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Abstract: Recently, direct methods that involve higher derivatives to numerically approximate higher
order initial value problems (IVPs) have been explored, which aim to construct numerical methods
with higher order and very high precision of the solutions. This article aims to construct a fourth and
fifth derivative, three-point implicit block method to tackle general third-order ordinary differential
equations directly. As a consequence of the increase in order acquired via the implicit block method
of higher derivatives, a significant improvement in efficiency has been observed. The new method is
derived in a block mode to simultaneously evaluate the approximations at three points. The derivation
of the new method can be easily implemented. We established the proposed method’s characteristics,
including order, zero-stability, and convergence. Numerical experiments are used to confirm the
superiority of the method. Applications to problems in physics and engineering are given to assess
the significance of the method.
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1. Introduction

A wide variety of real life situations are represented by mathematical models as third order
ordinary differential equations (ODEs), such as chemical engineering, biology, electromagnetic waves,
quantum mechanics, the motion of rocket, and thin film flow [1–4]. Nevertheless, the theoretical
solutions for most of these equations are undefined; therefore, third-order ODEs have gained
significant attention and the need to develop numerical methods with more accurate approximations
is eminent [5–8]. In the classical way, solving higher order ODEs is done by reducing the equation
into an equivalent system of first-order ODEs, but this process is too rigorous compared to the direct
methods [9–11]. Not only that, but it is also found that the implementation process of the direct
methods is simpler and more accurate than the process of reduction [11]. In order to avoid the
reduction effort, many researchers have proposed different methods to solve initial value problems
(IVPs) of the ODEs directly [12–16]. To enhance the efficacy of numerical methods, many researchers
developed block methods by producing the r-point of the approximate solutions simultaneously.
Kuboye and Omar have presented a direct seven-step block method for solving third-order ODEs
by using a multistep collocation technique [17]. Awoyemi et al. [18] developed a direct continuous
five step collocation method for solving the general third order IVPs. An implicit continuous linear
multistep methods using the interpolation and collocation for solving the general third order IVPs was
proposed by [6]. Normally, direct methods are constructed by interpolation and collocation strategies,
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which is complicated due to the process of determining the coefficients of the method. Where the
points need to be collocated and interpolated after which a system of linear equations must be resolved.
Moreover, scholars have looked lately at methods that involved derivatives in solving ODEs, which
lead to a more accurate numerical results and to increase the order of the methods [8,19–21]. In fact,
the accuracy of a method increases with the increase in the order of the method. However, the idea of
incorporation of higher derivatives of the solution in the process leads to higher and better accuracy
and is achieved without a corresponding increase in the order of the method. Therefore, in this research,
our main concern is to propose an implicit three-point block method with fourth and fifth derivatives
of the solution by using a technique that can be implemented in a straightforward manner for directly
solving both linear and nonlinear problems of general third-order ODEs in the form of

y′′′ = f (t, y, y′, y′′) y(a) = y0, y′(a) = y′0, y′′(a) = y′′0 , a ≤ t ≤ b. (1)

We assume that f in Equation (1) is differentiable to a desired order in region R and f (t, y, y′, y′′)
satisfies the Lipchitz condition in its second, third and fourth terms as

| f (t, y1, y′, y′′)− f (t, y2, y′, y′′) |≤ L | y1 − y2 |,
| f (t, y, y′1, y′′)− f (t, y, y′2, y′′) |≤ L | y′1 − y′2 |,
| f (t, y, y′, y′′1 )− f (t, y, y′, y′′2 ) |≤ L | y′′1 − y′′2 |,

for all points (t, yi, y′, y′′), (t, y, y′i, y′′), and (t, y, y′, y′′i ); i = 1, 2 in the region R. Then the IVPs in
Equation (1) have a unique solution in R (see [22,23] ).

In the upcoming section we will derive the three-point implicit block method of order nine
(ITPBO9) and will discuss the basic idea of how the block method works. In Section 3 the main
properties of the suggested method are analyzed. The implementation of the method is presented in
Section 4. Section 5 presents the discussion on the numerical experiments as well as on applications
to equations of fluid flow, such as problems in thin film flow, the boundary layer equation and the
nonlinear Genesio equation. Lastly, the conclusion of the research is provided in Section 6.

2. Methodology

The three-point block method generates three approximate values, yn+1, yn+2 and yn+3

concurrently at tn+1, tn+2 and tn+3 respectively, using one earlier block, where tn becomes the starting
point and tn+3 is the last point in the block with step size 3h. The method is derived by applying
numerical integration thrice to Equation (1) to acquire the approximate formula of yn+1, yn+2 and yn+3.

Integrating the first, second and third point once gives:

y′′(tn+1) = y′′(tn) +
∫ tn+1

tn
f (t, y, y′, y′′)dt, (2)

y′′(tn+2) = y′′(tn+1) +
∫ tn+2

tn+1

f (t, y, y′, y′′)dt. (3)

y′′(tn+3) = y′′(tn+2) +
∫ tn+3

tn+2

f (t, y, y′, y′′)dt. (4)

Integrating the first, second and third point twice gives:

y′(tn+1) = y′(tn) + hy′′(tn) +
∫ tn+1

tn
(tn+1 − t) f (t, y, y′, y′′)dt, (5)

y′(tn+2) = y′(tn+1) + hy′′(tn+1) +
∫ tn+2

tn+1

(tn+2 − t) f (t, y, y′, y′′)dt, (6)
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y′(tn+3) = y′(tn+2) + hy′′(tn+2) +
∫ tn+3

tn+2

(tn+3 − t) f (t, y, y′, y′′)dt. (7)

Integrating the first, second and third point thrice gives:

y(tn+1) = y(tn) + hy′(tn) +
h2

2
y′′(tn) +

∫ tn+1

tn

(tn+1 − t)2

2
f (t, y, y′, y′′)dt, (8)

y(tn+2) = y(tn) + hy′(tn+1) +
h2

2
y′′(tn+1) +

∫ tn+2

tn+1

(tn+2 − t)2

2
f (t, y, y′, y′′)dt, (9)

y(tn+3) = y(tn) + hy′(tn+2) +
h2

2
y′′(tn+2) +

∫ tn+3

tn+2

(tn+3 − t)2

2
f (t, y, y′, y′′)dt. (10)

In order to derive the formula, we need to approximate f (t, y, y′, y′′) in Equation (1) using Hermite
interpolation Pn(t) [24]:

Pn(t) =
n

∑
i=0

mi−1

∑
k=0

f (k)(ti)Li,k(t), (11)

where n is the degree of the Hermite polynomial.

ti = a + ih, i = 0, 1, ..., n, h =
b− a

n
,

L(i,k)(t) is the generalized Lagrange polynomial, k = 0, 1, ..., mi.

For the first point, yn+1, let s = t−tn+1
h and dt = hds be substituted into (2), (5) and (8).

By evaluating the integral from −3 to −2 using MAPLE gives the following

y′′n+1 = y′′n + h(
912523
2395008

fn +
23717
29568

fn+1 −
5851

29568
fn+2 +

35339
2395008

fn+3)

+ h2(
214943
3991680

gn −
10657
147840

gn+1 +
10657

147840
gn+2 −

5941
1330560

gn+3)

+ h3(
11369

3991680
qn +

4423
88704

qn+1 −
7453

443520
qn+2 +

1513
3991680

qn+3), (12)

y′n+1 = y′n + hy′′n + h2(
2857219
9729720

fn +
594283

1921920
fn+1 −

13373
120120

fn+2 +
1316741

155675520
fn+3)

+ h3(
1941647
51891840

gn −
7453

360360
gn+1 +

233897
5765760

gn+2 −
9497

3706560
gn+3)

+ h4(
97159

51891840
qn +

3617
137280

qn+1 −
11005

1153152
qn+2 +

565
2594592

qn+3), (13)

yn+1 = yn + hy′n +
h2

2
y′′n + h3(

438601
3706560

fn +
918259

11531520
fn+1 −

97751
2882880

fn+2 +
271157

103783680
fn+3)

+ h4(
710903

51891840
gn −

12497
3843840

gn+1 +
14249

1153152
gn+2 −

82207
103783680

gn+3)

+ h5(
11261

17297280
qn +

29593
3843840

qn+1 −
2411

823680
qn+2 +

37
549120

qn+3). (14)
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where g and q denote the fourth and fifth derivatives of the solution, respectively. Next, we introduce
s = t−tn+2

h and dt = hds for the second point, yn+2, into (3), (6) and (9) and apply a similar technique
by evaluating the integral from −2 to −1 using MAPLE gives the following:

y′′n+2 = y′′n+1 + h(
−155
29568

fn +
14939
29568

fn+1 +
14939
29568

fn+2 −
155

29568
fn+3)

+ h2(
−6047

3991680
gn +

14753
147840

gn+1 −
14753

147840
gn+2 +

6047
3991680

gn+3)

+ h3(
−163

1330560
qn +

5021
443520

qn+1 −
5021

443520
qn+2 −

163
1330560

qn+3), (15)

y′n+2 = y′n+1 + hy′′n+1 + h2(
−425851

155675520
fn +

43403
120120

fn+1 +
276587
1921920

fn+2 −
24389

9729720
fn+3)

+ h3(
−973

1235520
gn +

360023
5765760

gn+1 +
−13459
360360

gn+2 −
7549

10378368
gn+3)

+ h4(
−823

12972960
qn +

37007
5765760

qn+1 +
673

137280
qn+2 −

613
10378368

qn+3), (16)

yn+2 = yn+1 + hy′n+1 +
h2

2
y′′n+1 + h3(

−243871
311351040

fn +
399031
2882880

fn+1 +
342541

11531520
fn+2 −

52061
77837760

fn+3)

+ h4(
−23327

103783680
gn +

24361
1153152

gn+1 −
4711

549120
gn+2 +

10103
51891840

gn+3)

+ h5(
−1873

103783680
qn +

11437
5765760

qn+1 +
673

549120
qn+2 −

823
51891840

qn+3). (17)

Then, for the third point, we introduce s = t−tn+3
h and dt = hds into (4), (7) and (10) and apply a

similar technique by evaluating the integral from −1 to 0 using MAPLE, which gives the following

y′′n+3 = y′′n+2 + h(
35339

2395008
fn −

5851
29568

fn+1 +
23717
29568

fn+2 +
912523
2395008

fn+3)

+ h2(
5941

1330560
gn −

10657
147840

gn+1 +
10657
147840

gn+2 −
214943
3991680

gn+3)

+ h3(
1513

3991680
qn −

7453
443520

qn+1 +
4423
88704

qn+2 +
11369

3991680
qn+3), (18)

y′n+3 = y′n+2 + hy′′n+2 + h2(
70021

11119680
fn −

55449
640640

fn+1 +
157887
320320

fn+2 +
13598491

155675520
fn+3)

+ h3(
98741

51891840
gn −

90863
2882880

gn+1 +
59275

1153152
gn+2 −

71051
4324320

gn+3)

+ h4(
8369

51891840
qn −

5233
720720

qn+1 +
135581
5765760

qn+2 +
3617

3706560
qn+3), (19)

yn+3 = yn+2 + hy′n+2 +
h2

2
y′′n+2 + h3(

4969
3243240

fn −
248141

11531520
fn+1 +

61793
360360

fn+2 +
1575157

103783680
fn+3)

+ h4(
4799

10378368
gn −

90319
11531520

gn+1 +
107309
5765760

gn+2 −
332771

103783680
gn+3)

+ h5(
677

17297280
qn −

20593
11531520

qn+1 +
3293

524160
qn+2 +

1403
6918912

qn+3). (20)

3. Analysis of the Method

3.1. Order and Error Constant

We can write the Equations (12)–(20) in a matrix difference equation to recognize the order of the
proposed method as

α1Ym = hα2Y′m + h2α3Y′′m + h3α4Fm + h4α5Gm + h5α6Qm. (21)

where αi; i = 1, 2, ..., 6 defined as,
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α1 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 1


, α2 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 1 0


,

α3 =



0 0 0 0 0 1 −1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 1

2 0 0 0
0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1

2 0 0
0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

2 0


,

α4 =



0 0 0 0 0 912523
2395008

23717
29568

−5851
29568

35339
2395008

0 0 0 0 0 2857219
9729720

594283
1921920

−13373
120120

1316741
155675520

0 0 0 0 0 438601
3706560

918259
11531520

−97751
2882880

271157
103783680

0 0 0 0 0 −155
29568

14939
29568

14939
29568

−155
29568

0 0 0 0 0 −425851
155675520

43403
120120

276587
1921920

−24389
9729720

0 0 0 0 0 −243871
311351040

399031
2882880

342541
11531520

−52061
77837760

0 0 0 0 0 35339
2395008

−5851
29568

23717
29568

912523
2395008

0 0 0 0 0 70021
11119680

−55449
640640

157887
320320

13598491
155675520

0 0 0 0 0 4969
3243240

−248141
11531520

61793
360360

1575157
103783680


,

α5 =



0 0 0 0 0 214943
3991680

−10657
147840

10657
147840

−5941
1330560

0 0 0 0 0 1941647
51891840

−7453
360360

233897
5765760

−9497
3706560

0 0 0 0 0 710903
51891840

−12497
3843840

14249
1153152

−82207
103783680

0 0 0 0 0 −6047
3991680

14753
147840

−14753
147840

6047
3991680

0 0 0 0 0 −973
1235520

360023
5765760

−13459
360360

−7549
10378368

0 0 0 0 0 −23327
103783680

24361
1153152

−4711
549120

10103
51891840

0 0 0 0 0 5941
1330560

−10657
147840

10657
147840

−214943
3991680

0 0 0 0 0 98741
51891840

−90863
2882880

59275
1153152

−71051
4324320

0 0 0 0 0 4799
10378368 gn

−90863
2882880

107309
5765760

−332771
103783680


,

α6 =



0 0 0 0 0 11369
3991680

4423
88704

−7453
443520

1513
3991680

0 0 0 0 0 97159
51891840

3617
137280

−11005
1153152

565
2594592

0 0 0 0 0 11261
17297280

29593
3843840

−2411
823680

37
549120

0 0 0 0 0 −163
1330560

5021
443520

−5021
443520

−163
1330560

0 0 0 0 0 −823
12972960

37007
5765760

673
137280

−613
10378368

0 0 0 0 0 −1873
103783680

11437
5765760

673
549120

−823
51891840

0 0 0 0 0 1513
3991680

−7453
443520

4423
88704

11369
3991680

0 0 0 0 0 8369
51891840

−5233
720720

135581
5765760

3617
3706560

0 0 0 0 0 677
17297280

−20593
11531520

3293
524160

1403
6918912


,
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Ym =



yn−3

yn−2

yn−1

yn

yn+1

yn+2

yn+3


, Y′m =



y′n−3
y′n−2
y′n−1
y′n
y′n+1
y′n+2
y′n+3


, Y′′m =



y′′n−3
y′′n−2
y′′n−1
y′′n
y′′n+1
y′′n+2
y′′n+3


,

Fm =



fn−3

fn−2

fn−1

fn

fn+1

fn+2

fn+3


, Gm =



gn−3

gn−2

gn−1

gn

gn+1

gn+2

gn+3


, Qm =



qn−3

qn−2

qn−1

qn

qn+1

qn+2

qn+3


.

The linear operator related to Equation (21) can be defined as

`[y(t) : h] = α1ym − hα2y′m − h2α3y′′m − h3α4y′′′m − h4α5y(4)m − h5α6y(5)m . (22)

By expanding Equation (22) in the Taylor series yields

`[y(t) : h] = C0y(t) + C1hy′(t) + C2h2y′′(t) + C3h3y′′′(t) + ... + Cph(p)y(p)(t)

+ Cp+1h(p+1)y(p+1)(t) + ...

where Cj are constants. If C0 = C1 = .... = Cp = ... = Cp+2 = 0, Cp+3 6= 0
then p is the order of the method and Cp+3 is called the error constant. Hence, in our
method C0 = C1 = .....C11 = 0̄, C12 = [4.777× 10−8, 2.013× 10−8, 7.99× 10−8, 1.8× 10−8, 9.67× 10−8,
3.44× 10−8, 1.438× 10−8, 1.1483× 10−8, 4.124× 10−8]T . Therefore, we concluded that the new method
has order 9. As the method’s order is p ≥ 1, then, it can be said that the method is consistent
(see Lambart and Fatunla [25,26]).

3.2. Zero Stability

To check the zero-stability of the implicit three-point method, we rewrite the formulas into a
matrix form as below

A(0)Ym = A(1)Ym−1 + h(B(0)Ym−1 + B(1)Fm−1) + h2(C(0)ym−1 + C(1)Fm−1 + C(2)Gm−1)

+ h3(D(0)Fm−1 + D(1)Gm−1 + D(2)Qm−1) + h4(E(0)Gm−1 + E(1)Qm−1) + h5S(0)Qm−1.

where B(0), B(1), C(0), C(1), C(2), D(0), D(1), D(2), E(0), E(1) and S(0) are constant coefficients and
A(0) = 9× 9 identity matrix

A(1) =



0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


,
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Ym =



y′′n+1
y′n+1
yn+1

y′′n+2
y′n+2
yn+2

y′′n+3
y′n+3
yn+3


, Ym−1 =



y′′n−2
y′n−2
yn−2

y′′n−1
y′n−1
yn−1

y′′n
y′n
yn


, Fm−1 =



fn−5

fn−4

fn−3

fn−2

fn−1

fn

fn+1

fn+2

fn+3


, Gm−1 =



gn−5

gn−4

gn−3

gn−2

gn−1

gn

gn+1

gn+2

gn+3


, Qm−1 =



qn−5

qn−4

qn−3

qn−2

qn−1

qn

qn+1

qn+2

qn+3


.

Then, the first characteristic polynomial can be written as

ρ(R) = Det[RA(0) − A(1)] = (R− 1)3R6 = 0 (23)

By solving (23), we obtain the roots R = 0, 0, 0, 0, 0, 0, 1, 1, 1. Since |R| ≤ 1, the three-point
implicit block method is zero stable. Along with the consistency of the method, this property implies
convergence of the new method (see Ackleh et al. [27]).

4. Implementation

The implementation of the three-point implicit block method on general third-order
ODEs is carried out in a straightforward manner by applying the predictor-corrector schemes.
The implementation begins by using Taylor’s method as the predictor to compute the starting values.
When the starting values are obtained, ITPBO9 will be implemented as the corrector to estimate the
approximate solutions of y′′, y′ and y at t. In the iteration, we evaluate functions f , g, q at each point,
which will be used to compute the approximate solutions at the next point. The procedure to solve the
third-order ODEs by using the new method can be observed in the following Algorithm 1.

Algorithm 1 The procedure to solve the third-order ODEs by using the new method.

1: Set the starting point a, the ending point b, the step size h, FC = 0 and TS = 0 where FC the

number of function call, TS is the number of total number of steps.

2: Evaluate the functions values f0, g0, q0 using the initial values.

3: Compute the point ti+1 = a + ih where i = 0, 1, 2.

4: Compute the predictor values yp
i+1, y′pi+1, y′′pi+1 where i = 0, 1, 2 using Tylor’s method.

5: Evaluate the functions values f p
i+1, gp

i+1, qp
i+1 where i = 0, 1, 2.

6: Compute the corrector values yc
i+1, y′ci+1, y′′ci+1 using the proposed method as in Equations (12)–(14).

7: Evaluate the functions values f c
i+1, gc

i+1, qc
i+1.

8: Compute the corrector values yc
i+2, y′ci+2, y′′ci+2 using the proposed method as in Equations (15)–(17).

9: Evaluate the functions values f c
i+2, gc

i+2, qc
i+2.

10: Compute the corrector values yc
i+3, y′ci+3, y′′ci+3 using the proposed method as in Equations (18)–(20).

11: Evaluate the functions values f c
i+3, gc

i+3, qc
i+3.

12: Calculate the absolute error of the computed solution at each point in the integration interval

AE = |y(ti)− yi|.
13: If ti+3 < b, then repeat step 6. Else, go to step 14.

14: Evaluate the maximum error, which is defined as MAXE = max
1≤i≤N

(
| y(ti)− yi |

)
.

15: Execute the results. Complete.
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5. Results and Discussion

In this section, some well-known single and system of linear and nonlinear IVPs as well as
applications of the IVPs are presented, which aim to assess the efficiency and accuracy of the new
ITPBO9 method of order nine compared to other direct block methods. C ++ programming codes
have been developed and applied to solve IVPs in ODE of the form (1) based on the proposed ITPBO9
method. The results are compared with other existing methods with similar characteristics and order
to give an idea of how well the new method performs and to clearly display the efficiency of the
ITPBO9 method. The following abbreviations will be used in the tables:

ITPBO9: Implicit three-point block direct method introduced in this paper of order nine.
HCD: Block hybrid collocation direct method of order six [28].
ABAM: Adams Bashforth-Adams Moulton method of order four.
FSM: Five-step direct method of order nine [18].
ILMM: Implicit linear multistep direct method of order six [6].
ISHD: Three-step hybrid direct method of order nine [5].
h : Step size.
NS: Number of steps.
AE: Absolute error at the point considered.
MAXE: Maximum absolute error on the grid points at the interval.

5.1. Tested Problems

Problem 1. Consider the linear problem

y′′′ = 2y′′ + 3y′ − 10y + 34te−2t − 16e−2t − 10t2 + 6t + 34, 0 ≤ t ≤ 1,

y(0) = 3, y′(0) = y′′(0) = 0.

Exact solution:

y(t) = t2e−2t − t2 + 3.

Problem 2. Consider the linear system

y′′′1 = 1
68 (817y1 + 1393y2 + 448y3), y1(0) = 2, y′1(0) = −12, y′′1 (0) = 20,

y′′′2 = −1
68 (1141y1 + 2837y2 + 896y3), y2(0) = −2, y′2(0) = 28, y′′2 (0) = −52,

y′′′3 = 1
136 (3059y1 + 4319y2 + 1592y3), y3(0) = −12, y′3(0) = −33, y′′3 (0) = 5.

Exact solution:

y1(t) = et − 2e2t + 3e−3t,

y2(t) = 3et + 2e2t − 7e−3t,

y3(t) = −11et − 5e2t + 4e−3t.

Problem 3. Consider the nonlinear problem

y′′′ = 1+2sin2(y)
cos5(y) , 0 ≤ t ≤ π

4 ,

y(0) = 0, y′′(0) = 0, y′(0) = 1.

Exact solution:

y(t) = arcsin(t).
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Problem 4. Consider the nonlinear system

y′′′1 = 1
2 e4ty3y′2, y1(0) = 1, y′1(0) = −1, y′′1 (0) = 1,

y′′′2 = 8
3 e2ty1y′3, y2(0) = 1, y′2(0) = −2, y′′2 (0) = 4,

y′′′3 = 27e4ty2y′1, y3(0) = 1, y′3(0) = −3, y′′3 (0) = 9.

Exact solution:

y1(t) = e−t, y2(t) = e−2t, y3(t) = e−3t.

Table 1 shows the absolute error at different points of the interval [0, 1] taking h = 0.1.
The three-point block method ITPBO9 can be seen to significantly outperform FSM [18] of order
nine with regards to the accuracy. Table 2 shows a direct comparison between the new ITPBO9 method
with HCD [28] and the well-known fourth order Adams Bashforth–Adams Moulton (ABAM) method
in terms of the number of steps and accuracy at different step sizes. ITPBO9 reduces the number of
steps to one third compared to the ABAM method and requires the same number of steps compared to
HCD since ITPBO9 and HCD compute three points simultaneously; nevertheless, Figure 1 displayed
the best performances and efficiency of the new ITPBO9 method.

In addition, we have solved the linear system in Problem 2 in order to compare the proposed
ITPBO9 method with ISHD [5] of order nine and ILMM [6] of order six, which are presented in
Tables 3 and 4, respectively. In Table 3, we have considered the maximum absolute errors for step
size h = 1

2j , j = 2, 3, 4, 5. While in Table 4, the numerical results have been obtained by considering
the maximum absolute errors along the interval using a different number of steps where NS refers
to the number of steps. It can be observed that increasing the number of steps leads to a decrease in
the error. Based on the efficiency curves in Figures 1 and 2, the new ITPBO9 method is more efficient
where it achieved a smaller maximum error compared to the other methods when the step size h
decreases as well as when the number of steps taken is the same. Therefore, Tables 3 and 4 and
Figures 1 and 2 clearly point out how ITPBO9 is superior in terms of accuracy and efficiency compared
to the existing methods.

However, we have considered in Problem 3 and Problem 4 single and systems of nonlinear IVPs.
Tables 5–8 show the computed solutions compared to the exact solutions and the absolute errors at
different points. It is remarkable that the computed solutions at each point t agree very well with the
exact solutions up to 16 digits at least.

Overall, from all the tables and figures, the convergence and high precision of the new method is
clearly observed. The method is more efficient than the existing methods, in which the order is either
nearly equal or identical to that of the new method at each point t and each step size h.
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Figure 1. Efficiency curves of log maximum absolute error versus number of steps, NS. (a) Problem 1,
(b) Problem 2.
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Figure 2. Efficiency curves of log maximum absolute error versus step size, h. (a) Problem 1,
(b) Problem 2.

Table 1. Comparison of the absolute errors on Problem 1, h = 0.1.

t FSM ITPBO9

0.1 6.6218 (−13) 2.593481 (−13)
0.2 6.2238 (−11) 4.361134 (−11)
0.3 3.5134 (−09) 2.967204 (−11)
0.4 6.1100 (−07) 9.981296 (−11)
0.5 6.4183 (−07) 2.342377 (−10)
0.6 1.8082 (−06) 4.550881 (−10)
0.7 1.3511 (−06) 7.912180 (−10)
0.8 1.3367 (−06) 1.275017 (−09)
0.9 7.9041 (−06) 1.945292 (−09)
1.0 3.7360 (−05) 2.849440 (−08)

Table 2. Comparison of the maximum absolute errors on Problem 1.

h Method NS MAXE

0.1 ABAM 10 1.69 (−04)
HCD 4 5.21 (−07)

ITPBO9 4 1.94 (−08)
0.05 ABAM 20 6.65 (−06)

HCD 7 1.09 (−08)
ITPBO9 7 4.09 (−11)

0.025 ABAM 40 3.08 (−07)
HCD 14 2.57 (−10)

ITPBO9 14 1.04 (−13)
0.0125 ABAM 80 3.56 (−08)

HCD 27 2.23 (−12)
ITPBO9 27 1.78 (−15)

0.00625 ABAM 160 3.23 (−09)
HCD 54 7.24 (−14)

ITPBO9 54 6.22 (−16)

Table 3. Comparison of the maximum absolute errors on Problem 2, t ∈ [0, 2].

h ISHD ITPBO9

1/4 5.7164094 (−04) 6.169287 (−11)
1/8 4.8477800 (−08) 1.776357 (−14)

1/16 4.1669318 (−10) 3.552714 (−15)
1/32 3.4571600 (−12) 1.421085 (−15)
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Table 4. Comparison of the maximum absolute errors on Problem 2, t ∈ [0, 2].

NS ILMM ITPBO9

10 5.446 (−03) 1.421085 (−12)
20 9.590 (−05) 9.521273 (−13)
40 1.804 (−06) 5.400125 (−13)
80 2.981 (−08) 3.126388 (−13)

160 5.291 (−10) 1.222134 (−14)

Table 5. Numerical findings for solving Problem 3, h = 0.01.

t Exact Solution Computed Solution AE (ITPBO9)

0.1 0.100167421161559790 0.100167421161559790 0.000000+00
0.2 0.201357920790330820 0.201357920790330770 5.551115 (−17)
0.3 0.304692654015397630 0.304692654015397520 1.110223 (−16)
0.4 0.411516846067488230 0.411516846067487900 3.330669 (−16)
0.5 0.523598775598299150 0.523598775598298700 4.440892 (−16)
0.6 0.643501108793284820 0.643501108793284370 4.440892 (−16)
0.7 0.775397496610753630 0.775397496610753080 5.551115 (−16)
0.8 0.927295218001613080 0.927295218001612190 8.881784 (−16)

Table 6. Numerical findings for solving y1 of Problem 4, h = 0.01, t ∈ [0, 1].

t Exact Solution of y1 Computed Solution of y1 AE (ITPBO9) in y1

0.1 0.904837418035959740 0.904837418035959630 0.000000+000
0.3 0.740818220681717880 0.740818220681717770 5.551115 (−17)
0.5 0.606530659712633310 0.606530659712633310 1.942890 (−16)
0.7 0.496585303791409300 0.496585303791409300 2.498002 (−16)
0.9 0.406569659740598940 0.406569659740598890 2.914335 (−16)

Table 7. Numerical findings for solving y2 of Problem 4, h = 0.01, t ∈ [0, 1].

t Exact Solution of y2 Computed Solution of y2 AE (ITPBO9) in y2

0.1 0.818730753077981710 0.818730753077981820 0.000000+000
0.3 0.548811636094026610 0.548811636094026280 5.551115 (−17)
0.5 0.367879441171442500 0.367879441171442170 1.942890 (−16)
0.7 0.246596963941606550 0.246596963941606270 2.498002 (−16)
9.0 0.165298888221586560 0.165298888221586340 2.914335 (−16)

Table 8. Numerical findings for solving y3 of Problem 4, h = 0.01, t ∈ [0, 1].

t Exact Solution of y3 Computed Solution of y3 AE (ITPBO9) in y3

0.1 0.740818220681717880 0.740818220681717880 0.000000+000
0.3 0.406569659740598890 0.406569659740598940 5.551115 (−17)
0.5 0.223130160148429480 0.223130160148429680 1.942890 (−16)
0.7 0.122456428252981490 0.122456428252981740 2.498002 (−16)
0.9 0.067205512739749340 0.067205512739749632 2.914335 (−16)

5.2. Application to Thin Film Flow Problem

We also consider the well-known engineering and physical problem, which is the thin film flow of
a liquid on a surface. This problem was studied by several authors [5,7,29–31]. They studied the fluid
motion on a plane surface where the motion along the plane is in the same flow direction. The fluid
dynamics problem is governed by the third-order ODEs

y′′′ = f (y(t)), (24)
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where y(t) moves with the fluid in a coordinate frame and f (y(t)) can vary depending on the physical
context, such as

f (y(t)) = y−2 − 1 (25)

is a formula for a fluid draining problem on a dry surface.

f (y(t)) = (1 + ξ + ξ2)y−2 − (ξ + ξ2)y−3 − 1 (26)

is a formula for a fluid draining problem on a wet surface where ξ is the film thickness and ξ > 0.
Problems regarding the flow of thin films with a free surface of viscous fluid in which surface tension
effects play a role commonly leads to third order ordinary ODEs governing the shape of the free
surface of the fluid, which is given by

y′′′ = y−µ, t ≥ t0, (27)

subject to
y(t0) = a1, y′(t0) = a2, y′′(t0) = a3,

where a1, a2 and a3 are constants. In the literature, several researchers solve the problem (27) with the
initial conditions y(0) = y′(0) = y′′(0) = 1, for the case µ = 2. A parametric representation for the
exact solution of (27) was introduced by [30].

For comparison purposes, we will apply the new method to solve (27) directly. The results are in
Table 9 and Figure 3 clearly shows that the method is applicable and the solution that was obtained by
ITPBO9 agrees very well with the exact solutions [30].

Table 9. Numerical findings for solving Problem (27) with µ = 2, h = 0.01.

t Exact Solution Ref. [30] ISHD ITPBO9 AE (ISHD) AE (ITPBO9)

0.1 1.000000000 1.0000000000 1.0000000000 0.0000 + 000 0.0000 + 000
0.2 1.221211030 1.2212100137 1.2212100045 1.0163 (−06) 1.0255 (−06)
0.4 1.488834893 1.4888348170 1.4888347799 7.6000 (−08) 1.1310 (−07)
0.6 1.807361404 1.8073614815 1.8073613977 7.7500 (−08) 6.3000 (−09)
0.8 2.179819234 2.1797930619 2.1798192339 2.6172 (−05) 8.0000 (−11)
1.0 2.608275822 2.6082751000 2.6082748676 7.2200 (−07) 9.5440 (−07)

0.2 0.4 0.6 0.8 1.0
t

0.5

1.0

1.5

2.0

2.5

y(t)

ITPBO9
Exact

Figure 3. Response curve concerning Equation (27) with µ = 2, h = 0.01.
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5.3. Application to Boundary Layer Equation

A boundary layer in physics and fluid mechanics is the fluid layer in the immediate vicinity of a
bounding surface in which the viscosity has significant effects. The equation of the nonlinear boundary
layer is a nonlinear differential equation of third order defined as

2y′′′ + yy′′ = 0, (28)

subject to

y(0) = y′(0) = 0, y′′(0) = 1.

It is a well known equation as the Blasius equation, which describes a boundary layer flow over
a flat plate. This equation was already considered in [32,33]. We applied our method to solve the
Blasius equation and to determine the shear stress at the plate. Figure 4 depicts that the solution to
Equation (29) of the proposed method ITBPO9 in the interval t ∈ [0, 10] with h = 0.1 agree very well
with approximations found by the Mathematica built-in package NDSolve.

2 4 6 8 10
t

5

10

15

y(t)

ITPBO9
NDSolve

Figure 4. Response curve concerning Equation (29) with h = 0.1 in t ∈ [0, 10].

5.4. Application to Nonlinear Genesio Equation

Consider the following nonlinear Genesio equation, which was introduced as a chaotic system by
Genesio [34]

y′′′ + αy′′ + βy′ − f (y(t)) = 0, (29)

where
f (y(t) = −γy(t) + y(t)2,

subject to
y(t0) = 0.2, y′(t0) = −0.3, y′′(t0) = 0.1, t ∈ [0, b],

where α, β and γ are positive constants satisfying αβ < γ. The theoretical solution for this problem is
unknown. This problem was studied by some researchers such as Bataineh et al. [35], which included
the behavior of this system. Table 10 shows the computed solutions and the number of steps by the
proposed ITPBO9 method, HCD [28] and the NDSolve at different b as well as different step sizes.
We apply the new method to solve the nonlinear Genesio equation when α = 1.2, β = 2.92, γ = 6.
It can be observed that ITPBO9 is applicable to solve Equation (29) with an advantage of fewer total
steps compared to NDSolve. Figure 5 illustrates the numerical approximations for Equation (29)
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with h = 0.1 in t ∈ [0, 4]. It is obvious that the solutions obtained by ITPBO9 agree very well with
approximations found by the Mathematica built-in package NDSolve that evaluate the efficiency of
the new method.

Table 10. Numerical findings for solving Problem (29).

b h Method Step Computed Solution

1.0 0.1 ITPBO9 4 −0.0540040835391235
HCD 4 −0.0540040832456468

NDSolve 10 −0.0540040799051468
0.01 ITPBO9 34 −0.0540040835547517

HCD 34 −0.0540040835547393
NDSolve 100 −0.0540040799051468

4.0 0.1 ITPBO9 13 −0.0676306051287455
HCD 13 −0.0676305906240893

NDSolve 40 −0.0676380593281975
0.01 ITPBO9 133 −0.0676306051591404

HCD 133 −0.0676306051590027
NDSolve 400 −0.0676305976247482

1 2 3 4
t

-0.10

-0.05

0.05

0.10

0.15

0.20

y(t)

ITPBO9
NDSolve

Figure 5. Response curve concerning Equation (29) with h = 0.1 in t ∈ [0, 4].

6. Conclusions

In this article, we proposed a three-point implicit block method using the fourth and fifth
derivatives of the solution, which aim to solve linear and nonlinear single as well as system initial
value problems of the general third-order ODEs directly. The method is also applicable to solve
the physical and engineering problems of the general third-order ODEs directly. The idea of
incorporation of higher derivatives of the solution in the process, is that higher and better accuracy
can be achieved without a corresponding increase in the order of the method. This new method is
uncomplicated to implement and satisfies the property of convergence, which is indicated by the
significant improvement with regards to accuracy in the numerical results. Therefore, we suggest
the new ITPBO9 method as a suitable tool for solving general third-order ODEs directly with high
precision and easy implementation.
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