590.8884

BFGS 0.06290 0.07181 0.14282 −289.9144 585.8288 590.7415

Model II
EM 1.0937 0.0447 0.5851 0.2369 0.8995 0.1898 −290.0758 592.1515 601.9770

BFGS 1.1477 0.03920 0.7917 0.13923 0.41913 0.08272 −285.5795 583.1590 592.9846
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