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Abstract: The most well-known equations both in the theory of nonlinearity and dispersion,
KdV equations, have received tremendous attention over the years and have been used as model
equations for the advancement of the theory of solitons. In this paper, some semi-analytic
methods are applied to solve linearized dispersive KdV equations with homogeneous and
inhomogeneous source terms. These methods are the Laplace-Adomian decomposition method
(LADM), Homotopy perturbation method (HPM), Bernstein-Laplace-Adomian Method (BALDM),
and Reduced Differential Transform Method (RDTM). Three numerical experiments are considered.
As the main contribution, we proposed a new scheme, known as BALDM, which involves Bernstein
polynomials, Laplace transform and Adomian decomposition method to solve inhomogeneous
linearized dispersive KdV equations. Besides, some modifications of HPM are also considered
to solve certain inhomogeneous KdV equations by first constructing a newly modified homotopy
on the source term and secondly by modifying Laplace’s transform with HPM to build HPTM.
Both modifications of HPM numerically confirm the efficiency and validity of the methods for
some test problems of dispersive KdV-like equations. We also applied LADM and RDTM to both
homogeneous as well as inhomogeneous KdV equations to compare the obtained results and extended
to higher dimensions. As a result, RDTM is applied to a 3D-dispersive KdV equation. The proposed
iterative schemes determined the approximate solution without any discretization, linearization,
or restrictive assumptions. The performance of the four methods is gauged over short and long
propagation times and we compute absolute and relative errors at a given time for some spatial nodes.

Keywords: Adomian (Laplace) decomposition method; homotopy perturbation method; reduced differential
transform method; Bernstein-Laplace-Adomian method; linearized dispersive KdV equation; absolute and
relative errors

1. Introduction

The well-known Korteweg-de Vries (KdV) equation is a nonlinear dispersive partial differential
equation, which describes mathematical modeling of traveling wave solution, known to be solitary
water waves (also called solitons) in a shallow water domain. This equation is given by [1]

ut + γuux + βuxxx = 0. (1)

This equation, sometimes known to be the nonlinear evolution equation, was derived in 1895 by
Korteweg and de Vries, by the two individuals whose names it bears, in an investigation on shallow
water waves, where an exact “solitary wave” solution was also explored [1,2]. The equation was a
key achievement in a major controversy on the nature of waves, following the acclaimed “real life”
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observation of a solitary wave by John Scott Russell in 1834. For the entire history of the soliton in
various existing monographs on solitons and integrable frame works; we refer to the works from
Ablowitz and Segur [2], Calogero and Degasperis [3], Ablowitz and Clarkson [4], Drazin [5] and
Hirota [6]. This just to know that the KdV equation was revived 70 years after Korteweg and de
Vries in a seminal paper by Zabusky and Kruskal [7]. This led to results that were later depicted as a
significant development of the twentieth century.

The KdV equation has been an essential tool to describe mathematical modeling and explaining
certain events in nature; for example, long internal waves in a ocean [8], acoustic waves on a crystal
lattice and magneto-hydrodynamic waves in warm plasma, and ion-acoustic waves in a plasma [9].
In a seminal work by C. Gardner et al. [10], it was shown that the nonlinear PDE given by Equation (1)
can be solved by a powerful method, which is known to be the inverse scattering transform method.
Despite the fact that this technique can only be applied to very special equations, which we allude to
as soliton equations or exactly integrable equations, we presently know entire infinite families of such
equations to which the method can be applied.

We quote [11–20] for some recent works on KdV equations and for some applications of
inhomogeneous evolution problems, related to KdV-type equations, with application in thermoplastic
interaction in a half-space by pulsed laser heating, see [21], where the authors used an eigenvalue
approach to get an analytical solution of the inhomogeneous problem under consideration.

The integrability of Equation (1) guarantees an infinite invariants. These quantities are constant
along the solution of the given partial differential equation and the first three invariants are [22]

F1(u) =
∫
R

u dx,

F2(u) =
1
2

∫
R

u2 dx,

F3(u) =
∫
R

(
β

2
(ux)

2 − γ

6
u3
)

dx.

The most well-known explicit finite difference scheme for Equation (1) was proposed by Zabusky
and Kruskal in 1965. Ascher and McLachlan in [23] gave an account of the study of symplectic and
multi-symplectic schemes for KdV equation in order to answer the question of whether added structure
preservation such as conservative discretization schemes would provide high quality schemes for long
time integration of nonlinear conservative partial differential equations.

Wang et al. [24] proposed a scheme obtained by substituting an average of forward and backward
difference in time in place of central difference in time in Zabusky-Kruskal scheme. They carried out
numerical simulations of KdV equation with initial equation u(x, 0) = cos(x) and it was found that
their scheme did not blow up at a longer time when compared to the scheme constructed by Zabusky
and Kruskal [7], and the multi-symplectic six-point scheme [23]. Appadu et al. [22] proposed two new
explicit finite difference schemes for the numerical solutions of KdV equation and analyzed spectral
properties of these schemes against two existing schemes proposed by Zabusky and Kruskal [7],
Wang et al. [24]. Approximate analytical solutions for linear as well as nonlinear differential equations
(for e.g., [25]) can be found using Adomian decomposition method [26–28], Homotopy perturbation
method [29,30] and Reduced Differential Transform Method [31,32].

In this paper, we make use of Laplace-Adomian decomposition method (LADM), Homotopy
Perturbation method (HPM), and Reduced differential transform method (RDTM) to solve some
numerical experiments described by linearized dispersive KdV equations. The methods are derived
and results are displayed in Sections 2–4. In Section 5, we applied RDTM for the 3D linearized
dispersive KdV equation. Section 6 introduces Bernstein-Adomian Laplace method (BALDM) and
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the numerical experiment for the inhomogeneous KdV equation provide us a reliable result. Section 7
ends with discussion and concluding remarks. To measure the efficiency of the semi-analytic method,
we used the absolute and relative errors, given by

Absolute Error = |y− ȳ|, (2)

and

Relative Error =
∣∣∣y− ȳ

y

∣∣∣, (3)

where y is the exact value and ȳ is the approximate value. The three numerical experiments are
detailed below.

Numerical Experiment 1. Numerical experiment 1 Solve the linearized homogeneous dispersive KdV
equation [27]

ut + 2ux + uxxx = 0, (4)

with x ∈ [0, 2π], and t ∈ [0, 4.0]. The initial condition is u(x, 0) = sin(x), and the exact solution of this
problem is u(x, t) = sin (x− t) .

Numerical Experiment 2. Solve the linearized inhomogeneous dispersive KdV equation [27]

ut + uxxx = − sin(πx) sin(t)− π3 cos(πx) cos(t), (5)

with x ∈ [0, 1] and t ∈ [0, 0.1]. The initial condition is u(x, 0) = sin(πx), and the exact solution of this
problem is u(x, t) = sin(πx) cos(t).

Numerical Experiment 3. Solve the inhomogeneous linearized KdV equation

ut + xux + uxxx = 3xt2 + 2x + xt3, x ∈ [0, 1.0], t ∈ [0, 1.0], (6)

with initial condition u0(x) = 2x. Exact solution for this problem is u(x, t) = 2x + xt3.

2. Laplace-Adomian Decomposition Method (LADM)

George Adomian [26] found a method to solve linear as well as nonlinear functional equations,
which is known to be Adomian decomposition method (ADM) [33–35]. ADM involves partitioning
the equation under investigation into linear and nonlinear portions. This method generates a solution
in the form of a series whose terms are determined by a recursive relationship using Adomian
polynomials [26,28,34]. Some fundamental works on various aspects of the modification of ADM are
given by Wazwaz [27] and for some application of ADM to an initial value problem including KdV
equations, see [28,33,35] and for Burger’s equation, see [36]. We now consider

Ltu(x, t) + Ru(x, t) + Nu(x, t) = g(x, t), (7)

with an initial condition u(x, 0) = h(x), where Lt = ∂
∂t , R is a linear operator that includes partial

derivatives with respect to x, N is a nonlinear operator and g is a non-homogeneous term, which is
u-independent. LADM consists of applying Laplace transform on both sides of Equation (7), obtaining

L̂
{
Ltu(x, t)

}
= L̂

{
g(x, t)− Ru(x, t)− Nu(x, t)

}
. (8)

By applying the inverse Laplace transform to Equation (8) gives
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u(x, t) = h(x)− L̂−1

[
1
s
L̂
{

Ru(x, t) + Nu(x, t)
}]

. (9)

LADM method proposes a series solution u(x, t) given by

u(x, t) =
∞

∑
n=0

un(x, t). (10)

The nonlinear term Nu(x, t) is given by

Nu(x, t) =
∞

∑
n=0

An(u0, u1, . . . , un), (11)

where the sequence {An}∞
n=0 are known to be Adomian polynomials, which are given in [26,34,37].

Using Equations (10) and (11) into Equation (9), we obtain

∞

∑
n=0

un(x, t) = h(x)− L̂−1
[1

s
L̂{R

∞

∑
n=0

un(x, t) +
∞

∑
n=0

An(u0, u1, . . . , un)}
]
. (12)

From Equation (12), we deduce the following recurrence formulae{
u0(x, t) = h(x),

un+1(x, t) = −L̂−1
[

1
s L̂
{

Run(x, t) + An(u0, u1, . . . , un)
}]

, n = 0, 1, 2, . . . .
(13)

Using Equation (13), an approximate solution of Equation (7) is obtained using

u(x, t) ≈
k

∑
n=0

un(x, t), where lim
k→∞

k

∑
n=0

un(x, t) = u(x, t). (14)

Remark 1. In most cases, the results obtained by LADM and ADM are exactly the same for linear homogeneous
PDEs. However, LADM, in some sense is a modification of ADM that needs less work in comparison to
ADM as the latter involves evaluation of Adomian polynomials and the former employs Laplace transform [38].
Without linearising the problem, LADM decreases considerably huge volume of calculations.

2.1. Solution of Numerical Experiment 1 via LADM

Consider the linearized KdV equation in Equation (4) in its standard form as

Ltu + 2ux + uxxx = 0, x ∈ [0, 2π], t ∈ [0, 4.0], (15)

with the differential operator Lt =
∂

∂t
. The initial condition is given by

u(x, 0) = sin(x). (16)

By applying the Laplace transform L̂ on Equation (15), we obtain

u(x, s) =
u(x, 0)

s
− 2

s
L̂{ux} −

1
s
L̂{uxxx}. (17)

Taking inverse Laplace transform of Equation (17), we get

u(x, t) = u(x, 0)− L̂−1
[

1
s
[
L̂{2ux} − L̂{uxxx}

]]
. (18)
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By decomposing u(x, t) = ∑
n≥0

un(x, t) in Equation (18), we obtain the recursive relation as

u0(x) = u(x, 0) = sin(x),

u1(x, t) = −L̂−1
[

1
s

[
L̂{−2u0,x} − L̂{u0,xxx}

]]
,

u2(x, t) = −L̂−1
[

1
s

[
L̂{−2u1,x} − L̂{u1,xxx}

]]
,

...

un(x, t) = −L̂−1
[

1
s

[
L̂{−2un−1,x} − L̂{un−1,xxx}

]]
,



(19)

where uj,y denotes the jth-derivative of u with respect to y.
By using Equation (19) with the initial condition u(x, 0) = sin(x), together with properties of

Laplace’s transform [38], the first few LADM components of un(x, t) for n ≥ 1 are given by

u1(x, t) = −t cos(x), u2(x, t) = − t2

2!
sin(x), u3(x, t) =

t3

3!
cos(x),

u4(x, t) =
t4

4!
sin(x), u5(x, t) = − t5

5!
cos(x), u6(x, t) = − t6

6!
sin(x),

u7(x, t) =
t7

7!
cos(x), u8(x, t) =

t8

8!
sin(x),

u9(x, t) = − t9

9!
cos(x), u10(x, t) = − t10

10!
sin(x),


(20)

and so on.
The tenth-term approximate LADM solution is given by

Ψ10(x, t) =
10

∑
i=0

ui(x, t) =
(

sin(x)− t2

2!
sin(x) +

t4

4!
sin(x)− t6

6!
sin(x) +

t8

8!
sin(x)− t10

10!
sin(x)

)
+

(
−t cos(x) +

t3

3!
cos(x)− t5

5!
cos(x) +

t7

7!
cos(x)− t9

9!
cos(x)

)
.

(21)

Thus, using the convergence property of LADM [28], we have, for any n ∈ N0, that

u(x, t) = sin(x)
[

1− t2

2!
+

t4

4!
− t6

6!
+

t8

8!
+ . . .

]
− cos(x)

[
t− t3

3!
+

t5

5!
− t7

7!
+ . . .

]
,

= sin(x) cos(t)− cos(x) sin(t) = sin(x− t),

the closed form as required.

Remark 2. We note that LADM, HPM and RDTM are equivalent schemes when applied to linearized
homogeneous KdV equation. We also assumed that t = 4.0 as a long propagating time for the homogeneous
linearized dispersive KdV equation whereas t = 0.1 as short propagating time for the inhomogeneous dispersive
KdV equation in Section 2.2.

We obtain plots of exact and approximate solution using LADM, HPM, RDTM vs. x at times 0.1,
2.0 and 4.0 in Figure 1. We also tabulate absolute and relative errors at some values of x at times 0.1,
2.0, 4.0 using LADM, HPM, RDTM in Table 1 and see also Figure 2.



Mathematics 2020, 8, 1769 6 of 34

0 1 2 3 4 5 6
x

−1.0

−0.5

0.0

0.5

1.0
So

lu
tio

n
uexact(x,t=0.1)
uLADM (x,t=0.1)

0 1 2 3 4 5 6
x

−1.0

−0.5

0.0

0.5

1.0

So
lu
tio

n

uexact(x,t=2.0)
uLADM (x,t=2.0)

0 1 2 3 4 5 6
x

−1.0

−0.5

0.0

0.5

1.0

So
lu
tio

n

uexact(x,t=4.0)
uLADM (x,t=4.0)

Figure 1. Plots of exact solution and approximate solution using 10-terms of LADM, HPM, RDTM vs.
x at times 0.1, 2.0 and 4.0. (The space interval used for these plots is π

10 ≈ 0.314).
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Figure 2. Plots of absolute errors vs. x at different values of time (t = 0.1, 2.0, 4.0) using the methods
LADM, HPM and RDTM.
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Table 1. Absolute and relative errors at some values of x obtained at times 0.1, 2.0, 4.0 using 10-terms
of LADM, HPM and RDTM for numerical experiment 1.

t Values of x Exact Solution Numerical Solution Absolute Error Relative Error

0.314 0.212370 0.212370 0.000000 0.000000
0.628 0.503807 0.503807 1.110223 × 10−16 2.203669 × 10−16

0.942 0.745977 0.745977 1.110223 × 10−16 1.488281 × 10−16

1.256 0.915198 0.915198 1.110223 × 10−16 1.213095 × 10−16

1.570 0.994924 0.994924 1.110223 × 10−16 1.115887 × 10−16

1.884 0.977358 0.977358 1.110223 × 10−16 1.135943 × 10−16

2.198 0.864217 0.864217 2.220446 × 10−16 2.569314 × 10−16

2.512 0.666566 0.666566 1.110223 × 10−16 1.665586 × 10−16

t = 0.1 2.826 0.403732 0.403732 1.110223 × 10−16 2.749900 × 10−16

3.140 0.101418 0.101418 8.326673 × 10−17 8.210252 × 10−16

3.454 −0.210814 −0.210814 8.326673 × 10−17 3.949777 × 10−16

3.768 −0.502430 −0.502430 1.110223 × 10−16 2.209705 × 10−16

4.082 −0.744915 −0.744915 0.000000 0.000000
4.396 −0.914555 −0.914555 1.110223 × 10−16 1.213948 × 10−16

4.710 −0.994763 −0.994763 0.000000 0.000000
5.024 −0.977694 −0.977694 2.220446 × 10−16 2.271106 × 10−16

5.338 −0.865018 −0.865018 3.330669 × 10−16 3.850406 × 10−16

5.652 −0.667752 −0.667752 2.220446 × 10−16 3.325253 × 10−16

5.966 −0.405189 −0.405189 2.775558 × 10−16 6.850036 × 10−16

6.280 −0.103002 −0.103002 3.608225 × 10−16 3.503053 × 10−15

0.314 −0.993371 −0.993422 5.015442 × 10−5 5.048909 × 10−5

0.628 −0.980305 −0.980350 4.538846 × 10−5 4.630034 × 10−5

0.942 −0.871376 −0.871412 3.618402 × 10−5 4.152515 × 10−5

1.256 −0.677236 −0.677260 2.344120 × 10−5 3.461303 × 10−5

1.570 −0.416871 −0.416879 8.406101 × 10−6 2.016476 × 10−5

1.884 −0.115740 −0.115733 7.451020 × 10−6 6.437721 × 10−5

2.198 0.196709 0.196731 2.257952 × 10−5 1.147865 × 10−4

2.512 0.489922 0.489957 3.549999 × 10−5 7.246054 × 10−5

t = 2.0 2.826 0.735226 0.735271 4.494898 × 10−5 6.113628 × 10−5

3.140 0.908633 0.908683 5.000247 × 10−5 5.503040 × 10−5

3.454 0.993187 0.993237 5.016629 × 10−5 5.051041 × 10−5

3.768 0.980618 0.980664 4.542442 × 10−5 4.632222 × 10−5

4.082 0.872156 0.872193 3.624056 × 10−5 4.155283 × 10−5

4.396 0.678407 0.678431 2.351279 × 10−5 3.465881 × 10−5

4.710 0.418318 0.418326 8.485738 × 10−6 2.028538 × 10−5

5.024 0.117322 0.117314 7.371122 × 10−6 6.282822 × 10−5

5.338 −0.195147 −0.195170 2.250717 × 10−5 1.153344 × 10−4

5.652 −0.488533 −0.488568 3.544228 × 10−5 7.254842 × 10−5

5.966 −0.734146 −0.734190 4.491153 × 10−5 6.117524 × 10−5

6.280 −0.907967 −0.908017 4.998895 × 10−5 5.505590 × 10−5

0.314 0.517911 0.417558 1.003528 × 10−1 1.937646 × 10−1

0.628 0.228374 0.132556 9.581821 × 10−2 4.195668 × 10−1

0.942 −0.083495 −0.165409 8.191365 × 10−2 9.810567 × 10−1

1.256 −0.387200 −0.447199 5.999889 × 10−2 1.549558 × 10−1

1.570 −0.653041 −0.685258 3.221691 × 10−2 4.933369 × 10−2

1.884 −0.855022 −0.856306 1.284492 × 10−3 1.502292 × 10−3

2.198 −0.973391 −0.943618 2.977354 × 10−2 3.058743 × 10−2

2.512 −0.996574 −0.938654 5.792005 × 10−2 5.811915 × 10−2

2.826 −0.922304 −0.841901 8.040265 × 10−2 8.717588 × 10−2

t = 4.0 3.140 −0.757843 −0.662820 9.502279 × 10−2 1.253859 × 10−1

3.454 −0.519273 −0.418922 1.003508 × 10−1 1.932525 × 10−1

3.768 −0.229924 −0.134059 9.586562 × 10−2 4.169441 × 10−1

4.082 0.081908 0.163914 8.200590 × 10−2 0.1001194 × 101

4.396 0.385731 0.445858 6.012694 × 10−2 1.558779 × 10−1

4.710 0.651834 0.684202 3.236825 × 10−2 4.965722 × 10−2

5.024 0.854195 0.855639 1.444316 × 10−3 1.690851 × 10−3

5.338 0.973025 0.943404 2.962086 × 10−2 3.044203 × 10−2

5.652 0.996705 0.938915 5.778945 × 10−2 5.798050 × 10−2

5.966 0.922918 0.842611 8.030689 × 10−2 8.701410 × 10−2

6.280 0.758881 0.663909 9.497124 × 10−2 1.251465 × 10−1
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Remark 3. Table 1 shows that the approximate solutions of Equation (4) deviate from the exact solution at a
larger value of t as also shown in Figure 3; for example, at t = 0.628, the absolute errors are in orders of 10−16;
at t = 2.0, the absolute errors are in orders of 10−6 to 10−5, and at t = 4.0, the absolute errors are in orders of
10−2 to 10−1. (see also Figures 1 and 2 for the graphical demonstration).

Figure 3. 3D plots of exact solution and approximate solution (using LADM, HPM, RDTM), vs. x vs. t,
for numerical experiment 1.

2.2. Solution of Numerical Experiment 2 via LADM

The one-dimensional inhomogeneous dispersive PDE [27] is given by

ut + uxxx = g(x, t). (22)

We consider x ∈ [0, 0.1], t > 0 with source term g(x, t) = − sin(πx) sin(t)− π3 cos(πx) cos(t)
and the initial condition is u(x, 0) = sin(πx). The time dependent boundary conditions are u(0, t) = 0
and ux(0, t) = π cos(t). Exact solution for this problem is given by

u(x, t) = sin(πx) cos(t). (23)

By applying Equations (8)–(10) and employing the initial condition u(x, 0) = sin(πx) together
with Equation (10), we obtain

∑
n≥0

un(x, t) = L̂−1
(

u(x, 0)
s

)
+ L̂−1

[
1
s

{
−L̂[∑

n≥0
u3

n,xxx(x, t)] + L̂{− sin(πx) sin(t)− π3 cos(πx) cos(t)}
}]

. (24)

The following recursive relation is derived from the components of the series solution in
Equation (24):

u0(x, t) = u(x, 0) + L̂−1

[
1
sL [g(x, t)]

]
,

u1(x, t) = −L̂−1

[
1
s
L̂
[

∂u3
0(x, t)
∂x3

]]
,

...

un(x, t) = −L̂−1

[
1
s
L̂
[

∂u3
n−1(x, t)

∂x3

]]
, n ≥ 1.



(25)
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Thus, the first few LADM solutions, using Equation (25), are given by

u0(x, t) = u(x, 0) + L̂−1

[
1
s
L [g(x, t)]

]
= −π3 cos (π x) sin (t) + sin (π x) cos (t) , (26a)

u1(x, t) = −L̂−1

[
1
s
L̂
[

∂u3
0(x, t)
∂x3

]]
= π3 cos (π x) sin (t)− π6 sin (π x) cos (t) + π6 sin (π x) , (26b)

u2(x, t) = −L̂−1

[
1
s
L̂
[

∂u3
1(x, t)
∂x3

]]
= π9 cos (π x) [t− sin(t)] + π6 sin (π x) [cos(t)− 1], (26c)

u3(x, t) = −L̂−1

[
1
s
L̂
[

∂u3
2(x, t)
∂x3

]]
= π9 cos (π x) [sin(t)− t] + π12 sin (π x)

[
1− cos(t)− t2

2!

]
, (26d)

u4(x, t) = −L̂−1

[
1
s
L̂
[

∂u3
3(x, t)
∂x3

]]
= π15 cos (π x)

[
t− sin(t)− t3

3!

]
− π12 sin (π x)

[
1− cos(t)− t2

2!

]
, (26e)

u5(x, t) = −L̂−1

[
1
s
L̂
[

∂u3
4(x, t)
∂x3

]]
= π15 cos (π x)

[
t3

3! + sin(t)− t
]
+ π18 sin(πx)

[
1− cos(t)− t2

2! +
t4

4!

]
, (26f)

u6(x, t) = −L̂−1

[
1
s
L̂
[

∂u3
5(x, t)
∂x3

]]
= π21 cos(πx)

[
t− sin(t)− t3

3! +
t5

5!

]
− π18 sin(πx)

[
1− cos(t)− t2

2! +
t4

4!

]
, (26g)

u7(x, t) = −L̂−1

[
1
s
L̂
[

∂u3
6(x, t)
∂x3

]]
= −π21 cos(πx)

[
t− t3

3! +
t5

5! − sin(t)
]
+ π24 sin(πx)

[
1− t2

2! − cos(t)− t4

4! −
t6

6!

]
. (26h)

From the fact in Equation (14), the series of approximate solutions, Equation (26a–h),
takes the form

Ψ7(x, t) = sin (π x) cos (t)− π24 sin (π x) cos (t) + π24
(

1− t2

2!
+

t4

4!
− t6

6!

)
sin (π x) + . . . , (27)

which converges to the exact solution in Equation (23).
Table 2 demonstrates absolute and relative errors using LADM for the non-homogeneous

dispersive Linearized KdV equation, showing how the approximate solution is compared with the
exact solution. See Figures 4 and 5 for pictorial representation of the solution as well as the errors and
Figure 6 for 3D plot of the exact solution as well as LADM solution.

Remark 4. One can observe from Equation (26a–h) the occurrence of noise terms. By ‘noise’ terms, we mean the
identical terms, with opposite signs, which may appear in various components uj, j ≥ 1 [37,39]. G. Adomian
and Rach in [40] and Wazwaz [37] investigated the phenomenon of self-cancelling ‘noise’ terms where some terms
in the series vanish on the limit. These ‘noise’ terms do not show up for homogeneous equations but solely for
specific types of inhomogeneous equations. It was formally shown that by canceling the noise terms that appear in
u0 and u1 from u0, even though u1 contains additional terms, the remaining non-cancelled terms of u0 may give
the exact solution of the inhomogeneous problem [35,41]. This can be justified through substitution. Therefore, it
is necessary to verify that the non-cancelled terms of u0 satisfy the PDE under discussion, which holds in our
case. A necessary condition for the generation of the noise terms for inhomogeneous problems is that the zeroth
component u0 must contain the exact solution u among other terms. For a complete and thorough study on noise
terms, please refer to [39].
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Figure 4. Plots of exact solution and solution using LADM vs. x at different t-values, t = 0.05, 0.07, 0.10
(for numerical experiment 2).
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(b) t = 0.07.
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(c) t = 0.10.

Figure 5. Plots of absolute errors vs. x using 7-terms of LADM at different values of time (t = 0.05, 0.07, 0.10).
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Table 2. Absolute and relative errors at some values of x obtained at times 0.05, 0.07, 0.10 using 7-terms
of LADM (for numerical experiment 2).

t Values of x Exact Solution Numerical Solution Absolute Error Relative Error

0.050 0.156239 0.156108 1.306562 × 10−4 8.362586 × 10−4

0.100 0.308631 0.308359 2.718451 × 10−4 8.808101 × 10−4

0.150 0.453423 0.453017 4.062699 × 10−4 8.960062 × 10−4

0.200 0.587051 0.586538 5.123988 × 10−4 8.728357 × 10−4

0.250 0.706223 0.705581 6.422466 × 10−4 9.094104 × 10−4

0.300 0.808006 0.807220 7.856065 × 10−4 9.722781 × 10−4

0.350 0.889893 0.889146 7.466506 × 10−4 8.390341 × 10−4

0.400 0.949868 0.948990 8.776868 × 10−4 9.240093 × 10−4

0.450 0.986454 0.985657 7.967306 × 10−4 8.076713 × 10−4

t = 0.05 0.500 0.998750 0.997896 8.544922 × 10−4 8.555614 × 10−4

0.550 0.986454 0.985542 9.121347 × 10−4 9.246602 × 10−4

0.600 0.949868 0.949037 8.314168 × 10−4 8.752972 × 10−4

0.650 0.889893 0.889175 7.179544 × 10−4 8.067874 × 10−4

0.700 0.808006 0.807327 6.791179 × 10−4 8.404863 × 10−4

0.750 0.706223 0.705645 5.784568 × 10−4 8.190851 × 10−4

0.800 0.587051 0.586586 4.644615 × 10−4 7.911779 × 10−4

0.850 0.453423 0.452975 4.482223 × 10−4 9.885298 × 10−4

0.900 0.308631 0.308353 2.775309 × 10−4 8.992326 × 10−4

0.950 0.156239 0.156095 1.442404 × 10−4 9.232041 × 10−4

1.000 0.000000 0.000000 1.386416 × 10−17 1.133511 × 10−1

0.050 0.156051 0.154127 1.924276 × 10−3 1.233105 × 10−2

0.100 0.308260 0.304473 3.786796 × 10−3 1.228441 × 10−2

0.150 0.452879 0.447335 5.543939 × 10−3 1.224155 × 10−2

0.200 0.586346 0.579125 7.220799 × 10−3 1.231492 × 10−2

0.250 0.705375 0.696679 8.695814 × 10−3 1.232793 × 10−2

0.300 0.807036 0.796997 1.003879 × 10−2 1.243910 × 10−2

0.350 0.888824 0.877889 1.093497 × 10−2 1.230273 × 10−2

0.400 0.948727 0.937126 1.160181 × 10−2 1.222881 × 10−2

0.450 0.985269 0.973269 1.200080 × 10−2 1.218022 × 10−2

t = 0.07 0.500 0.997551 0.985222 1.232910 × 10−2 1.235937 × 10−2

0.550 0.985269 0.973345 1.192498 × 10−2 1.210326 × 10−2

0.600 0.948727 0.937136 1.159155 × 10−2 1.221800 × 10−2

0.650 0.888824 0.877787 1.103793 × 10−2 1.241857 × 10−2

0.700 0.807036 0.797055 9.980618 × 10−3 1.236701 × 10−2

0.750 0.705375 0.696737 8.638171 × 10−3 1.224621 × 10−2

0.800 0.586346 0.579162 7.183557 × 10−3 1.225140 × 10−2

0.850 0.452879 0.447314 5.564460 × 10−3 1.228687 × 10−2

0.900 0.308260 0.304479 3.781563 × 10−3 1.226744 × 10−2

0.950 0.156051 0.154130 1.920938 × 10−3 1.230966 × 10−2

1.000 0.000000 0.000000 2.502025 × 10−17 2.048074 × 10−1

0.050 0.155653 0.122508 3.314447 × 10−2 2.129383 × 10−1

0.100 0.307473 0.242008 6.546499 × 10−2 2.129128 × 10−1

0.150 0.451722 0.355480 9.624288 × 10−2 2.130576 × 10−1

0.200 0.584849 0.460271 1.245775 × 10−1 2.130081 × 10−1

0.250 0.703574 0.553690 1.498841 × 10−1 2.130323 × 10−1

0.300 0.804975 0.633573 1.714020 × 10−1 2.129283 × 10−1

0.350 0.886555 0.697687 1.888679 × 10−1 2.130357 × 10−1

0.400 0.946305 0.744603 2.017019 × 10−1 2.131467 × 10−1

0.450 0.982754 0.773581 2.091732 × 10−1 2.128439 × 10−1

0.500 0.995004 0.783090 2.119141 × 10−1 2.129781 × 10−1

t = 0.10 0.550 0.982754 0.773470 2.092838 × 10−1 2.129565 × 10−1

0.600 0.946305 0.744687 2.016184 × 10−1 2.130586 × 10−1

0.650 0.886555 0.697738 1.888175 × 10−1 2.129789 × 10−1

0.700 0.804975 0.633604 1.713715 × 10−1 2.128904 × 10−1

0.750 0.703574 0.553653 1.499208 × 10−1 2.130845 × 10−1

0.800 0.584849 0.460341 1.245074 × 10−1 2.128883 × 10−1

0.850 0.451722 0.355460 9.626242 × 10−2 2.131008 × 10−1

0.900 0.307473 0.242018 6.545548 × 10−2 2.128819 × 10−1

0.950 0.155653 0.122513 3.314019 × 10−2 2.129108 × 10−1

1.000 0.000000 0.000000 1.001917 × 10−16 8.222354 × 10−1
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Figure 6. 3D plots of exact solution and approximate solution using LADM, vs. x vs. t, for numerical
experiment 2.

3. Homotopy Perturbation Method (HPM)

HPM was proposed by Ji-Huan He in 1999 ([29,30]). HPM is a method not only used for finding
accurate asymptotic solutions of nonlinear problem, but also for effectively obtaining a solution in a
rapidly convergent series, which is given in a closed-form. This method was applied for PDEs arising
in modeling of flow in porous media [42], for the solution of inverse heat conduction problem in [43]
and for solving the Volterra–Fredholm integral equations of the second kind in [44]. In this method,
the solution is considered to be the summation of an infinite series, which usually converges rapidly to
the exact solution.

To illustrate HPM (cf. [29,30]), let us consider the following differential equation:

A(u) = f (r), r ∈ Ω, (28)

supplied with boundary conditions B(u, ∂u
∂n̂ ) = 0; r ∈ Θ, where A is a general differential operator, B is

a boundary operator, f (r) is a known analytic function, Θ is the boundary of the domain Ω and ∂u
∂n̂

denotes directional derivative in the outwarding normal n̂ to Ω [29,30]. Suppose the operator A can be
divided into two parts: M and N. Therefore, Equation (28) can be rewritten as

M(u) + N(u) = f (r). (29)

The homotopy ν(r, p) : Ω× [0, 1]→ R constructed as follows [29]

H(ν, p) = (1− p)[M(ν)−M(y0)] + p [A(ν)− f (r)] = 0, (30)

where r ∈ Ω and p ∈ [0, 1] is an embedding parameter, and y0 is an initial approximation of (28).
Hence, one can see that

H(ν, 0) = M(ν)−M(y0) = 0, H(ν, 1) = A(ν)− f (r) = 0, (31)

and changing the variation of p from 0 to 1 is the same as changing H(ν, p) from M(ν)−M(y0) to
A(ν)− f (r), which are called homotopic. In topology, this is known as a deformation. Due to the fact
that 0 ≤ p ≤ 1 can be considered to be a small parameter, by applying the perturbation procedure, the
solution of (30) can be expressed as a series in p as

ν(x, t) = ν0 + pν1 + p2ν2 + p3ν3 + . . . (32)
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By letting p → 1, Equation (30) corresponds to Equation (29), and Equation (32) becomes the
approximate solution of Equation (29); that is,

u(x, t) = lim
p→1

ν(x, t) = ν0(x, t) + ν1(x, t) + ν2(x, t) + ν3(x, t) + . . . (33)

Substituting Equation (32) into Equation (30) and equating the terms with identical powers of p,
we can obtain

p0 : ν0 − f (x) = 0,

p1 : ν1 −H(ν0) = 0,
...

pn : νn −H(ν0, ν1, ν2, . . . , νn−1) = 0,


(34)

for n ∈ N0, where H(ν0, ν1, ν2, . . . , νj) depends upon ν0, ν1, ν2, . . . , νj.

Remark 5. Please note that the series in Equation (33) is convergent for most cases; however, the convergent
rate relies on the nonlinear operator A(ν). Sometimes, even the first approximation is sufficient to obtain the
exact solution [29]. As it is shown in [29], the second derivative of N(ν) with respect to ν must be small, because
the parameter p may be relatively large; i.e., p→ 1, and the norm of L−1∂N/∂ν must be smaller than one for
the series to converge.

3.1. Solution of Numerical Experiment 1 via HPM

By means of HPM, we construct a homotopy map for the linearized KdV equation as

H(ν, p) = (1− p)
(

∂ν0

∂t
− ∂u0

∂t

)
+ p

[
∂ν

∂t
+ 2

∂ν

∂x
+

∂3ν

∂x3

]
= 0, (35)

subject to the initial condition u(x, 0) = sin(x). Substituting Equation (32) into Equation (35), we obtain

(
∂ν0

∂t
− ∂u0

∂t

)
+ p

{
∂ν1

∂t
+

(
∂u0

∂t
− ∂ν0

∂t

)
+

(
∂ν0

∂t
+ 2

∂ν0

∂x
+

∂3ν0

∂x3

)}

+ p2

{
∂ν2

∂t
− ∂ν1

∂t
+

(
∂ν1

∂t
+ 2

∂ν1

∂x
+

∂3ν1

∂x3

)}
+ . . . = 0.

By collecting terms of the same power of p, the components of νi’s are given as follows:

p(0) :
∂ν0

∂t
− ∂u0

∂t
= 0, (36a)

p(1) :
∂ν1

∂t
+

∂u0

∂t
+ 2

∂ν0

∂x
+

∂3ν0

∂x3 = 0, (36b)

p(2) :
∂ν2

∂t
+ 2

∂ν1

∂x
+

∂3ν1

∂x3 = 0, (36c)

...

p(n) :
∂νn

∂t
+ 2

∂νn−1

∂x
+

∂3νn−1

∂x3 = 0, n ≥ 2. (36d)

Thus, solving Equation (36a–d), by using techniques of integration yields
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ν0 = u0 = sin(x), ν1 = −t cos(x), ν2 = − t2

2!
sin(x), ν3 =

t3

3!
cos(x), ν4 =

t4

4!
sin(x), ν5 = − t5

5!
cos(x),

ν6 = − t6

6!
sin(x), ν7 =

t7

7!
cos(x), ν8 =

t8

8!
sin(x), ν9 = − t9

9!
cos(x), ν10 = − t10

10!
sin(x),

and so on. Thus, the sum of the first ten approximate solutions for Equation (4) is given by

u(x, t) = lim
k→1

ν(x, t) = ν0(x, t) + ν1(x, t) + ν2(x, t) + . . . + ν10(x, t)

= sin(x)− t cos(x)− t2

2!
sin(x) +

t3

3!
cos(x) +

t4

4!
sin(x)− t5

5!
cos(x)

− t6

6!
sin(x) +

t7

7!
cos(x) +

t8

8!
sin(x)− t9

9!
cos(x)− t10

10!
sin(x). (37)

Remark 6. We note that Equation (37) and Equation (21) are exactly the same, which is in full agreement with
the result given in [27,45]. Also, the result of approximate solutions for Equation (4) via HPM is simple, quick
and easy and it agrees with the approximate solution via LADM given in Equation (20). Table 1 shows both the
absolute and relative errors for Equation (4) via HPM as well as LADM.

3.2. Solution of Numerical Experiment 2 via HPM

The inhomogeneous dispersive KdV equation is given by

ut + uxxx = − sin(πx) sin(t)− π3 cos(πx) cos(t), x ∈ [0, 1], t ∈ [0, 0.1],

subject to the initial condition u0(x) = sin(πx) [27]. To solve Equation (5) by HPM, we construct the
following homotopy:

(1− p)
(

∂ν

∂t
− ∂u0

∂t

)
+ p

[
∂ν

∂t
+

∂3ν

∂x3 + sin(πx) sin(t) + π3 cos(πx) cos(t)
]
= 0. (38)

Assuming the solution of Equation (5) takes the form of the series in Equation (32) and substituting
this into Equation (38) and collecting terms of the same power of p gives

p(0) :
∂ν0

∂t
− ∂u0

∂t
= 0 =⇒ ν0 = u0,

p(1) :
∂ν1

∂t
= −∂u0

∂t
− ∂3ν0

∂x3 − sin(πx) sin(t)− π3 cos(πx) cos(t),

...

p(n) :
∂νn

∂t
= −∂3νn−1

∂x3 , for n ≥ 2.

Here, we will use the initial condition ν0 = u0 = u(x, 0) and the first few approximate HPM
solutions are given by

ν0(x, t) = u(x, 0) = sin(πx), (39a)

ν1(x, t) = − sin(πx) + sin(πx) cos(t) + π3t cos(πx)− π3 cos(πx) sin(t), (39b)

ν2(x, t) = π6 sin (π x)− 1
2

π6t2 sin (π x) + sin (t)π3 cos (π x)− π3t cos (π x)− cos (t)π6 sin (π x) , (39c)

ν3(x, t) = −π6 sin (π x) + π9t cos (π x)− 1
6 π9t3 cos (π x) + cos (t)π6 sin (π x) + 1

2 π6t2 sin (π x)− sin (t)π9 cos (π x) , (39d)

ν4(x, t) = π12 sin (π x)

[
1− t2

2!
+

t4

4!
− cos(t)

]
+ π9 cos(πx)

[
sin(t)− t +

t3

3!

]
, (39e)
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ν5(x, t) = π12 sin (π x)
[

cos(t)− t +
t3

3!

]
+ π15 cos(πx)

[
t− t3

3!
+

t5

5!
− sin(t)

]
, (39f)

ν6(x, t) = π18 sin (π x)

[
1− t2

2!
+

t4

4!
− t6

6!
− cos(t)

]
− π15 cos(πx)

[
t− t3

3!
+

t5

5!
+ sin(t)

]
, (39g)

ν7(x, t) = −π18 sin(πx)

[
1− t2

2!
+

t4

4!
− t6

6!
− cos(t)

]
+ π21 cos(πx)

[
t− t3

3!
− sin(t) +

t5

5!
− t7

7!

]
. (39h)

The sum of the first few approximate solutions using HPM yield

S(x, t) =
7

∑
i=0

ui(x, t) = sin (π x) cos (t)− π21 sin (t) cos (π x) + π21 cos (π x)
(

t− t3

3!
+

t5

5!
− t7

7!

)
+ . . . , (39i)

which converges to the exact solution upon Taylor’s approximation.

Remark 7. For the inhomogeneous KdV problem, the accuracy of the approximate solution using HPM strongly
relies on the initial conditions used to solve this equation. We note that HPM work well for small numerical
values of the initial conditions. Once these values are increased, the accuracy of the estimations becomes poor, at
least for the number of terms used to approximate the solutions in the present approach (see Table 3 and also
Figures 7 and 8). These scenario of convergence of HPM solution from the initial conditions and nature of the
source term motivates a thorough investigation on the modification of HPM to obtain an improved result as
described below.
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Figure 7. Plots of exact solution and approximate solution using HPM at different t-values, t = 0.05, 0.07
(for numerical experiment 2).
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Figure 8. Plots of absolute errors vs. x using 7-terms of HPM at different values of time (t = 0.05, 0.07).
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Table 3. Absolute and relative errors at some values of x obtained at times 0.05, 0.07 using 7-terms of
HPM (for numerical experiment 2).

t Values of x Exact Solution Numerical Solution Absolute Error Relative Error

0.050 0.156239 0.217665 6.142635 × 10−2 3.931564 × 10−1

0.100 0.308631 0.367779 5.914842 × 10−2 1.916478 × 10−1

0.150 0.453423 0.508837 5.541345 × 10−2 1.222113 × 10−1

0.200 0.587051 0.637365 5.031456 × 10−2 8.570736 × 10−2

0.250 0.706223 0.750199 4.397635 × 10−2 6.226977 × 10−2

0.300 0.808006 0.844561 3.655552 × 10−2 4.524164 × 10−2

0.350 0.889893 0.918127 2.823447 × 10−2 3.172794 × 10−2

0.400 0.949868 0.969086 1.921845 × 10−2 2.023276 × 10−2

0.450 0.986454 0.996183 9.728888 × 10−3 9.862485 × 10−3

t = 0.05 0.500 0.998750 0.998750 9.331381 × 10−8 9.343057 × 10−8

0.550 0.986454 0.976725 9.728769 × 10−3 9.862365 × 10−3

0.600 0.949868 0.930650 1.921821 × 10−2 2.023251 × 10−2

0.650 0.889893 0.861658 2.823459 × 10−2 3.172807 × 10−2

0.700 0.808006 0.771450 3.655564 × 10−2 4.524179 × 10−2

0.750 0.706223 0.662246 4.397659 × 10−2 6.227011 × 10−2

0.800 0.587051 0.536737 5.031409 × 10−2 8.570655 × 10−2

0.850 0.453423 0.398010 5.541309 × 10−2 1.222106 × 10−1

0.900 0.308631 0.249483 5.914819 × 10−2 1.916471 × 10−1

0.950 0.156239 0.094813 6.142611 × 10−2 3.931549 × 10−1

0.050 0.156051 0.486414 3.303631 × 10−1 0.2117015 × 101

0.100 0.308260 0.626371 3.181107 × 10−1 0.1031955 × 101

0.150 0.452879 0.750904 2.980252 × 10−1 6.580686 × 10−1

0.200 0.586346 0.856947 2.706008 × 10−1 4.615039 × 10−1

0.250 0.705375 0.941889 2.365139 × 10−1 3.353024 × 10−1

0.300 0.807036 1.003639 1.966030 × 10−1 2.436113 × 10−1

0.350 0.888824 1.040676 1.518513 × 10−1 1.708451 × 10−1

0.400 0.948727 1.052088 1.033602 × 10−1 1.089462 × 10−1

0.450 0.985269 1.037594 5.232441 × 10−2 5.310670 × 10−2

t = 0.07 0.500 0.997551 0.997551 3.354171 × 10−9 3.362405 × 10−9

0.550 0.985269 0.932945 5.232417 × 10−2 5.310645 × 10−2

0.600 0.948727 0.845367 1.033602 × 10−1 1.089462 × 10−1

0.650 0.888824 0.736973 1.518512 × 10−1 1.708450 × 10−1

0.700 0.807036 0.610433 1.966030 × 10−1 2.436113 × 10−1

0.750 0.705375 0.468861 2.365137 × 10−1 3.353020 × 10−1

0.800 0.586346 0.315745 2.706009 × 10−1 4.615041 × 10−1

0.850 0.452879 0.154854 2.980249 × 10−1 6.580678 × 10−1

0.900 0.308260 −0.009850 3.181102 × 10−1 0.1031954 × 101

0.950 0.156051 −0.174312 3.303633 × 10−1 0.2117016 × 101

3.3. Homotopy Perturbation Transform Method (HPTM)

This method combines the Homotopy Perturbation Method with Laplace transform for solving
various types of linear and nonlinear PDEs [46,47]. To illustrate the basic idea of HPTM, we consider

Ltu(x, t) + Ru(x, t) + Nu(x, t) = g(x, t), (40)

with an initial condition u(x, 0) = h(x), where Lt = ∂
∂t , R is a linear operator that includes partial

derivatives with respect to x, N is a nonlinear operator and g is a non-homogeneous term, which is
u-independent. Taking the Laplace transform on both sides of Equation (40), we get

L̂
{

Ltu(x, t)
}
= L̂

{
g(x, t)− Ru(x, t)− Nu(x, t)

}
. (41)

From the differentiation property of Laplace transform L̂ of Equation (41), we obtain

L̂ [u(x, t)] =
h(x)

s
+

1
s
L̂[g(x, t)]− 1

s
[Ru(x, t) + Nu(x, t)] . (42)
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Operating the Laplace inverse of Equation (42) yields

u(x, t) = h(x) + L̂−1
[

1
s
L̂[g(x, t)]

]
− L̂−1

[
1
s
L̂ [Ru(x, t) + Nu(x, t)]

]
. (43)

Now applying the HPM series

u(x, t) =
∞

∑
n=0

pnun(x, t), (44)

and the nonlinear term can be decomposed as

Nu(x, t) =
∞

∑
n=0

pnHn(u), (45)

for some He’s polynomials (see [29,30])

Hn(u0, u1, . . . , un) =
1
n!

∂n

∂pn

[
N
( ∞

∑
i=0

piui

)]
p=0

, n = 0, 1, 2, . . . .

Substituting Equations (44) and (45) in Equation (43), we get

∞

∑
n=0

pnun(x, t) = h(x) + L̂−1
[

1
s
L̂[g(x, t)]

]
− L̂−1

[
1
s
L̂
[

R
∞

∑
n=0

pnun(x, t) +
∞

∑
n=0

pnHn(u)

] ]
, (46)

which is the coupling of the Laplace transform and the homotopy perturbation method using He’s
polynomials. Comparing the coefficient of like powers of p, the following approximations are obtained.

u0(x, t) = h(x) + L̂−1
[

1
s
L̂[g(x, t)]

]
, (47a)

u1(x, t) = −L̂−1
[

1
s
L̂ [Ru0(x, t) + H0(u)]

]
, (47b)

u2(x, t) = −L̂−1
[

1
s
L̂ [Ru1(x, t) + H1(u)]

]
, (47c)

...

un(x, t) = −L̂−1
[

1
s
L̂ [Run(x, t) + Hn(u)]

]
, n ≥ 2. (47d)

3.4. Application of HPTM to Equation (5)

Consider the inhomogeneous KdV equation given in Equation (5). By applying the aforementioned
method, HPTM, we obtain

∞

∑
n=0

pnun(x, t) = h(x)− L̂−1
[

1
s
L̂[sin(πx) sin(t) + π3 cos(πx) cos(t)]

]
− L̂−1

[
1
s
L̂
[

∞

∑
n=0

pn ∂3un(x, t)
∂x3

] ]
. (48)

Comparing the coefficients of various powers of p in Equation (48), we get
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u0(x, t) = h(x) + L̂−1
[

1
s
L̂[g(x, t)]

]
= sin (π x) cos (t)− π3 cos (π x) sin (t) ,

u1(x, t) = −L̂−1
[

1
s
L̂
[

∂3u0(x, t)
∂x3

] ]
= π3 cos (π x) sin (t)− π6 sin (π x) cos (t) + π6 sin (π x) ,

u2(x, t) = −L̂−1
[

1
s
L̂
[

∂3u1(x, t)
∂x3

] ]
= π9 cos (π x) [sin(t)− t] + π12 sin (π x)

[
1− cos(t)− t2

2!

]
.

(49)

This procedure proceeds in a similar manner for higher order iteration of approximate solution with
some of the self-cancelling terms to obtain the exact solution in Equation (23).

Remark 8. HPTM can be perceived as a good refinement of HPM and the results obtained by HPTM coincide
with LADM for the inhomogeneous dispersive KdV equation given by Equation (5). See Figure 9 for the
graphical representation of exact and HPTM solution for Equation (5).

Figure 9. 3D plots of exact solution and approximate solution using HPTM, vs. x vs. t, for numerical
experiment 2.

3.5. HPM with a Modified Homotopy

For the inhomogeneous dispersive KdV equation, the numerical result obtained in Table 3 can be
improved by constructing a modified form of new homotopy, ν(r, p) : Ω× [0, 1]→ R, which given by

H(ν, p) = (1− p)[M(ν)−M(y0)] + p [A(ν)]− f (r) = 0, (50)

that specifically takes the form

(1− p)
(

∂ν

∂t
− ∂u0

∂t

)
+ p

[
∂ν

∂t
+

∂3ν

∂x3

]
+ sin(πx) sin(t) + π3 cos(πx) cos(t) = 0. (51)

We note here that we made some modification by shifting the source term to the standard HPM,
as shown in Equation (50), for enhancing the convergence of the series solution. This modification
allows suitable choice of the initial approximation that makes the approximate solutions to rapidly
converge to the exact solution. One can check that the obtained results, using Equation (51), for the
modified HPM are in full agreement with the approximate solutions obtained using LADM. Just to
mention the first few approximate solutions obtained via modified HPM as
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ν0(x, t) = u(x, 0) +
∫ t

0
g(x, s) ds = sin(πx)−

∫ t

0

(
sin(πx) sin(s) + π3 cos(πx) cos(s)

)
ds

= −π3 cos (π x) sin (t) + sin (π x) cos (t) ,

ν1(x, t) = −
∫ t

0
ν0,xxx(x, s) ds = π3 cos (π x) sin (t)− π6 sin (π x) cos (t) + π6 sin (π x) ,

ν2(x, t) = −
∫ t

0
ν1,xxx(x, s) ds = π9t cos (π x)− π9 cos (π x) sin (t) + π6 sin (π x) cos (t)− π6 sin (π x) ,

(52)

and, for the higher order approximate solution, we have νn(x, t) = −
∫ t

0
νn−1,xxx(x, s) ds, n ≥ 3.

Remark 9. We note that the modified HPM using the newly constructed homotopy, HPTM and LADM are
equivalent approximation schemes when applied to the linearized in-homogeneous Equation given in Equation (5).
The absolute and relative errors are given in Table 2. We note that HPTM and LADM are equivalent methods
for numerical experiment 2.

4. Reduced Differential Transform Method (RDTM)

Zhao [48] introduced differential transform method (DTM) to solve PDEs involved in electric
circuit problems. DTM involves Taylor series expansion, which gives a polynomial series solution via
an iterative procedure. Reduced differential transform method (RDTM) is very powerful method to
obtain analytical approximate solutions to linear and nonlinear ordinary differential equations [31,32]
and for systems of differential equations [49]. Basic definitions and properties for RDTM can be found
in [31,32,50].

Definition 1. Consider a function of n + 1 variables. The reduced differential transform of u(X̃, t) =

u(x1, x2, . . . , xn, t) (where X̃ ∈ Rn) with respect to t is defined by

Uk(X̃) =
1
k!

[
∂k

∂tk u(X̃, t)

]
t=0

, k = 0, 1, 2, . . . , (53)

where Uk(X̃) denotes the transform function of u(X̃, t).

Definition 2. The differential inverse transform of {Uk(X̃)}n
k=0 is defined by

u(X̃, t) =
∞

∑
k=0

Uk(X̃) tk. (54)

By substituting Equation (53) into Equation (54), we obtain

u(X̃, t) =
∞

∑
k=0

1
k!

[
∂k

∂tk u(X̃, t)

]
t=0

tk.

From the above definitions, we see that RDTM is obtained from power series expansion. Please
note that RDTM is close to the one dimensional DTM because RDTM is considered to be the standard
DTM of u(X̃, t) with respect to the variable t. However, the corresponding recursive algebraic equation
is the function of the variable X̃ = (x1, x2, . . . , xn).

The fundamental mathematical operations for RDTM [31,32] are listed in Table 4.
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Table 4. Transformed functions using RTDM.

Function f (X̃, t) Transformed Function Fk(X̃)

au(X̃, t)± bu(X̃, t) aUk(X̃)± bVk(X̃)

u(X̃, t) · v(X̃, t)
k

∑
i=0

Ui(X̃) ·Vk−i(X̃)

∂n

∂tn u(X̃, t)
(k + n)!

k!
Uk+n(X̃)

∂n

∂xn
i

u(X̃, t)
∂nUk(X̃)

∂xi
xmtnu(X̃, t) X̃m̄tnUk−n(X̃)(where X̃m̄ = xm1

1 xm2
2 . . . xmn

n )

sin

(
αx + βy + γz + w t

)
wk

k!
· sin

(
kπ

2!
+ αx + βy + γz

)

cos

(
αx + βy + γz + w t

)
wk

k!
· cos

(
kπ

2!
+ αx + βy + γz

)

4.1. Solution of Numerical Experiment 1 via RDTM

Consider the homogeneous KdV equation given in Equation (4) with initial condition in (16).
Applying RDTM to Equations (4) and (16), we obtain the recursive relation

(k + 1) Uk+1(x) + 2
∂Uk(x)

∂x
+

∂3Uk(x)
∂x3 = 0, (55)

where Uk(x) is the transform function in the t-dimensional spectrum. We see that

u0(x) = sin(x). (56)

Substituting the initial condition (56) into Equation (55), we obtain the following approximations successively

U1(x) = − cos(x), U2(x) = −1
2

sin(x),

U3(x) =
1
3!

cos(x), U4(x) =
1
4!

sin(x),

U5(x) = − 1
5!

cos(x), U6(x) = − 1
6!

sin(x),

U7(x) =
1
7!

cos(x), U8(x) =
1
8!

sin(x),

U9(x) = − 1
9!

cos(x), U10(x) = − 1
10!

sin(x),

and so on after many iterations, we have

Uk(x) =


(−1)b

(k−1)
2 c + 1

k!
cos(x), for k is odd,

(−1)b
(k−1)

2 c

k!
sin(x), for k is even,

and applying the differential-inverse transform {Uk(x)}k≥0 gives the following approximate solution
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u(x, t) = ∑
k≥0

Uk(x) tk = ∑
k≥0

U2k(x) t2k + ∑
k≥0

U2k+1(x) t2k+1,

= sin(x)

[
1− t2

2!
+

t4

4!
− t6

6!
+

t8

8!
+ . . .

]
− cos(x)

[
t− t3

3!
+

t5

5!
− t7

7!
+ . . .

]
,

= sin(x) cos(t)− cos(x) sin(t) = sin(x− t),

which coincides with the exact solution of Equation (4).

Remark 10. The approximate solutions for Equation (4) via RDTM is quick and very effective and it agrees
with the approximate solution via LADM as well as HPM. We also note that Table 1 shows both the absolute
and relative error results for Equation (4) via RDTM as well as LADM/HPM.

4.2. Solution of Numerical Experiment 2 via RDTM

By considering the inhomogeneous KdV equation given by Equation (5) with the initial condition
in (23), we apply RDTM to obtain following recursive equation:

Uk+1(x) =
−1

k + 1

{
∂3Uk(x)

∂x3 − sin(πx)
[ 1

k!
sin
(

kπ

2

) ]
− π3 cos(πx)

[ 1
k!

cos
(

kπ

2

) ]}
, (57)

From Equation (53), the initial condition u(x, 0) = sin(πx) can be transformed at t = 0 as

u0(x) = sin(πx), (58)

where Uk(x) is the transform function in the t-dimensional spectrum. Substituting the transformed
condition Equation (58) into Equation (57), we obtain the following approximations

u1(x) = 0, U2(x) = − 1
2!

sin(πx), U3(x) = 0, U4(x) =
1
4!

sin(πx), U5(x) = 0,

U6(x) = − 1
6!

sin(πx), U7(x) = 0, U8(x) =
1
8!

sin(πx), U9(x) = 0, U10(x) = − 1
10!

sin(πx),

and so on, after many iterations, we have

Uk(x) =


(−1)b

k
2 c

k!
sin(πx), for k is even,

0, for k is odd.

Then, using the inverse transformation Equation (54) {Uk(x)}k≥0 will provide the following
approximate solution

u(x, t) = ∑
k≥0

Uk(x) tk = sin(πx)

{
1− t2

2!
+

t4

4!
− t6

6!
+

t8

8!
− t10

10!
+ . . .

}
,

which coincides with the exact solution of Equation (5).

Remark 11. Table 5 demonstrates the exact and approximate solutions obtained by RDTM with absolute
and relative errors revealing that the method is very effective and convenient. This fact is also shown in
Figures 10–12. For the inhomogeneous dispersive KdV equation, RDTM is more precise than LADM. HPM is
the least performing scheme as it highly relies on the initial guess; however, by using the modified homotopy
in (50), we obtained a good result for the inhomogeneous KdV equation via modified HPM. We can see from
the above that the approximate solutions obtained by RDTM converge quickly to the exact solution at about the
seventh iteration compared to the other semianalytic methods.
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Figure 10. Plots of exact solution and approximate solution using RDTM at t = 0.05, 0.07, 0.10
(for numerical experiment 2).
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Figure 11. Plots for absolute errors at different values of t (t = 0.05, 0.07, 0.10).

Figure 12. 3D plots of exact and approximate solution using RDTM, vs. x vs. t, for numerical
experiment 2.
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Table 5. Absolute and relative errors at some values of x obtained at times 0.05, 0.07, 0.10 using 7-terms
of RDTM (for numerical experiment 2).

t Values of x Exact Solution Numerical Solution Absolute Error Relative Error

0.050 0.156239 0.156239 1.387779 × 10−16 8.882412 × 10−16

0.100 0.308631 0.308631 2.775558 × 10−16 8.993132 × 10−16

0.150 0.453423 0.453423 4.440892 × 10−16 9.794145 × 10−16

0.200 0.587051 0.587051 5.551115 × 10−16 9.455939 × 10−16

0.250 0.706223 0.706223 6.661338 × 10−16 9.432343 × 10−16

0.300 0.808006 0.808006 8.881784 × 10−16 1.099223 × 10−15

0.350 0.889893 0.889893 8.881784 × 10−16 9.980733 × 10−16

0.400 0.949868 0.949868 8.881784 × 10−16 9.350546 × 10−16

0.450 0.986454 0.986454 9.992007 × 10−16 1.012922 × 10−15

0.500 0.998750 0.998750 9.992007 × 10−16 1.000451 × 10−15

t = 0.05 0.550 0.986454 0.986454 9.992007 × 10−16 1.012922 × 10−15

0.600 0.949868 0.949868 8.881784 × 10−16 9.350546 × 10−16

0.650 0.889893 0.889893 8.881784 × 10−16 9.980733 × 10−16

0.700 0.808006 0.808006 8.881784 × 10−16 1.099223 × 10−15

0.750 0.706223 0.706223 6.661338 × 10−16 9.432343 × 10−16

0.800 0.587051 0.587051 5.551115 × 10−16 9.455939 × 10−16

0.850 0.453423 0.453423 4.440892 × 10−16 9.794145 × 10−16

0.900 0.308631 0.308631 2.775558 × 10−16 8.993132 × 10−16

0.950 0.156239 0.156239 1.387779 × 10−16 8.882412 × 10−16

1.000 0.000000 0.000000 1.232595 × 10−31 1.007750 × 10−15

0.050 0.156051 0.156051 2.248202 × 10−15 1.440681 × 10−14

0.100 0.308260 0.308260 4.385381 × 10−15 1.422623 × 10−14

0.150 0.452879 0.452879 6.550316 × 10−15 1.446373 × 10−14

0.200 0.586346 0.586346 8.437695 × 10−15 1.439031 × 10−14

0.250 0.705375 0.705375 1.010303 × 10−14 1.432292 × 10−14

0.300 0.807036 0.807036 1.165734 × 10−14 1.444464 × 10−14

0.350 0.888824 0.888824 1.276756 × 10−14 1.436455 × 10−14

0.400 0.948727 0.948727 1.365574 × 10−14 1.439375 × 10−14

0.450 0.985269 0.985269 1.409983 × 10−14 1.431064 × 10−14

t = 0.07 0.500 0.997551 0.997551 1.432188 × 10−14 1.435704 × 10−14

0.550 0.985269 0.985269 1.409983 × 10−14 1.431064 × 10−14

0.600 0.948727 0.948727 1.365574 × 10−14 1.439375 × 10−14

0.650 0.888824 0.888824 1.276756 × 10−14 1.436455 × 10−14

0.700 0.807036 0.807036 1.165734 × 10−14 1.444464 × 10−14

0.750 0.705375 0.705375 1.010303 × 10−14 1.432292 × 10−14

0.800 0.586346 0.586346 8.437695 × 10−15 1.439031 × 10−14

0.850 0.452879 0.452879 6.550316 × 10−15 1.446373 × 10−14

0.900 0.308260 0.308260 4.385381 × 10−15 1.422623 × 10−14

0.950 0.156051 0.156051 2.248202 × 10−15 1.440681 × 10−14

1.000 0.000000 0.000000 1.750285 × 10−30 1.432725 × 10−14

0.050 0.155653 0.155653 3.880229 × 10−14 2.492873 × 10−13

0.100 0.307473 0.307473 7.666090 × 10−14 2.493255 × 10−13

0.150 0.451722 0.451722 1.126321 × 10−13 2.493392 × 10−13

0.200 0.584849 0.584849 1.457723 × 10−13 2.492478 × 10−13

0.250 0.703574 0.703574 1.754152 × 10−13 2.493202 × 10−13

0.300 0.804975 0.804975 2.006173 × 10−13 2.492217 × 10−13

0.350 0.886555 0.886555 2.210454 × 10−13 2.493307 × 10−13

0.400 0.946305 0.946305 2.359224 × 10−13 2.493090 × 10−13

0.450 0.982754 0.982754 2.450262 × 10−13 2.493261 × 10−13

t = 0.10 0.500 0.995004 0.995004 2.480238 × 10−13 2.492691 × 10−13

0.550 0.982754 0.982754 2.450262 × 10−13 2.493261 × 10−13

0.600 0.946305 0.946305 2.359224 × 10−13 2.493090 × 10−13

0.650 0.886555 0.886555 2.210454 × 10−13 2.493307 × 10−13

0.700 0.804975 0.804975 2.006173 × 10−13 2.492217 × 10−13

0.750 0.703574 0.703574 1.754152 × 10−13 2.493202 × 10−13

0.800 0.584849 0.584849 1.457723 × 10−13 2.492478 × 10−13

0.850 0.451722 0.451722 1.126321 × 10−13 2.493392 × 10−13

0.900 0.307473 0.307473 7.666090 × 10−14 2.493255 × 10−13

0.950 0.155653 0.155653 3.880229 × 10−14 2.492873 × 10−13

1.000 0.000000 0.000000 3.037114 × 10−29 2.492444 × 10−13
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5. Application of RDTM to the 3D Linearized KdV Equation

We now consider a three-dimensional inhomogeneous dispersive KdV equation [27]

ut + uxxx + uyyy + uzzz = −3 cos(x + 2y + 3z) sin(t) + sin(x + 2y + 3z) cos(t),

where 0 ≤ x, y, z ≤ 4.0, t ∈ [0, 1.0],
(59)

subject to the initial condition

u(x, y, z, 0) = 0, (60)

and the time-dependent boundary conditions are assumed to be prescribed [27,45]. Exact solution for
Equation (59) is

u(x, y, z, t) = sin(x + 2y + 3z) sin(t). (61)

Some of the methods used for semi-analytic solution of Equation (59) are Adomian decomposition
method and Variational iteration method [45]. We now propose reduced differential transform method
(RDTM) to solve the dispersive KdV equation given in Equation (59). By comparing with LADM,
RDTM can be applied directly to solve the problem without using Adomian polynomials.

We now show the applicability and efficiency of RDTM for solving Equation (59). Applying
RDTM for Equations (59) and (60) and using Table 4, we obtain the following recursive equation

Uk+1(x, y, z) = − 1
k + 1

{
∂3Uk(x, y, z)

∂x3 +
∂3Uk(x, y, z)

∂y3 +
∂3Uk(x, y, z)

∂z3 − 3 cos(x + 2y + 3z)
[ 1

k!
sin
(

kπ

2

) ]

+ sin(x + 2y + 3z)
[ 1

k!
cos

(
kπ

2

) ]}
, (62)

From Equation (53), the initial conditions given in Equation (60) can be transformed at t = 0 as

U0(x, y, z) = 0. (63)

Substituting the transformed condition Equation (63) into Equation (62) and by straightforward
iterative steps, the following Uk(x, y, z), k = 0, 1, 2, . . . , n values are obtained:

U1(x, y, z) = sin(x + 2y + 3z), U2(x, y, z) = 0, U3(x, y, z) = − 1
3!

sin(x + 2y + 3z),

U4(x, y, z) = 0, U5(x, y, z) =
1
5!

sin(x + 2y + 3z), U6(x, y, z) = 0, U7(x, y, z) = − 1
7!

sin(x + 2y + 3z),

U8(x, y, z) = 0, U9(x, y, z) =
1
9!

sin(x + 2y + 3z), U10(x, y, z) = 0.

Concise formulation, after many iterations, takes the form

Uk(x, y, z) =


(−1)k

(2k + 1)!
sin(x + 2y + 3z), for k is odd,

0, for k is even.

Then, using the inverse transformation Equation (54) of the set of values of {Uk(x, y, z)}n
k=0 gives

the ninth-order approximate solution as

u(x, y, z, t) ≈
9

∑
k=0

Uk(x, y, z) tk = sin(x + 2y + 3z)

{
t− t3

3!
+

t5

5!
− t7

7!
+

t9

9!
+ . . .

}
,
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which coincides with the exact solution of Equation (59) on the limit.
As an illustration for the numerical experiment using RDTM, Table 6 shows absolute and relative

errors for the 3D linearized dispersive KdV equation using 5-terms of RDTM solution. Graphical
representation of the exact solution and RDTM solution in 3D by setting t = 0.5 is shown in Figure 13.

Table 6. Comparison between the exact solution and five-term approximation solution via RDTM.

(x, y) z uexact uRDT M Absolute Error Relative Error

0.1 0.27070402 0.27070489 8.72219677 × 10−7 3.22204181×10−6

(0.1, 0.1) 0.5 0.46688742 0.46688893 1.50433080 × 10−6 3.22204181 × 10−6

0.9 0.06765654 0.06765675 2.17992187 × 10−7 3.22204181 × 10−6

0.1 0.46688742 0.46688893 1.50433080 × 10−6 3.22204181 × 10−6

(0.5, 0.5) 0.5 0.06765654 0.06765675 2.17992187 × 10−7 3.22204181 × 10−6

0.9 −0.41785568 −0.41785703 1.34634848 × 10−6 3.22204181 × 10−6

0.1 0.06765654 0.06765675 2.17992187 × 10−7 3.22204181 × 10−6

(0.9, 0.9) 0.5 −0.41785568 −0.41785703 1.34634848 × 10−6 3.22204181 × 10−6

0.9 −0.37048303 −0.37048422 1.19371181 × 10−6 3.22204181 × 10−6

Results at t = 0.5.

Figure 13. Plots of exact solution and approximate solution using RDTM vs. x vs. y along z = 0.50 and
at t = 0.50.

6. Bernstein-Adomian-Laplace Decomposition Method (BALDM)

In a recent paper by Qasim and AL-Rawi [51], the authors investigated the Adomian-decomposition
method based on Bernstein polynomials and with some modification. In this work, our aim here is to
introduce a new modification using Laplace transform with ADM and to propose a new scheme, BALDM,
which combines Bernstein’s polynomial with the Adomian-Laplace decomposition method. This method
can be used to solve linear and nonlinear ordinary and partial differential equations (see [51,52]). To illustrate
the basic idea of BALDM, we consider

Ltu(x, t) + Ru(x, t) + Nu(x, t) = g(x, t), (64)

with initial condition
u(x, 0) = h(x),

where Lt =
∂
∂t , R is a linear operator that includes partial derivatives with respect to x, N is a nonlinear

operator and g is the source term. Taking the Laplace transform on both sides of Equation (64)
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L̂
{

Ltu(x, t)
}
= L̂

{
g(x, t)− Ru(x, t)− Nu(x, t)

}
.

From differentiation and linearity property of Laplace transform L̂ of Equation (41) and using the
decomposition series given in Equations (10) and (11), we obtain

∑
n≥0
L̂[un(x, t)] =

h(x)
s

+
1
s
L̂[g(x, t)]− 1

s
[Ru(x, t) + Nu(x, t)] . (65)

Taking the Laplace inverse of Equation (65) yields

∑
n≥0

un(x, t) = h(x) + L̂−1
[

1
s
L̂[g(x, t)]

]
− L̂−1

[
1
s
L̂ [Ru(x, t) + Nu(x, t)]

]
. (66)

Now, by assuming that the term g ∈ C[0, 1] can be expanded in the terms of Bernstein series of
order k ∈ N,

g(t) =
m

∑
i=0

αi Bi(t),

where Bi(x) is the Bernstein polynomial [51]. (Please note that C[0, 1] denotes the space of continuous
function on [0, 1]). Comparing both sides of Equation (66), we have that

u0(x, t) = h(x) + L̂−1
[

1
s
L̂
[

m

∑
i=0

αi Bi(t)

] ]
, (67a)

u1(x, t) = −L̂−1
[

1
s
L̂ [Ru0(x, t) + A0(u)]

]
, (67b)

... (67c)

un+1(x, t) = −L̂−1
[

1
s
L̂ [Run(x, t) + An(u)]

]
, n ≥ 1.

where An are the Adomian polynomials first mentioned in Equation (11). We note that the approximate
solution obtained via BALDM relies on the nature of the source terms and prescribed initial conditions.

6.1. Solution of Numerical Experiment 3

Consider the inhomogeneous linearized dispersive KdV equation

ut + xux + uxxx = 3xt2 + 2x + xt3, x ∈ [0, 1.0], t ∈ [0, 1.0], (68)

with initial condition u0(x) = 2x. Exact solution for Equation (68) is u(x, t) = 2x + xt3, and it can be
verified by using the Ansatz technique. To test the ‘noise’ behavior of the inhomogenous problem
given in Equation (68), LADM is applied to test how the exact solution appears in the first few
iterations. In the following discussion, we also introduced BALDM to solve Equation (68) to capture
this self-canceling phenomena.

6.1.1. Implementation of LADM for Equation (68)

By applying LADM L̂ to Equation (68), we have that

L̂[ut] = s L̂[u(x, t)]− u(x, 0) = L̂[3xt2 + 2x + xt3 − xux − uxxx]. (69)
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Applying inverse Laplace’s transform to Equation (69) gives

u(x, t) =
1
s

u(x, 0)− L̂−1
[

1
s
[
L̂
[
3xt2 + 2x + xt3 − xux − uxxx

]]
. (70)

Equation (70) can be given equivalently by

u(x, t) = u(x, 0) + 6x L̂−1
[(u

s

)4
]
+ 2x L̂−1

[(u
s

)2
]
+ L̂−1

[u
s
(
xL̂[ux] + L̂[uxxx]

)]
. (71)

Substituting the decomposition series u(x; t) = ∑
n≥0

un(x; t) in Equation (71) takes the form

∑
n≥0

un(x; t) = 2x + xt3 + 2xt +
xt4

4
+ 6x L̂−1

[
u
s

[
x ∑

n≥0
L̂[un,x] + ∑

n≥0
L̂[un,xxx

]]
. (72)

By comparing both sides of Equation (72), we obtain

u0(x) = 2x + xt3 + 2xt + xt4

4 ,

u1(x; t) = L̂−1
[

1
s
(

xL̂[u0,x] + L̂[u0,xxx]
)]

= −2xt− xt4

4
− xt2 − xt5

20
,

u2(x; t) = L̂−1
[

1
s
(

xL̂[u1,x] + L̂[u1,xxx]
)]

= xt2 +
xt3

3
+

xt5

20
+

xt6

120
,

u3(x; t) = L̂−1
[

1
s
(

xL̂[u2,x] + L̂[u2,xxx]
)]

= − xt3

3
− xt4

4
− xt6

6
− xt7

840
.


(73)

and so on for other components. It is clear that the self-canceling ‘noise’ terms appear between
various components and keeping the non-canceled term using Equation (10) gives immediately the
exact solution

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + . . . = 2x + xt3,

as this fact is already mentioned in Remark 4.

6.1.2. Solution for Equation (68) Using BALDM

To apply BALDM, first the source term g is expanded in Bernstein basis of order m = 6 in t on the
interval [0, 1] (using Maple software package) as [51]

gb(x, t) = 2.0x + 5.27778× 101xt + 2.91667xt2 + 5.55556× 101xt3.

By now applying BALDM, we obtain

u0(x, t) = h(x) + L̂−1
[

1
s
L̂[

m

∑
i=0

αi Bi(t)]
]

,

= 2 x + 1.38889× 10−1 x t4 + 9.72222× 10−1 x t3 + 2.63889× 10−1 x t2 + 2.0 xt,

u1(x, t) = −L̂−1
[

1
s
L̂ [x u0,x(x, t) + u0,xxx(x, t)]

]
,

= −2.77778× 10−2 x t5 − 2.43056× 10−1 x t4 − 8.79630× 10−2 x t3 − 1.0 xt2 − 2.0 xt,

u2(x, t) = −L̂−1
[

1
s
L̂ [x u1,x(x, t) + u1,xxx(x, t)]

]
,

= 4.62963× 10−3 x t6 + 4.86111× 10−2 x t5 + 2.19907× 10−2 x t4 + 0.33333x t3 + 1.0 x t2,
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u3(x, t) = −L̂−1
[

1
s
L̂ [x u2,x(x, t) + u2,xxx(x, t)]

]
,

= −6.61376× 10−4 x t7 − 8.1019× 10−3 x t6 − 4.39815× 10−3 x t5 − 8.33333× 10−2 x t4 − 0.33333 x t3,

u4(x, t) = −L̂−1
[

1
s
L̂ [x u3,x(x, t) + u3,xxx(x, t)]

]
,

= 8.26720× 10−5 x t8 + 1.15741× 10−3 x t7 + 7.33025× 10−4 x t6 + 1.66667× 10−2 x t5 + 8.33333× 10−2 x t4,

u5(x, t) = −L̂−1
[

1
s
L̂ [x u4,x(x, t) + u4,xxx(x, t)]

]
,

= −9.18578× 10−6 x t9 − 1.44676× 10−4 x t8 − 1.04718× 10−4 x t7 − 2.77778× 10−3 xt6 − 1.66667× 10−2 xt5,

The sum of the first five approximate solutions to the exact solution is given by

Ψ5(x, t) = 2 x− 9.18577× 10−6 x t9 − 6.20040× 10−5 x t8 + 3.91314× 10−4 x t7 − 5.51698× 10−3 x t6

+ 1.64352× 10−2 xt5 − 8.21760× 10−2 x t4 + 8.84260× 10−1 x t3 + 2.63889× 10−1 x t2.

Remark 12. Table 7 compares the approximate solution, Ψ5(x, t) =
5

∑
i=0

ui(x, t), given in Equation (74) with

the exact solution u(x, t) = 2x + xt3. Figure 14 refers to graphical representation of the exact and 5-term
approximate BALDM solution. Table 7 shows the absolute and relative errors obtained by the three-dimensional
in-homogeneous dispersive KdV equation via BALDM using 5-terms are of orders of 10−6 to 10−2 for t-values
in the range t ∈ [0, 1.0] (see also Figures 15 and 16). This experiment shows BALDM can efficiently capture
inhomogeneous KdV equation without exhibiting ’noise’ terms, which is shown by LADM in Section 6.1.1.
We also note that the numerical Tables in this paper are obtained using Equations (2) and (3).

Figure 14. 3D plots of exact solution and sum of the first five approximate solution, Ψ5(x, t),
using BALDM, vs. x vs. t for numerical experiment 3.
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Figure 15. Plots of exact solution and solution using BALDM at different t-values, t = 0.01, 0.05, 1.0
(for numerical experiment 3).
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(b) t = 0.05.
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(c) t = 1.0.

Figure 16. Plots of absolute errors vs. x using 5-terms of BALDM at different values of time
(t = 0.01, 0.05, 1.0).
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Table 7. Absolute and relative errors at some values of x obtained at times 0.01, 0.05, 1.0 using Ψ5(x, t)
of BALDM (for numerical experiment 3).

t Values of x Exact Solution Numerical Solution Absolute Error Relative Error

0.050 0.100000 0.100001 1.313616 × 10−6 1.313616 × 10−5

0.100 0.200000 0.200003 2.627233 × 10−6 1.313616 × 10−5

0.150 0.300000 0.300004 3.940849 × 10−6 1.313616 × 10−5

0.200 0.400000 0.400005 5.254466 × 10−6 1.313616 × 10−5

0.250 0.500000 0.500007 6.568082 × 10−6 1.313616 × 10−5

0.300 0.600000 0.600008 7.881698 × 10−6 1.313616 × 10−5

0.350 0.700000 0.700010 9.195315 × 10−6 1.313616 × 10−5

0.400 0.800000 0.800011 1.050893 × 10−5 1.313616 × 10−5

t = 0.01 0.450 0.900000 0.900012 1.182255 × 10−5 1.313616 × 10−5

0.500 1.000001 1.000014 1.313616 × 10−5 1.313616 × 10−5

0.550 1.100001 1.100015 1.444978 × 10−5 1.313616 × 10−5

0.600 1.200001 1.200016 1.576340 × 10−5 1.313616 × 10−5

0.650 1.300001 1.300018 1.707701 × 10−5 1.313616 × 10−5

0.700 1.400001 1.400019 1.839063 × 10−5 1.313616 × 10−5

0.750 1.500001 1.500020 1.970425 × 10−5 1.313616 × 10−5

0.800 1.600001 1.600022 2.101786 × 10−5 1.313616 × 10−5

0.850 1.700001 1.700023 2.233148 × 10−5 1.313616 × 10−5

0.900 1.800001 1.800025 2.364510 × 10−5 1.313616 × 10−5

0.950 1.900001 1.900026 2.495871 × 10−5 1.313616 × 10−5

1.000 2.000001 2.000027 2.627233 × 10−5 1.313616 × 10−5

0.050 0.100006 0.100038 3.223730 × 10−5 3.223529 × 10−4

0.100 0.200013 0.200077 6.447461 × 10−5 3.223529 × 10−4

0.150 0.300019 0.300115 9.671191 × 10−5 3.223529 × 10−4

0.200 0.400025 0.400154 1.289492 × 10−4 3.223529 × 10−4

0.250 0.500031 0.500192 1.611865 × 10−4 3.223529 × 10−4

0.300 0.600038 0.600231 1.934238 × 10−4 3.223529 × 10−4

0.350 0.700044 0.700269 2.256611 × 10−4 3.223529 × 10−4

0.400 0.800050 0.800308 2.578984 × 10−4 3.223529 × 10−4

0.450 0.900056 0.900346 2.901357 × 10−4 3.223529 × 10−4

t = 0.05 0.500 1.000063 1.000385 3.223730 × 10−4 3.223529 × 10−4

0.550 1.100069 1.100423 3.546103 × 10−4 3.223529 × 10−4

0.600 1.200075 1.200462 3.868476 × 10−4 3.223529 × 10−4

0.650 1.300081 1.300500 4.190850 × 10−4 3.223529 × 10−4

0.700 1.400088 1.400539 4.513223 × 10−4 3.223529 × 10−4

0.750 1.500094 1.500577 4.835596 × 10−4 3.223529 × 10−4

0.800 1.600100 1.600616 5.157969 × 10−4 3.223529 × 10−4

0.850 1.700106 1.700654 5.480342 × 10−4 3.223529 × 10−4

0.900 1.800113 1.800693 5.802715 × 10−4 3.223529 × 10−4

0.950 1.900119 1.900731 6.125088 × 10−4 3.223529 × 10−4

1.000 2.000125 2.000770 6.447461 × 10−4 3.223529 × 10−4

0.050 0.150000 0.153861 3.860528 × 10−3 2.573685 × 10−2

0.100 0.300000 0.307721 7.721056 × 10−3 2.573685 × 10−2

0.150 0.450000 0.461582 1.158158 × 10−2 2.573685 × 10−2

0.200 0.600000 0.615442 1.544211 × 10−2 2.573685 × 10−2

0.250 0.750000 0.769303 1.930264 × 10−2 2.573685 × 10−2

0.300 0.900000 0.923163 2.316317 × 10−2 2.573685 × 10−2

0.350 1.050000 1.077024 2.702369 × 10−2 2.573685 × 10−2

0.400 1.200000 1.230884 3.088422 × 10−2 2.573685 × 10−2

0.450 1.350000 1.384745 3.474475 × 10−2 2.573685 × 10−2

t = 1.0 0.500 1.500000 1.538605 3.860528 × 10−2 2.573685 × 10−2

0.550 1.650000 1.692466 4.246581 × 10−2 2.573685 × 10−2

0.600 1.800000 1.846326 4.632633 × 10−2 2.573685 × 10−2

0.650 1.950000 2.000187 5.018686 × 10−2 2.573685 × 10−2

0.700 2.100000 2.154047 5.404739 × 10−2 2.573685 × 10−2

0.750 2.250000 2.307908 5.790792 × 10−2 2.573685 × 10−2

0.800 2.400000 2.461768 6.176845 × 10−2 2.573685 × 10−2

0.850 2.550000 2.615629 6.562897 × 10−2 2.573685 × 10−2

0.900 2.700000 2.769490 6.948950 × 10−2 2.573685 × 10−2

0.950 2.850000 2.923350 7.335003 × 10−2 2.573685 × 10−2

1.000 3.000000 3.077211 7.721056 × 10−2 2.573685 × 10−2
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7. Discussion and Concluding Remarks

Motivated by their mathematical applications in numerous physical phenomena, semi-analytical
solutions for dispersive KdV equations are main focus of this work as these methods are effective
to provide approximations of the higher reliability of series solution. We made a comparative study
of some semi-analytic methods namely; LADM with its new modification BALDM, HPM with its
modification HPTM, and RDTM to solve homogeneous as well inhomogeneous linear dispersive KdV
equations in 1D and higher dimensions.

In the case of homogeneous linear dispersive KdV equation, the three semi-analytic methods
(LADM, HPM and RDTM) are equivalent and therefore give the same results.

In the case of inhomogeneous linear KdV equation, RDTM gives very efficient results by exhibiting
rapid convergence of the series solution without showing noise terms. LADM and HPM provide
the components of the series solution, where these components possess noise terms. However,
the standard HPM does not produce good results, as depicted by the values of the relative errors
from Table 3. Instead, we designed two modifications to alleviate this issue. First, we constructed a
newly modified homotopy (50) by making a shift on the source term, which gave us better results for
the inhomogeneous KdV equation given in (5). Secondly, we applied HPM combined with Laplace
transform, HPTM, which also gives a reliable result for the approximate solutions of Equation (5) as
shown in Section 3.4. We noticed that modification of HPM is essential for some PDEs of the likes given
in Equation (5). The results obtained from these modifications demonstrate that both HPTM as well as
HPM with modified homotopy provide a meaningful result for the inhomogeneous equation under
consideration since the series solution via modified HPM (as well as HPTM) are in full agreement
with the approximate solutions obtained via LADM. We also note that an appropriate choice of the
zeroth approximation is essential for the inhomogeneous linear KdV equation in order to exhibit
rapid convergence of the approximate solution to the exact solution due to the appearance of the
self-canceling “noise” terms in the first few iterations as shown for both LADM and HPTM using
Maple-18 software.

In the case of 3D dispersive KdV equation, the RDTM solutions are good analytical approximate
solutions that converge to the exact solution rapidly. The numerical results shows that the present
method are in excellent agreement with those of absolute and relative errors and the obtained solutions
are shown in Table 6.

The merit of this work is in many folds, one being the derivation of a new scheme, BALDM,
which is a modification of Adomian decomposition method using Bernstein polynomials and Laplace
transform to solve Equation (68). The proposed technique relies on Bernstein polynomials to
approximate the source term of the considered inhomogeneous PDE. Applying this modification
of the source term using BALDM ensures not only an accurate solution but also it captures the
self-canceling “noise” terms appearing in the case of the considered inhomogeneous equation. We also
observe that the approximate solutions obtained via LADM and HPTM perform well on a certain
range of t-values. Once these values are increased, the accuracy of the estimations becomes poor, at
least for the number of terms used to approximate the solutions in the present approaches.

As a general concluding remark, from the numerical experiments of this work, we are optimistic
to suggest that the semi-analytic methods used in this paper can also be applied to a more general
family of KdV-type equations

∂u
∂t

=
K

∑
j=0

αj
∂ju
∂xj +

M

∑
`=0

β`
∂`(ur)

∂x`
+ f (x, t), −∞ < x < ∞, and t > 0,

u(x, 0) = g(x), (74)

where f and g are given functions, αj, β` are real constants, K, M, `, r ∈ Z+ and k, ` ∈ Z+ ∪ {0}. In fact,
for the homogeneous and homogeneous KdV equations considered in this paper are special cases of
Equation (74) when K = 3, M = 1 and r = 1 and some non-negative values of αj and β`. Among all
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these semi-analytic techniques, RDTM and BALDM are entirely comprehensible methods as they
diminish the huge volume of calculations and furthermore their iteration steps towards an exact
solution are direct and clear. It is good to point out that both HPM and LADM do not require small
parameters in the considered equations so that the limitations of the ordinary perturbation methods
can be eliminated and in this manner the computational procedures are simple and promising.
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