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Department of Mathematics, Faculty of Sciences and Mathematics, University of Sarajevo, Zmaja od Bosne 33-35,
71000 Sarajevo, Bosnia and Herzegovina; dzenang@pmf.unsa.ba

Received: 9 September 2020; Accepted: 3 October 2020; Published: 13 October 2020
����������
�������

Abstract: Our basic objects will be compact, even-dimensional, locally symmetric Riemannian
manifolds with strictly negative sectional curvature. The goal of the present paper is to investigate the
prime geodesic theorems that are associated with this class of spaces. First, following classical
Randol’s appraoch in the compact Riemann surface case, we improve the error term in the
corresponding result. Second, we reduce the exponent in the newly acquired remainder by using
the Gallagher–Koyama techniques. In particular, we improve DeGeorge’s bound O (xη), 2ρ − ρ

n

≤ η < 2ρ up to O
(

x2ρ− ρ
n (log x)−1

)
, and reduce the exponent 2ρ − ρ

n replacing it by 2ρ − ρ 4n+1
4n2+1

outside a set of finite logarithmic measure. As usual, n denotes the dimension of the underlying
locally symmetric space, and ρ is the half-sum of the positive roots. The obtained prime geodesic
theorem coincides with the best known results proved for compact Riemann surfaces, hyperbolic
three-manifolds, and real hyperbolic manifolds with cusps.

Keywords: prime geodesic theorem; Selberg and Ruelle zeta functions; locally symmetric spaces;
logarithmic measure

MSC: 11M36; 11F72; 58J50

1. Introduction

Let Y = Γ \ G / K = Γ \ X be a compact, n-dimensional (n even), locally symmetric Riemannian
manifold with strictly negative sectional curvature, where G is a connected semisimple Lie group of
a real rank one, K is a maximal compact subgroup of G, and Γ is a discrete cocompact torsion-free
subgroup of G.

Following [1] (p. 17), we require G to be linear in order to have the possibility of complexification.
We assume that the Riemannian metric over Y induced from the Killing form is normalized,

so that the sectional curvature of Y varies between −4 and −1.
The universal covering X of Y is a Riemannian symmetric space of rank one and, hence, is known

to be either a real HRk or a complex HCm, or a quaternionic hyperbolic space HHm, or the hyperbolic
Cayley plane HCa2.

Hence, n = k, 2m, 4m, and 16, respectively.
Let g = k ⊕ p be the Cartan decomposition of the Lie algebra g of G, and a a maximal abelian

subspace of p. Fix a system of positive roots Φ+ (g, a), and put n = ∑
α∈Φ+(g,a)

nα to be the sum of the

root spaces. Define ρ = 1
2 ∑

α∈Φ+(g,a)
dim (nα) α.

Now, if n = k, 2m, 4m, and 16, then ρ = 1
2 (k− 1), m, 2m + 1, 11, respectively.

By πΓ (x), we denote the number of prime geodesics on Y of length not larger than log x.
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As it is known, the prime geodesic theorem gives a growth asymptotic for the function πΓ (x).
Moreover, the statement regarding the number πΓ (x), as x → ∞, x /∈ E, where E is a set of finite
logarithmic measure, is known as the Gallagherian prime geodesic theorem. Usually, the Gallagherian
prime geodesic theorem improves the corresponding classical result at the cost of excluding a set of
finite logarithmic measure. In this research, we are interested in both kinds of theorems.

In literature, the prime geodesic theorem appear in two forms: refined and non-refined. While,
in the refined form, the counting function πΓ (x) is represented as a sum of two parts: the explicit
part, and some carefully derived remainder, in the non-refined form πΓ (x) is given as an asymptotic
estimate without the error terms.

DeGeorge [2] obtained the best known estimate of the error term in the prime geodesic theorem
in our setting in 1977. Thus, DeGeorge’s result is given in the refined form and states that there is a
constant η, such that 2ρ − ρ

n ≤ η < 2ρ, and (see, Theorem 1 and Remark 2 in [2] (pp. 135–136)):

πΓ (x) =

log x∫
1

e2ρt

t
dt + O (xη) (1)

as x → ∞. Clearly, the optimal error term in (1) is O
(

x2ρ− ρ
n

)
. Here, as earlier, n = k, 2m, 4m, 16,

and ρ = 1
2 (k− 1), m, 2m + 1, 11, respectively. The main purpose of this research is to improve the

bound O (xη) in (1) up to O
(

x2ρ− ρ
n (log x)−1

)
in the classical sense, and then prove that the exponent

2ρ − ρ
n of x in the newly acquired bound O

(
x2ρ− ρ

n (log x)−1
)

can be reduced in the Gallagherian sense

and, hence, replaced by 2ρ − ρ 4n+1
4n2+1 (see, Theorems 2 and 3 below).

To put our research into historical context, let us recall the following related results. Gangolli [3]
(see, Theorem 4.4, and page 423), proved the non-refined prime geodesic theorem when Y is compact
(also see, [4] (p. 89)):

πΓ (x) ∼ xn−1

(n− 1) log x
, (2)

where f (x) ∼ g (x) means that lim
x→∞

f (x)
g(x) = 1. The relation (2) was also proved by Gangolli-Warner [5]

(p. 40, Prop. 5.4) when Y is not necessarily compact but has a finite volume. In (2),
n = k, 2m, 4m, 16, respectively, as before. It is easy to see that the prime geodesic theorem (1) is
a refinement of (2) when Y is compact. The first refinement of the corresponding result (2) of
Gangolli–Warner (hence, for Y non-compact), for k-dimensional real hyperbolic manifolds with cusps
(n = k, ρ = 1

2 (k− 1)), was achieved by Park [4] (p. 91, Th. 1.2). It states that:

πΓ (x) = ∑
3
2 ρ<si(j)≤2ρ

(−1)j li
(

xsi(j)
)
+ O

(
x

3
2 ρ (log x)−

1
2
)

(3)

as x → ∞, where (si (j)− j) (2ρ− j− si (j)) is a small eigenvalue in
[
0, 3

4 ρ2] of ∆j on πσj ,λi(j) with

si (j) = ρ + i λi (j) or si (j) = ρ − i λi (j) in
( 3

2 ρ, 2ρ
]
, ∆j is the Laplacian acting on the space of j-forms

over Y, and πσj ,λi(j) is the principal series representation. The result (3) was further improved
by Avdispahić-Gušić in [6] (p. 367, Th. 1), where the authors derived a variant of (3) with the
error term O

(
x

3
2 ρ (log x)−1

)
. As explained in [7], the correct size of the error term in [4] resp. [6]

is O
(

x
4ρ2+ρ
2ρ+1 (log x)−

1
2

)
resp. O

(
x

4ρ2+ρ
2ρ+1 (log x)−1

)
. The omission was present in [4] and, thus,

inherited in [6] because of the missing term O
(

x2ρ−1h
)

obtained during reduction from the level
of k − 1 times integrated Chebyshev function ψ2ρ (x) to ψ0 (x) (see, [4] (p. 101, (3.21)) and [6]

(p. 370, (7))). Finally, the bound O
(

x
4ρ2+ρ
2ρ+1 (log x)−1

)
obtained in [7] is additionally improved in [8]
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in the Gallagherian sense, where the authors proved that the exponent 4ρ2+ρ
2ρ+1 can be replaced by

(k− 1)
(

1− 2k+1
4k2+2

)
outside a set of finite logarithmic measure. The investigations that were conducted

in [8] were undoubtedly inspired by the recent research of Koyama [9] in the case of compact hyperbolic
surfaces and the generic hyperbolic surfaces of finite volume. The ingredients applied in [9] come from
the results of Hejhal [10,11], Iwaniec [12], and Gallagher [13], where the author in [13] (under assuming
the Rimemann hypothesis) improved the error term in the prime number theorem from ψ (x) = x
+ O

(
x

1
2 (log x)2

)
to ψ (x) = x + O

(
x

1
2 (log log x)2

)
outside a set of finite logarithmic measure with

the Chebyshev counting function ψ (x) defined over powers of primes by ψ (x) = ∑
pk≤x

log p. Hejhal,

in his comprehensive treatise [10,11], studied the Selberg zeta function over a hyperbolic Riemann
surface Y (n = k = 2, ρ = 1

2 (k− 1) = 1
2 ), which is, when Γ is cocompact (Y compact) and cofinite (Y

non-compact) discrete subgroup of G = PSL (2,R), respectively. His prime geodesic theorem comes
with the error terms and states that (also see [14–16]):

πΓ (x) = ∑
3
4<si≤1

li (xsi ) + O
(

x
3
4 (log x)−

1
2
)

(4)

as x→ ∞, where λi = si (1− si) is a small eigenvalue in
[
0, 3

16
]

of the Laplacian ∆0 acting on L2 (Y).
The prime geodesic theorem (4) refines the corresponding result (2) for cocompact and cofinite
Γ ⊆ PSL (2,R) in the same way the prime geodesic theorem (1) refines (2) when Y is compact. The best
estimate up to now of the error term in a variant of the prime geodesic theorem (4) for compact
Riemann surfaces is O

(
x

3
4 (log x)−1

)
, and it is achieved by Randol [17] (see also, [18]). An important

ingredient, which is implicitly applied in [17] and explicitly in [4], is the Ruelle zeta function. The bound
O
(

x
3
4 (log x)−1

)
is also achieved in the case of prime geodesic theorem derived for compact symmetric

spaces formed as quotients of the Lie group SL4 (R), which is, when Y is locally symmetric space
Γ\G/K, where G = SL4 (R), K is the maximal compact subgroup of G, and Γ is a discrete cocompact
subgroup of G (see, [19]). By Theorem 4.4.1 in [19] (p. 197):

πΓ (x) = 2 li (x) + O
(

x
3
4 (log x)−1

)
(5)

as x→ ∞, where πΓ (x) = ∑
[γ]∈E p

P(Γ)
elγ≤x

χ1 (Γγ) is the first higher Euler characteristic of the centraliser Γγ

of γ in Γ, lγ is the length of γ, P is a parabolic subgroup of G, and E p
P (Γ) ⊂ EP (Γ) is the subset of

primitive classes, where EP (Γ) is the set of all conjugacy classes [γ] in Γ, such that γ is conjugate in G
to an element of A−B, with A− the negative Weyl chamber in

A =




a
a

a−1

a−1

 : a > 0


and

B =

(
SO(2)

SO(2)

)
.

Deitmar obtained an analogous result of the result (5) in [20] in the case of complex cubic fields,
extending, in that way, the work of Sarnak [21] in the real quadratic case. The research has been
extended to a noncompact situation in [22], while the full higher rank case has been explored in [23,24]
(see also, [25]). As it is known, the Selberg zeta function for compact or generic hyperbolic surfaces
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satisfies an analogue of the Riemann hypothesis. This fact raises the expectation that the exponent 3
4 of

x in (4) could be decreased to 1
2 . However, the quantity of zeros of the Selberg zeta function causes

major obstacles in achieving such result. Thus, the aforementioned 3
4 was only successfully reduced

in the case of modular surfaces. In particular, Iwaniec [12] obtained 35
48 + ε, Luo and Sarnak [26]

7
10 + ε, Cai [27] 71

102 + ε, and Soundararajan and Young [28] 25
36 + ε. Finally, if Γ ⊂ PSL (2,C) is a

cocompact group or a noncompact cofinite group satisfying the condition ∑
γi>0

xβi−1

γ2
i

= O
(

1
1+(log x)3

)
,

as x→ ∞, where βi + i γi are poles of the corresponding scattering determinant, then the following
prime geodesic theorem for hyperbolic 3-manifolds holds true (see, [7] (p. 691, Th. 1.1)):

πΓ (x) = li
(

x2
)
+

M

∑
j=1

li (xsj) + O
(

x
5
3 (log x)−1

)
(6)

as x → ∞, where s1, s2, ..., sM are the real zeros of the attached Selberg zeta function lying in the
interval (1, 2).

The motivation to work within the described setting, i.e., with compact, even-dimensional,
locally symmetric Riemannian manifolds of strictly negative sectional curvature, stems from the
author’s desire to improve the best known error term O

(
x2ρ− ρ

n

)
in the corresponding prime geodesic

theorem (1), dating back to 1977 up to O
(

x2ρ− ρ
n (log x)−1

)
, and the wish to further reduce the

exponent 2ρ − ρ
n of x in the Gallagherian sense, which is, the wish to replace 2ρ − ρ

n with better,
smaller one 2ρ− ρ 4n+1

4n2+1 outside a set of finite logarithmic measure. Additionally, the fact that it was
an improvement of a more than forty-year-old result was quite motivating for the author.

Regarding the techniques that were applied in the proofs of our results, we want to point out that
the proofs of Theorems 1 and 2 are inspired by Randol’s 1977 approach in the case of compact Riemann
surfaces [17] (pp. 245–246), and that the proof of Theorem 3 relies on the 1980 method developed by
Gallagher and applied in the classical case on prime number theorem [13]. Hence, the mentioned
techniques are not new, and are already known in literature. However, it must be noted that new
techniques are nothey t invented so often in this area of research, and that the ones given above have
been exploited many times since 1977 and 1980. In particular, in addition to 1977, Randol’s method
was successfully applied in 2002 in the proof of prime geodesic theorem for complex cubic fields [20]
(p. 165), and then again, in 2006 and 2008 for the same reason, in the case of compact symmetric spaces
formed as quotients of the Lie group SL4 (R) (see, [29] (pp. 62–65), [19] (p. 197)). Furthermore, it was
applied in 2012 in the proof of prime geodesic theorem for real hyperbolic manifolds with cusps [6]
(p. 370) (also see, [22]), etc. On the other hand, besides 1980, Gallagher’s technique was re-updated by
Koyama in 2016 in the proof of the corresponding Gallagherian-style prime geodesic theorem derived
for compact hyperbolic surfaces and generic hyperbolic surfaces of finite volume [9] (p. 78, Th. 2).
Thereafter, the technique was re-applied to obtain the following improved results: first, in 2018,
in Koyama’s own setting [30], then, in 2018, in the case of PSL (2,Z) [31], once again in 2018 in the
case of hyperbolic 3-manifolds [7] (p. 691, Th. 1.2), one more time in 2020 in the case of real hyperbolic
manifolds with cusps [8] (p. 3021, Th. 2), etc. Summarizing what is said above, we may emphasize
that the methods that were applied in this research, although old, are still not obsolete, and represent
valuable and unavoidable tool in achieving more refined error terms in prime geodesic theorems for
various types of underlying locally symmetric spaces. Accordingly, once again, the techniques are
not new, but the results are, and the results are all that we are interested in. Like most of similar pure
mathematics researches: [2–17,27,28,30–36], etc., the present research has no direct application. In fact,
it is a typical example of research in the field of pure, theoretical mathematics. So, one could hardly
expect to obtain some immediate application. Finally, regarding the author’s additional motivation to
consider this subject, we recall that, in the Concluding Remark of [17] (p. 246), Randol noted that it
would be interesting to determine the extent to which his methods are applicable for more general
spaces. Accordingly, in the same way Theorem 1 in [6] (see, pages 367 and 371) represents the answer
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to this query in the case of real hyperbolic manifolds with cusps, now, Theorems 1 and 2 can be
interpreted as the answer to the same query in the case at hand.

2. Preliminary Material

We introduce the notation following [1] (see also, [37,38]).
Because Γ ⊂ G is cocompact and torsion-free, there are only two types of conjugacy classes:

the class of the identity 1 ∈ Γ and classes of hyperbolic elements. Let CΓ be the set of all conjugacy
classes [γ] in Γ. To simplify the notation, we shall write γ for an element of CΓ, and γ0 for a primitive
element. Thus, if γ and γ0 occur in the same formula, it is understood that γ0 will be the primitive
element underlying γ.

Denote, by M, the centralizer of a in K with the Lie algebra m.
Let i∗ : R (K) → R (M) be the restriction map that is induced by the embedding i : M ↪→ K,

where R (K) and R (M) are the representation rings over Z of K and M, respectively (see, [1] (p. 19)).
Suppose that σ ∈ M̂, where M̂ is the unitary dual of the Lie group M.
Following [1] (p. 40), we choose a maximal abelian subalgebra t of m. Subsequently, h = tC ⊕ aC

is a Cartan subalgebra of gC. We choose a positive root system Φ+ (gC, h) having the property that,
for α ∈ Φ (gC, h), α|a ∈ Φ+ (g, a) implies α ∈ Φ+ (gC, h). Let δ = 1

2 ∑
α∈Φ+(gC,h)

α, and set ρm = δ − ρ.

Define the root vector Hα ∈ a for α ∈ Φ+ (g, a) by λ (Hα) =
(λ,α)
(α,α) for all λ ∈ a∗. We also define εα (σ) ∈{

0, 1
2

}
for α ∈ Φ+ (g, a) by e2π i εα(σ) = σ (exp (2π i Hα)) ∈ {±1}.

The root system Φ+ (g, a) is of the form Φ+ (g, a) = {α} or Φ+ (g, a) =
{

α
2 , α
}

, where α is the long

root (see, [1] (p. 47)). We set T = |α|, and define εσ ∈
{

0, 1
2

}
by εσ ≡ |ρ|T + εα (σ)modZ. We define

the lattice L (σ) by L (σ) = T (εσ +Z), and the polynomial Pσ (λ) by Pσ (λ) = ∏
β∈Φ+(gC,h)

(λ+µσ+ρm,β)
(δ,β) ,

where µσ is the highest weight of the representation σ of M.
Suppose that χ ∈ Γ̂, where Γ̂ is the unitary dual of Γ.
By Proposition 1.2 in [1] (p. 23), we find an element γ ∈ R (K), such that i∗ (γ) = σ (see also, [1]

(p. 27)).
Following [1] (p. 30), we define for s ∈ C the multiplicities mχ (s, γ, σ) and md (s, γ, σ) by

mχ (s, γ, σ) = Tr EAY,χ(γ,σ) ({s}) and md (s, γ, σ) = Tr EAd(γ,σ) ({s}), respectively, where EA (.) is the
family of spectral projections of a normal operator A. The multiplicities mχ (s, γ, σ) and md (s, γ, σ)

are weighted dimensions of eigenspaces of the operators AY,χ (γ, σ) and Ad (γ, σ) introduced in [1]
(p. 28).

By Definition 1.17 in [1] (p. 49), γ ∈ R (K) is called σ-admissible if i∗ (γ) = σ and
md (s, γ, σ) = Pσ (s) for all 0 ≤ s ∈ L (σ). Moreover, by Lemma 1.18 of the same book, there exists a
σ-admissible γ ∈ R (K) for every σ ∈ M̂.

There are the Iwasawa decompositions g = k ⊕ a ⊕ n and G = KAN.
If g ∈ G is a hyperbolic element, then g is conjugated to some element am ∈ A+M (see, e.g., [3,5]),

where A+ = exp (a+), and a+ is the positive Weyl chamber in a. Following [1] (p. 59), we put
l (g) = |log (a)|.

For finite-dimensional unitary representations σ, χ of M, Γ, and s ∈ C, Re (s) > ρ (Re (s) > 2ρ),
the Selberg zeta function ZS,χ (s, σ) (the Ruelle zeta function ZR,χ (s, σ)) is indroduced by Definition 3.2
(Definition 3.1) in [1]. Subsequently, ZS,χ (s, σ) is meromorphically continued to the whole complex
plane with the singularities that were described by Theorem 3.15 of the same book.

For the sake of simplicity, we fix some χ ∈ Γ̂, σ ∈ M̂, and reduce the notation by omitting to write
them in the sequel unless necessary.
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By [1] (p. 99), there are sets Ip =
{
(τ, λ) : τ ∈ M̂, λ ∈ R

}
, such that (also see, [39]):

ZR (s) =
n−1

∏
p=0

∏
(τ,λ)∈Ip

ZS (s + ρ− λ, τ)(−1)p
,

where the shifts λ’s are always contained in [0, 2ρ].
For γ ∈ Γ, let N (γ) = el(γ) and Λ (γ) = log N (γ0).

Finally, we introduce the functions ψj (x), j ∈ N recursively by ψj (x) =
x∫

0
ψj−1 (t) dt,

where ψ0 (x) = ∑
1 6=[γ]∈CΓ, N(γ)≤x

Λ (γ).

3. Results

3.1. Prime Geodesic Theorem

We prove the following theorem:

Theorem 1. Let Y be as above. Subsequently:

ψ0 (x) =
n−1

∑
p=0

(−1)p+1 ∑
(τ,λ)∈Ip

∑
α∈SRp,τ,λ

2ρ− ρ
n <α≤2ρ

α−1xα + O
(

x2ρ− ρ
n

)
,

where SR
p,τ,λ denotes the set of real singularities of ZS (s + ρ− λ, τ).

Proof. As the starting point, we take the following explicit formula for ψk (x), k ∈ N, k ≥ 2n:

ψk (x) = ∑
α∈Sk

ck (α) , (7)

where Sk is the set of poles of − Z
′
R(s)

ZR(s)
xs+k

s(s+1)...(s+k) , and ck (α) is the residue at α.
Note that Formula (7) is easily obtained, as in the case of compact Riemann surfaces [17] (p. 245)

and the compact symmetric spaces formed as quotients of the Lie group SL4 (R) [29] (p. 63).
Fix k = 2n.
The relation (7) becomes:

ψ2n (x) =
n−1

∑
p=0

(−1)p+1 ∑
(τ,λ)∈Ip

∑
α∈Sp,τ,λ

cp,τ,λ (α) , (8)

where Sp,τ,λ denotes the set of poles of Z
′
S(s+ρ−λ,τ)

ZS(s+ρ−λ,τ)
xs+2n

s(s+1)...(s+2n) , and cp,τ,λ (α) denotes the residue at α.
For the sake of clarity, we highlight the following facts.
Because n is even, we know now that there is a τ-admissible element in R (K) for each τ

occurring in (8). Hence, if (τ, λ) ∈ Ip for some p ∈ {0, 1, ..., n− 1}, and γp,τ,λ is τ-admissible,
then, by Theorem 3.15 in [1] (p. 113), the singularities of ZS (s + ρ− λ, τ) are the following ones:
at −ρ + λ ± i s of order m

(
s, γp,τ,λ, τ

)
if s 6= 0 is an eigenvalue of AY

(
γp,τ,λ, τ

)
, at −ρ + λ

of order 2m
(
0, γp,τ,λ, τ

)
if 0 is an eigenvalue of AY

(
γp,τ,λ, τ

)
, at −ρ + λ −T (k− ετ), k ∈ N

of order −2 (−1)
n
2 dim(χ) vol(Y)

vol(Xd)
md
(
T (k− ετ) , γp,τ,λ, τ

)
(in this case, T (k− ετ) is an eigenvalue of

Ad
(
γp,τ,λ, τ

)
). Here, Xd is a compact dual space of X (see, [1] (p. 18)). If two singularities coincide,

their orders add up.
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The singularities in the third group are called topological and they are all less than −ρ + λ.
The remaining, spectral singularities, belong to [−2ρ + λ, λ] ∪ {−ρ + λ + i r : r ∈ R\ {0}}. There may
occur an overlap between the topological and the spectral singularities at finitely many points in
[−2ρ + λ,−ρ + λ).

Because ρ = 1
2 (k− 1), m, 2m + 1, 11 if n = k, 2m, 4m, 16, the inequality−2n < −2ρ is always valid.

Bearing in mind these facts, we calculate the residues in (8) in the same way as Hejhal did in [10]
(pp. 88–89) for the compact Riemann surfaces. We obtain the following explicit formula:

ψ2n (x) =
2n

∑
j=0

α2n−jx2n−j log x +
2n

∑
j=0

β2n−jx2n−j+

n−1

∑
p=0

(−1)p+1 ∑
(τ,λ)∈Ip

∑
α∈SRp,τ,λ

α≤−2n−1

α−1 (α + 1)−1 ... (α + 2n)−1 xα+2n+

n−1

∑
p=0

(−1)p+1 ∑
(τ,λ)∈Ip

∑
α∈SRp,τ,λ

α>−2n−1

α−1 (α + 1)−1 ... (α + 2n)−1 xα+2n+

n−1

∑
p=0

(−1)p+1 ∑
(τ,λ)∈Ip

∑
α∈S−ρ+λ

p,τ,λ

α−1 (α + 1)−1 ... (α + 2n)−1 xα+2n,

(9)

where SR
p,τ,λ is the set of real singularities of ZS (s + ρ− λ, τ) not containing the integers 0, −1, ...,

−2n, S−ρ+λ
p,τ,λ is the set of non-real singularities of ZS (s + ρ− λ, τ), and αj, β j, j ∈ {0, 1, ..., 2n} are some

explicitly computable constants.
Consider the sum over α ≤ −2n− 1 on the right hand side of (9).
Because α ≤ −2n− 1, it follows that each α is of the form −ρ + λ −T (k− ετ) for some k ∈ N.

Now, −ρ + λ −T (k− ετ) ≤ −2n− 1 yields that k ≥ 1
T (2n + 1− ρ + λ) + ετ . The order of α = −ρ

+ λ −T (k− ετ) is −2 (−1)
n
2 dim(χ) vol(Y)

vol(Xd)
md
(
T (k− ετ) , γp,τ,λ, τ

)
. Because γp,τ,λ is τ-admissible, it

follows that md
(
s, γp,τ,λ, τ

)
= Pτ (s) for all 0 ≤ s ∈ L (τ).

Hence, for 0 < T (k− ετ) ∈ L (τ), k ∈N, we obtain that md
(
T (k− ετ) , γp,τ,λ, τ

)
= Pτ (T (k− ετ)).

Consequently:

∑
α∈SRp,τ,λ

α≤−2n−1

α−1 (α + 1)−1 ... (α + 2n)−1 xα+2n =

− 2 (−1)
n
2

dim (χ) vol (Y)
vol (Xd)

∑
k≥ 1

T (2n+1−ρ+λ)+ετ

Pτ (T (k− ετ))×

2n

∏
j=0

(−ρ + λ− T (k− ετ) + j)−1 x−ρ+λ−T(k−ετ)+2n

=O

x−1 ∑
k≥ 1

T (2n+1−ρ+λ)+ετ

1
kn+2

 = O
(

x−1
)

since the polynomial Pτ is known to be of degree n− 1 (Cf. [36]).
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Thus:

n−1

∑
p=0

(−1)p+1 ∑
(τ,λ)∈Ip

∑
α∈SRp,τ,λ

α≤−2n−1

α−1 (α + 1)−1 ... (α + 2n)−1 xα+2n = O
(

x−1
)

.
(10)

It is known that ψ0 (x) ≤ d−2n∆ψ2n (x), where the function ∆ is defined by:

∆ f (x) =
x+d∫
x

t2n+d∫
t2n

...
t2+d∫
t2

f (2n) (t1) dt1...dt2n

for at least 2n times differentiable function f and a constant d.
Notice that we are interested in achieving the bound d = O (x).
For α ∈ S−ρ+λ

p,τ,λ , it easily follows that (see, e.g., [6] (p. 370, (8))):

d−2n∆α−1 (α + 1)−1 ... (α + 2n)−1 xα+2n = O
(

min
{
|α|−1 xρ, d−2n |α|−2n−1 xρ+2n

})
.

We obtain (Cf. [17] (p. 246)):

∑
α∈S−ρ+λ

p,τ,λ

d−2n∆α−1 (α + 1)−1 ... (α + 2n)−1 xα+2n

=O
(

xρ
∫ K

|−ρ+λ|
t−1dN (t)

)
+ O

d−2nxρ+2n
+∞∫
K

t−2n−1dN (t)


=O

(
xρKn−1

)
+ O

(
d−2nxρ+2nK−n−1

)
,

(11)

where N (t) = Atn + O
(
tn−1) is the number of singularities of the Selberg zeta function ZS (s, τ) at

points i x, 0 < x < t, and A is some explicitly known constant (see, [40] (p. 89, Th. 9.1)).
By the mean value theorem:

∆xr = d2nr (r− 1) ... (r− (2n− 1)) x̃r−2n

for some x̃ ∈ [x, x + 2nd], so:

d−2n∆

(
2n

∑
j=0

α2n−jx2n−j log x +
2n

∑
j=0

β2n−jx2n−j

)
= O (log x) (12)

and:
n−1

∑
p=0

(−1)p+1 ∑
(τ,λ)∈Ip

∑
α∈SRp,τ,λ

α>−2n−1

d−2n∆α−1 (α + 1)−1 ... (α + 2n)−1 xα+2n

=
n−1

∑
p=0

(−1)p+1 ∑
(τ,λ)∈Ip

∑
α∈SRp,τ,λ
0<α≤2ρ

α−1xα + O
(

x2ρ−1d
)

.

(13)
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The relations (9)–(13) give us:

ψ0 (x) ≤
n−1

∑
p=0

(−1)p+1 ∑
(τ,λ)∈Ip

∑
α∈SRp,τ,λ
0<α≤2ρ

α−1xα + O
(

x2ρ−1d
)
+ O

(
xρKn−1

)
+

O
(

d−2nxρ+2nK−n−1
)
+ O (log x) + O

(
d−2nx−1

)
.

The optimal size of the error term is achieved for d = x1− ρ
n and K = x

ρ
n .

We obtain:

ψ0 (x) ≤
n−1

∑
p=0

(−1)p+1 ∑
(τ,λ)∈Ip

∑
α∈SRp,τ,λ

2ρ− ρ
n <α≤2ρ

α−1xα + O
(

x2ρ− ρ
n

)
.

In a similar way:

ψ0 (x) ≥
n−1

∑
p=0

(−1)p+1 ∑
(τ,λ)∈Ip

∑
α∈SRp,τ,λ

2ρ− ρ
n <α≤2ρ

α−1xα + O
(

x2ρ− ρ
n

)
.

This completes the proof.

An immediate consequence of Theorem 1 is the following theorem:

Theorem 2. (Prime Geodesic Theorem) Let Y be as above. Subsequetly:

πΓ (x) =
n−1

∑
p=0

(−1)p+1 ∑
(τ,λ)∈Ip

∑
α∈SRp,τ,λ

2ρ− ρ
n <α≤2ρ

li (xα) + O
(

x2ρ− ρ
n (log x)−1

)
,

as x→ ∞.

Proof. The derived relation for ψ0 (x) (Theorem 1) yields the assertion of theorem (see, e.g., [4] (p. 102)).
This completes the proof.

3.2. Gallagherian Prime Geodesic Theorem

Theorem 3. Let Y be as above. For ε > 0, there exists a set E of finite logarithmic measure, such that:

πΓ (x) =
n−1

∑
p=0

(−1)p+1 ∑
(τ,λ)∈Ip

∑
α∈SRp,τ,λ

2ρ−ρ 4n+1
4n2+1

<α≤2ρ

li (xα) + O
(

x2ρ−ρ 4n+1
4n2+1 (log x)

n−1
4n2+1

−1
(log log x)

n−1
4n2+1

+ε
)

,

as x→ ∞, x /∈ E.

Proof. As the starting point, we take the explicit formula for ψ2n (x) given by the relation (9).
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Following work of Avdispahić-Šabanac [8] (p. 3022) in the case of real hyperbolic manifolds with
cusps, we split the last sum on the right hand side of (9) into three parts:

n−1

∑
p=0

(−1)p+1 ∑
(τ,λ)∈Ip

∑
α∈S−ρ+λ

p,τ,λ
|Im(α)|≤Y

+
n−1

∑
p=0

(−1)p+1 ∑
(τ,λ)∈Ip

∑
α∈S−ρ+λ

p,τ,λ
Y<|Im(α)|≤W

+

n−1

∑
p=0

(−1)p+1 ∑
(τ,λ)∈Ip

∑
α∈S−ρ+λ

p,τ,λ
|Im(α)|>W

.

(14)

Define the sets Ej
p,τ,λ, as follows:

Ej
p,τ,λ =

{
x ∈

[
ej, ej+1

)
:

∣∣∣∣∣∣∣∣∣∣
∑

α∈S−ρ+λ
p,τ,λ

Y<|Im(α)|≤W

α−1 (α + 1)−1 ... (α + 2n)−1 xα+2n

∣∣∣∣∣∣∣∣∣∣
> xα (log x)β (log log x)β+ε

}
.

We estimate µ×Ej
p,τ,λ =

∫
Ej

p,τ,λ

dx
x as follows:

∫
Ej

p,τ,λ

x2α (log x)2β (log log x)2β+2ε 1

x2α (log x)2β (log log x)2β+2ε

dx
x

=O


∫

Ej
p,τ,λ

∣∣∣∣∣∣∣∣∣∣
∑

α∈S−ρ+λ
p,τ,λ

Y<|Im(α)|≤W

α−1 (α + 1)−1 ... (α + 2n)−1 xα+2n

∣∣∣∣∣∣∣∣∣∣

2

1

x2α (log x)2β (log log x)2β+2ε

dx
x



=O

( ej+1∫
ej

x2(−ρ+λ+2n)

∣∣∣∣∣∣∣∣∣∣
∑

α∈S−ρ+λ
p,τ,λ

Y<|Im(α)|≤W

α−1 (α + 1)−1 ... (α + 2n)−1 xi Im(α)

∣∣∣∣∣∣∣∣∣∣

2

×

1

x2α (log x)2β (log log x)2β+2ε

dx
x

)

=O

 e2(j+1)(−ρ+λ+2n)

e2jα j2β (log j)2β+2ε

ej+1∫
ej

∣∣∣∣∣∣∣∣∣∣
∑

α∈S−ρ+λ
p,τ,λ

Y<|Im(α)|≤W

α−1 (α + 1)−1 ... (α + 2n)−1 xi Im(α)

∣∣∣∣∣∣∣∣∣∣

2

dx
x
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=O

 e2(ρ+2n−α)j

j2β (log j)2β+2ε

ej+1∫
ej

∣∣∣∣∣∣∣∣∣∣
∑

α∈S−ρ+λ
p,τ,λ

Y<|Im(α)|≤W

α−1 (α + 1)−1 ... (α + 2n)−1 xi Im(α)

∣∣∣∣∣∣∣∣∣∣

2

dx
x

 .

Putting x = ej+2π(u+ 1
4π ), we obtain:

µ×Ej
p,τ,λ =O

 e2(ρ+2n−α)j

j2β (log j)2β+2ε

1
4π∫

− 1
4π

∣∣∣∣∣∣∣∣∣∣
∑

α∈S−ρ+λ
p,τ,λ

Y<|Im(α)|≤W

ei Im(α)(j+ 1
2 )

α (α + 1) ... (α + 2n)
e2π i Im(α)u

∣∣∣∣∣∣∣∣∣∣

2

du

 . (15)

Now, we apply the Gallagher lemma (see, [9] (p. 78, Lemma 1)) to the last integral (see also, [13,41],
with ν = Im (α), θ = U = 1

4π , and:

c (ν) =

{
ei ν(j+ 1

2 )/α (α + 1) ... (α + 2n) , Y < |ν| ≤W
0, otherwise.

It follows that:

1
4π∫

− 1
4π

∣∣∣∣∣∣∣∣∣∣
∑

α∈S−ρ+λ
p,τ,λ

Y<|Im(α)|≤W

ei Im(α)(j+ 1
2 )

α (α + 1) ... (α + 2n)
e2π i Im(α)u

∣∣∣∣∣∣∣∣∣∣

2

du

≤
(

1
4

sin 1
4

)2 +∞∫
−∞

 ∑
t≤|Im(α)|≤t+1
Y<|Im(α)|≤W

1
|α| |α + 1| ... |α + 2n|


2

dt.

(16)

Since N (t) = Atn + O
(
tn−1), the number of |Im (α)| participants in the last sum is O

(
tn−1).

Moreover, 1
α(α+1)...(α+2n) = O

(
t−2n−1).

Hence:

+∞∫
−∞

 ∑
t≤|Im(α)|≤t+1
Y<|Im(α)|≤W

1
|α| |α + 1| ... |α + 2n|


2

dt = O

W+1∫
Y−1

1
t2n+4 dt

 = O
(

1
Y2n+3

)
. (17)

Combining the relations (15)–(17), we conclude that:

µ×Ej
p,τ,λ = O

(
e2(ρ+2n−α)j

Y2n+3 j2β (log j)2β+2ε

)
.

Taking:

Y ∼ e
1

2n+3 (2ρ+4n−2α)j j
1−2β
2n+3 (log j)

1−2β
2n+3 ,

we get µ×Ej
p,τ,λ = O

(
1

j(log j)1+2ε

)
, and so µ×

⋃
p

⋃
(τ,λ)∈Ip

Ej
p,τ,λ = O

(
1

j(log j)1+2ε

)
.
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Hence, the set E =
⋃
j

⋃
p

⋃
(τ,λ)∈Ip

Ej
p,τ,λ has a finite logarithmic measure.

Now, for x /∈ E, i.e., for x outside a set of finite logarithmic measure, the definition of Ej
p,τ,λ yields

that the second sum in (14) is estimated by:

O
(

xα (log x)β (log log x)β+ε
)

.

Consequently, for x /∈ E:

d−2n∆
n−1

∑
p=0

(−1)p+1 ∑
(τ,λ)∈Ip

∑
α∈S−ρ+λ

p,τ,λ
Y<|Im(α)|≤W

α−1 (α + 1)−1 ... (α + 2n)−1 xα+2n

=O

(
xα (log x)β (log log x)β+ε

d2n

)
.

(18)

Consider the first sum in (14).
Reasoning in the same way as in the derivation of (11), we conclude that:

d−2n∆
n−1

∑
p=0

(−1)p+1 ∑
(τ,λ)∈Ip

∑
α∈S−ρ+λ

p,τ,λ
|Im(α)|≤Y

α−1 (α + 1)−1 ... (α + 2n)−1 xα+2n = O
(

xρYn−1
)

.
(19)

Similarly, for the third sum in (14), we have:

d−2n∆
n−1

∑
p=0

(−1)p+1 ∑
(τ,λ)∈Ip

∑
α∈S−ρ+λ

p,τ,λ
|Im(α)|>W

α−1 (α + 1)−1 ... (α + 2n)−1 xα+2n = O
(

d−2n xρ+2n

Wn+1

)
.

(20)

Now, the relations (9), (10), (12)–(14), and (18)–(20) give us for x /∈ E:

ψ0 (x) ≤
n−1

∑
p=0

(−1)p+1 ∑
(τ,λ)∈Ip

∑
α∈SRp,τ,λ
0<α≤2ρ

α−1xα + O
(

x2ρ−1d
)
+ O

(
xρYn−1

)
+

O

(
xα (log x)β (log log x)β+ε

d2n

)
+ O

(
d−2n xρ+2n

Wn+1

)
+ O (log x) + O

(
d−2nx−1

)
.

(21)

Clearly, x2ρ−1d = xρYn−1 if:
d = x1−ρYn−1. (22)

Additionally, x2ρ−1d ≤ xα(log x)β(log log x)β+ε

d2n if:

d = x
α−2ρ+1

2n+1 (log x)
β

2n+1 (log log x)
β

2n+1 . (23)

By our selection of Y:

Yn−1 ∼ x(n−1) 2ρ+4n−2α
2n+3 (log x)(n−1) 1−2β

2n+3 (log log x)(n−1) 1−2β
2n+3 . (24)



Mathematics 2020, 8, 1762 13 of 15

Combining the relations (22) and (24), and comparing the exponents of x and log x with the
corresponding exponents in (23), we arrive at:

α− 2ρ + 1
2n + 1

=1− ρ + (n− 1)
2ρ + 4n− 2α

2n + 3
,

β

2n + 1
= (n− 1)

1− 2β

2n + 3
.

Thus, α = 8n3+2n+ρ−6nρ

4n2+1 , β = 2n2−n−1
4n2+1 .

Substituting the obtained d and Y into (21), we end up with:

ψ0 (x) ≤
n−1

∑
p=0

(−1)p+1 ∑
(τ,λ)∈Ip

∑
α∈SRp,τ,λ

2ρ−ρ 4n+1
4n2+1

<α≤2ρ

α−1xα + O
(

x2ρ−ρ 4n+1
4n2+1 (log x)

n−1
4n2+1 (log log x)

n−1
4n2+1

+ε
)

as x→ ∞, x /∈ E.

Notice that d = x1−ρ 4n+1
4n2+1 (log x)

n−1
4n2+1 (log log x)

n−1
4n2+1 = O (x), as required above.

Similarly:

ψ0 (x) ≥
n−1

∑
p=0

(−1)p+1 ∑
(τ,λ)∈Ip

∑
α∈SRp,τ,λ

2ρ−ρ 4n+1
4n2+1

<α≤2ρ

α−1xα + O
(

x2ρ−ρ 4n+1
4n2+1 (log x)

n−1
4n2+1 (log log x)

n−1
4n2+1

+ε
)

as x→ ∞, x /∈ E.
Now, the assertion of theorem follows the same argumentation as in the proof of Theorem 2.
This completes the proof.

4. Discussion

The bound O
(

x2ρ− ρ
n (log x)−1

)
from Theorem 2 obviously improves DeGeorge’s O (xη) for

2ρ − ρ
n ≤ η < 2ρ. If n = 2, ρ = 1

2 , the corresponding estimate coincides with the best known result

O
(

x
3
4 (log x)−1

)
in the Riemann surfaces case [17] (p. 245, Th. 2). The obtained error term also

fully agrees with O
(

x
5
3 (log x)−1

)
in (6), as derived for hyperbolic 3-manifolds [7] (p. 691, Th. 1.1),

where n = 3, ρ = 1, as well as with O
(

x
4ρ2+ρ
2ρ+1 (log x)−1

)
for real hyperbolic manifolds with cusps [7]

(p. 692, Th. 2.1) when n = k and ρ = 1
2 (k− 1).

The inequality 2ρ− ρ 4n+1
4n2+1 ≤ 2ρ− ρ

n is always valid, since the corresponding equivalent inequality

n ≥ 1 is clearly true. The result O
(

x2ρ−ρ 4n+1
4n2+1 (log x)

n−1
4n2+1

−1
(log log x)

n−1
4n2+1

+ε
)

from Theorem 3 thus

improves our O
(

x2ρ− ρ
n (log x)−1

)
outside a set of finite logarithmic measure. It is evident that the

bound O
(

x2ρ− ρ
n (log x)−1

)
is not the optimal one, so the search for such a bound still remains open.

Note that Avdispahić-Gušić [42] (p. 311, Th. 9) proved to be a variant of Theorem 2. The omission
mentioned in the introduction is also present in their work, since the additional term O

(
x2ρ−1h

)
in

reduction from ψ2n (x) to ψ0 (x) is missing [42] (p. 316, (32)). The correct form of the prime geodesic
theorem [42] (p. 317, (39)) resp. [42] (p. 311, Th. 9) is given by Theorem 1 resp. Theorem 2.
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