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Abstract: To follow up on the progress made on exploring the stability investigation of linear
commensurate Fractional-order Difference Systems (FoDSs), such topic of its extended version that
appears with incommensurate orders is discussed and examined in this work. Some simple applicable
conditions for judging the stability of these systems are reported as novel results. These results are
formulated by converting the linear incommensurate FoDS into another equivalent system consists of
fractional-order difference equations of Volterra convolution-type as well as by using some properties
of the Z-transform method. All results of this work are verified numerically by illustrating some
examples that deal with the stability of solutions of such systems.
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1. Introduction

Undoubtedly, it has been demonstrated, over the past few decades, that the non-integer calculus is a
forceful mathematical argument for providing many and more dynamics for lots of ancient as well as
modern models. For instance, there are several dynamical models and many real-world applications that
were recently handled via this tool such as diffusion modeling [1], robot manipulators [2], economics [3],
and many more. As a matter of fact, such branch of calculus, in its two structures (discrete and
continuous), requires the order of the functional operator of calculus to be in its fractional-order case
for a number of core concepts such as derivatives, integrals, and differences. This indeed allows for
creating appropriate mathematical models together with extremely rich and complex dynamics [4,5].
In the area of the discrete fractional calculus, the explanation of its main concept is referred to in
Diaz and Olseronly in 1974 [6]. After that time, for at least a decade or more, some serious efforts
in this field began to appear. Among those efforts, to name a few, is what Miller and Ross proposed
in [7]. They actually established some basic definitions, primary schemes, and properties related to the
fundamental theorem [8]. To date, a lot of researchers are competing in proposing impressive results
and methods in regard to this field. Anyhow, for a complete comprehensive description about this
branch of calculus, the reader may refer to [9–11].

Over the past few years, modeling several chemical and physical phenomena have broadly been
carried out using the theory of Fractional-order Difference Systems (FoDSs) [12]. In fact, the FoDS
is employed, with its particular digital data, for the purpose of approximating its corresponding
fractional-order differential equations. This allows one to enter them into suitable computer programs
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and then simulate the obtained results [12]. However, it was reported in [12] that the Z-transform
method can solve the linear FoDSs, as it can perform the same matter for the linear Fractional-order
Difference Equation (FoDE). The Z-transform method can be, at the same time, employed as a powerful
aid tool in discussing the stability analysis of such systems, as declared in [13–16]. However, even so,
there are formidable challenges, generally, in proposing a proper tool for performing this task [13].
Therefore, it might be said that the stability analysis of the FoDSs is not yet developed [17]. This has
motivated, in recent years, many researchers to deal with this dilemma, and as a consequence of this,
several other works have preferred it to be the main target of their investigations (see [15,17–19]).
In particular, Abu-Saris and Al-Mdallal developed in [15] a theory about the stability of linear FoDSs.
However, unfortunately, it was shown that their theorem is difficult to apply. That matter remained
until 2015. This year, Čermák et al. developed another simplified and applicable theorem for the same
purpose (see [17]). As far as we know, discussing the stability analysis by providing novel simplified
results for Linear FoDS with incommensurate orders remains up until now a recent and mostly
unexamined topic. In light of this urgent need, this paper presents some simple applicable conditions
for judging the stability of such system by first converting it into another equivalent form that includes
FoDEs of the Volterra convolution-type as well as by using the properties of the Z-transform method.
All results of this work are provided by examples, so that all plots of the stability of the solutions for
systems are exhibited according to given incommensurate orders. However, this paper is organized in
the following order. Section 2 introduces some primary preliminaries associated with discrete fractional
calculus, while Section 3 discusses some recently established results that have handled the stability of
linear commensurate FoDS for the purpose of getting new results in regard to incommensurate orders.
Section 4 exhibits several examples to verify all findings, followed by the last section that summarizes
the achievements of the whole work.

2. Preliminaries

This section briefly introduces some basic definitions and preliminaries associated with
discrete fractional calculus. In all of the definitions below, the function f is defined on Na,
where Na = {a, a + 1, a + 2, ...}, for a ∈ R.

Definition 1 ([20]). The fractional sum operator ∆−δ
a of a function f : Na → R is expressed as:

∆−δ
a f (t) :=

1
Γ(δ)

t−δ

∑
τ=a

(t− τ − 1)(δ−1) f (τ), (1)

where δ > 0 is the order of the operator and t ∈ Na+δ.

Definition 2 ([20]). The fractional Riemann–Liouville difference operator of a function f is defined by:

∆δ
a f (t) := ∆n(∆−(n−δ)

a f (t)
)
=

1
Γ(n− δ)

∆n
t−(n−δ)

∑
τ=a

(t− τ − 1)(n−δ−1) f (τ), (2)

where δ > 0 is the order of the operator, n = [δ] + 1, and t ∈ Na+n−δ.

Definition 3 ([20]). The fractional Caputo difference operator of a function f is expressed as:

C∆δ
a f (t) := ∆−(n−δ)

a ∆n f (t) =
1

Γ(n− δ)

t−(n−δ)

∑
τ=a

(t− τ − 1)(n−δ−1)∆n f (τ), (3)

where δ > 0 is the order of the operator, n = [δ] + 1 and t ∈ Na+n−δ.
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Lemma 1 ([17]). Let δ > 0 and δ /∈ N. Then,

(C∆δ
0x)(j + 1− δ) =

j+1

∑
τ=0

(−1)j−τ+1
(

δ

j− τ + 1

)
x(τ)− (−1)j+1

(
δ− 1
τ + 1

)
x(0), j = 0, 1, · · · , (4)

where (δ
β) is the general binomial coefficient.

Proof. By Definition 2, one can obtain:

(C∆δ
0x)(j + 1− δ) = 1

Γ(1−δ)

n
∑

τ=0
(j− δ− τ)(−δ)∆x(τ)

= 1
Γ(1−δ)

j
∑

τ=0

Γ(j−δ−τ+1)
Γ(j−τ+1) ∆x(τ)

=
j

∑
τ=0

(j−δ−τ
j−τ )∆x(τ)

=
j

∑
τ=1

[
(j−δ−τ+1

j−τ+1 )− (j−δ−τ
j−τ )

]
x(τ)− (j−δ

j )x(0) + (−δ
0 )x(j + 1).

Using Pascal rule yields

(C∆δ
0x)(j + 1− δ) =

j
∑

τ=1
(j−δ−τ

j−τ+1)x(τ)− (j−δ
j )x(0) + x(j + 1)

=
j

∑
τ=0

(j−δ−τ
j−τ+1)x(τ)−

[
(j−δ

j ) + (j−δ
j+1)

]
x(0) + x(j + 1)

=
j+1
∑

τ=0
(−1)j−τ+1( δ

j−τ+1)x(τ)− (−1)j+1(δ−1
j+1)x(0).

3. Stability Analysis of the Linear Incommensurate FoDS

In this section, we state some additional results, reported in [15,17], in order to pave the
way for introducing the main results of this work, which will be verified numerically, later on,
in Section 4. Such results will clearly show the stability of the linear FoDS with incommensurate
orders via some useful conditions formulated as theorems. First of all, consider the following linear
incommensurate FoDS:

C∆δ1
0 x1(j + 1− δ1) = a11x1(j) + a12x2(j) + · · ·+ a1nxn(j),

C∆δ2
0 x2(j + 1− δ2) = a21x1(j) + a22x2(j) + · · ·+ a2nxn(j),

...
C∆δn

0 xn(j + 1− δn) = an1x1(j) + an2x2(j) + · · ·+ annxn(j),

j = 0, 1, · · · , (5)

where C∆δi
0 is the fractional Caputo difference operator of order δi, and 0 < δi ≤ 1, for i = 1, 2, ..., n.

The main objective of this work does not explore the separate investigation of the FoDSs, but it
especially explores the generalization of some notions and results achieved in the framework of these
discrete settings. One of the main features that is reflected from studying such systems is memory.
This feature can be revealed by tracking the evolution of any state of these systems, which not only
depends on the current solution, but it also depends on the whole history of its development. In general,
many literature works seem to agree that these systems possess superior properties as compared to
their standard counterpart. It has been shown that the core of their general dynamics solution is heavily
dependent on the variations of the fractional-order values. However, most of those literature works are
concerned only with studying the dynamic characteristics of linear commensurate FoDSs, which is of
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course a special case of systems with incommensurate fractional-orders. From the perspective of such
orders having different effects on the linear incommensurate FoDSs, several physical phenomena are
formulated and accurately described for the purpose of improving the complexity of their solutions
over the original systems. For instance, if δ1 = δ2 = ... = δn = δ, then system (5) might be expressed in
the commensurate form as follows:

C∆δ
0X(j + 1− δ) = AX(j), j = 0, 1, · · · , (6)

where X(t) = (x1(k), x2(k), ..., xn(k))T ∈ Rn, A ∈ Rn×n, and where
C∆δ

0X(j + 1− δ) = (C∆δ
0x1(j + 1− δ), C∆δ

0x2(j + 1− δ), ...,C ∆δ
0xn(j + 1− δ))T . In [15], Abu-Saris and

Al-Mudalal established some results associated with the stability of the system given in (6) by
transforming it into a northern difference system of the Volterra convolution-type as well as using
some properties of the Z-transform method. They actually deduced Theorem 1 given below.

Theorem 1 ([15]). Suppose 0 < δ < 1. The isolated zeroes, of the nonnegative real axis, of

det
(

In − z−1(1− z−1)−δ A
)

(7)

lie inside the unit disk if and only if the zero solution of system (6) is asymptotically stable, where In is the
identity matrix.

One might notice that, despite their good work, applying such results is, indeed, an extremely
difficult task. The justification of that belief is referred to difficulties in determining the zeros of
(7). This matter, however, encouraged Čermák et al. to overcome its difficulties. For that purpose,
they transformed system (6) into another difference system of Volterra convolution-type and then
applied the deduced results of Elaydi et al. in [21]. In other words, they formulated the following result.

Theorem 2 ([17]). Suppose that δ ∈ (0, 1) and ξ is an eigenvalue of A. Then, the zero solution of system (6) is

asymptotically stable if ξ ∈ Sδ =

{
z ∈ C : |z| <

(
2 cos |arg z|−π

2−δ

)δ
and |arg z| > δπ

2

}
, ∀ξ. In this regard,

every solution X of system (6) tends to zero algebraically, i.e.,

‖X(j)‖ = O(j−δ) as j→ ∞. (8)

In addition, if ξ ∈ C\cl(Sδ), then the zero solution of system (6) is not stable, where cl(Sδ) denotes to the
closure of Sδ.

Remark 1. The affirmations of the two above results outline the same region of stability, although they have two
analytical different descriptions. For instance, the condition declared in Theorem 2 appears to be more suitable
for practical intents because of Sδ, which has been established in an explicit form.

Thus, one can definitely observe that the two aforementioned theorems could be implemented
in dealing with linear commensurate FoDSs. To follow the progress in this context, the linear
incommensurate FoDSs will be handled next. Actually, discussing the stability of these systems,
as far as we know, remains, up to now, a recent and generally unexamined topic. In this regard, we
provide the following result:

Theorem 3. Consider system (5) subject to the initial vector condition X(0) = X0 ∈ Rn. Then,

• If all roots of the following characteristic equation:

det
(

diag
(

z(1− z−1)δ1 , z(1− z−1)δ2 , ..., z(1− z−1)δn
)
− A

)
= 0, (9)
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lie inside the unit disk, then the zero solution of system (5) is asymptotically stable.

• If there exists a zero, say z∗, of (9) such that |z∗| > 1, then the zero solution of system (5) is not stable.

Proof. Using Lemma 1, we can rewrite system (5) as follows:

x1(j + 1) =
j

∑
τ=0

(−1)j−τ( δ1
j−τ+1)x1(τ) + (−1)j+1(δ1−1

j+1 )x1(0)

+a11x1(j) + a12x2(j) + · · ·+ a1nxn(j),

x2(j + 1) =
j

∑
τ=0

(−1)j−τ( δ2
j−τ+1)x2(τ) + (−1)j+1(δ2−1

j+1 )x2(0)

+a21x1(j) + a22x2(j) + · · ·+ a2nxn(j),
...

xn(j + 1) =
j

∑
τ=0

(−1)j−τ( δn
j−τ+1)xn(τ) + (−1)j+1(δn−1

j+1 )xn(0)

+an1x1(j) + an2x2(j) + · · ·+ annxn(j),

j = 0, 1, · · · . (10)

One might take the Z-transform to (10). This yields the following system:

zx̃1(z)− zx1(0) = (z− z(1− 1
z )

δ1)x̃1(z) + (z(1− 1
z )

δ1−1 − z)x1(0)
+a11 x̃1(z) + a12 x̃2(z) + · · ·+ a1n x̃n(z),

zx̃2(z)− zx2(0) = (z− z(1− 1
z )

δ2)x̃2(z) + (z(1− 1
z )

δ2−1 − z)x2(0)
+a21 x̃1(z) + a22 x̃2(z) + · · ·+ a2n x̃n(z),

...
zx̃n(z)− zxn(0) = (z− z(1− 1

z )
δn)x̃n(z) + (z(1− 1

z )
δn−1 − z)xn(0)

+an1 x̃1(z) + an2 x̃2(z) + · · ·+ ann x̃n(z),

(11)

where x̃i(z) indicates the Z−transform of xi(j), (i.e., x̃i(z) = Z[xi(j)], 1 ≤ i ≤ n). Consequently, we can
rewrite system (11) as follows:

M(z).


x̃1(z)
x̃2(z)

...
x̃n(z)

 =


z(1− 1

z )
δ1−1x1(0)

z(1− 1
z )

δ2−1x2(0)
...

z(1− 1
z )

δn−1xn(0)

 , (12)

in which

M(z) =


z(1− 1

z )
δ1 − a11 −a12 · · · −a1n

−a21 z(1− 1
z )

δ2 − a22 · · · −a2n
...

...
. . .

...
−an1 −an2 · · · z(1− 1

z )
δn − ann

 . (13)

Multiplying both sides of (12) by (z− 1) gives:

M(z).


(z− 1)x̃1(z)
(z− 1)x̃2(z)

...
(z− 1)x̃n(z)

 =


z2(1− 1

z )
δ1 x1(0)

z2(1− 1
z )

δ2 x2(0)
...

z2(1− 1
z )

δn xn(0)

 . (14)

Now, we should note that, if all roots of det M(z) = 0 lie inside the unit disk, then system (14)
will be considered such that z satisfies |z| ≥ R, with R ≤ 1, (R is the radius of convergence
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of X̃(z)). Actually, system (14) has a unique solution in this limited area represented by
((z− 1)x̃1(z), (z− 1)x̃2(z), · · · , (z− 1)x̃n(z)). Accordingly, we have:

lim
z→1

(z− 1)x̃i(z) = 0, i = 1, 2, ..., n. (15)

Based on the assumption stated in first part of this theorem, and based also on the Final-Value Theorem
associated with Z-transform, we obtain:

lim
j→∞

xi(j) = lim
z→1

(z− 1)x̃i(z) = 0, i = 1, 2, ..., n. (16)

On the other hand, considering the second part of this theorem implies that the convergence radius R
of the series:

∞

∑
j=0

X(j)z−j = X̃(z) (17)

is greater than 1 (i.e., R > 1). Therefore, there exists i0, where 1 ≤ i0 ≤ n, which makes the convergence
radius Ri0 of the series:

∞

∑
j=0

xi0(j)z−j = x̃i0(z) (18)

also be greater than 1 (i.e., Ri0 > 1). Thus, by using the Cauchy–Hadamard Theorem, we obtain:

Ri0 = lim
j→∞

sup j
√∣∣xi0(j)

∣∣ > 1. (19)

Consequently, lim
j→∞

sup
∣∣xi0(j)

∣∣ = ∞. This, however, implies that x will be never bounded and hence (5)

is not stable.

Remark 2. If δ1 = δ2 = ... = δn = δ, then Theorem 3 becomes similar to Theorem 1 which is equivalent, as it
is known, to Theorem 2.

Corollary 1. Suppose that A is a triangular matrix with diagonal elements ξi, i = 1, ..., n. If −2δi < ξi < 0,
∀i, then the zero solution of system (5) is asymptotically stable. Furthermore, such solution is not stable if either
ξi > 0 or ξi < −2δi , for some i.

Proof. Consider the first part of Theorem 3 and A as assumed here. This will turn (9) into the form:

n

∏
i=1

(
z(1− z−1)δi − ξi

)
= 0. (20)

It means that there exists i, where 0 ≤ i ≤ n, such that:(
z(1− z−1)δi − ξi

)
= 0. (21)

Now, according to the assumption that supposes all roots of (9) lie inside the unit disk, we deduce
that all ξi’s belong to the set

{
z(1− z−1)δi , z ∈ C and |z| < 1

}
, for 0 ≤ i ≤ n. Based on the proof of

Theorem 1.4 described in [17], we also deduce:

{
z(1− z−1)δi , z ∈ C and |z| < 1

}
=

{
z ∈ C : |z| <

(
2 cos

|arg z| − π

2− δ

)δi

and |arg z| > δiπ

2

}
,

where ξi ∈ R, 0 ≤ i ≤ n. This means that−2δi < ξi < 0, as desired.
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As a matter of fact, the above result, represented by Corollary 1, is deemed one of the main
significant results in this work. It can be easily implemented for exploring the stability of some linear
incommensurate FoDSs which involve just a triangular matrix A in their forms. On the contrary, one
can find it extremely hard to verify condition (9) in the proposed result represented by Theorem 3.
Actually, this condition is related to the full matrix that might be found in the linear incommensurate
FoDSs. To deal with this problem, we present below another more practical result which is equivalent
to Theorem 3.

Theorem 4. Consider 0 < δi < 1, for i = 1, 2, ..., n, and M is the lowest common multiple of the denominators
ui of δi’s, in which δi =

vi
ui

and (ui, vi) = 1, where ui, vi ∈ Z+, ∀i. Then, the zero solution of system (5), subject
to the initial vector condition X(0) = X0 ∈ Rn, is:

• Asymptotically stable if any zero solution of the polynomial:

det
(

diag
(

ξMδ1 , ξMδ2 , ..., ξMδn
)
− (1− ξM)A

)
(22)

lies inside the set
C\Kγ,

where γ = 1
M and where

Kγ =

{
z ∈ C : |z| ≤

(
2 cos

|arg z|
γ

)γ

and |arg z| ≤ γπ

2

}
. (23)

• Not stable, furthermore, if there is a zero, say ξ, of (22) such that ξ ∈ IntKγ.

Proof. In accordance with Theorem 3, system (5) is asymptotically stable if all zeros of the following
characteristic equation:

det
(

diag
(

z(1− z−1)δ1 , z(1− z−1)δ2 , ..., z(1− z−1)δn
)
− A

)
= 0

are located inside the unit circle. However, setting

1− 1
z
= ξM ⇔ z =

1
1− ξM , ξM 6= 1,

will turn the above characteristic equation to be in the form:

det
(

diag
(

ξMδ1

1− ξM ,
ξMδ2

1− ξM , ...,
ξMδn

1− ξM

)
− A

)
= 0. (24)

Multiplying both sides of (24) by (1− ξM)n yields:

det
(

diag
(

ξMδ1 , ξMδ2 , ..., ξMδn
)
− (1− ξM)A

)
= 0. (25)

Now, one finds that it is necessary to prove the two assertions z ∈ {z ∈ C : 0 < |z| < 1} ⇔ ξ ∈ C\Kγ

and z ∈ {z ∈ C : |z| > 1} ⇔ ξ ∈ IntKγ. For achieving those goals, consider the following steps:

• Step 1: (Defining the stability boundary). Consider the following curve:

Lγ =

{(
1− 1

z

)γ

: |z| = 1
}

, (26)
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which defines the stability boundary for system (5) and also describes its structure. Suppose
z = eiφ and 1− z−1 = reiω, for 0 ≤ φ < 2π and r(φ) = r ≥ 0, and also suppose ω(φ) = ω,
where ω ∈ [0, 2π). Then,

1− e−iφ = reiω.

This equation, after the imaginary and real parts are equated, will be turned into the following
two components:

sin φ = r sin ω, 1− cos φ = r cos ω.

Observe that, when φ = 0, then r = 0. Otherwise, we have:

tan ω =
sin φ

1− cos φ
.

In view of the fact that:

sin φ

1− cos φ
=

2 sin(φ/2) cos(φ/2)
2 sin2(φ/2)

= cot
φ

2
= tan(

π

2
− φ

2
),

we can write r and ω as r = 2 sin φ
2 and ω = π/2− φ/2, respectively. From here, we obtain:

Lγ =

{(
2 sin

φ

2

)γ

exp(i
(π − φ)γ

2
) : 0 ≤ φ < 2π

}
.

Observe that setting ψ = −ω = φ/2− π/2 will turn Lγ to be as follows:

Lγ =
{
(2 cos ψ)γ exp(−iγψ) : −π

2
≤ ψ <

π

2

}
.

One can use the polar form represented by |z| = (2 cos ψ)γ), where arg z = −γψ, to obtain:

Lγ =

{
z ∈ C : |z| =

(
2 cos

|arg z|
γ

)γ

and |arg z| ≤ γπ

2

}
. (27)

• Step 2: (Showing that wγ(z) = (1 − 1
z )

γ maps the set DE = {z ∈ C : |z| > 1} onto IntKγ,
with noting that wγ(2) = 2−γ ∈ IntKγ). In view of the Open Mapping Theorem, and since
wγ is nonconstant holomorphic on DE, then it maps DE to an open set. In other words, we have a
neighborhood of wγ(z∗) included in wγ(DE), ∀z∗ ∈ DE. This implies that the boundary of wγ(DE)

can not be mapped by any point of DE. This means that wγ(DI) ⊂ IntKγ. Similarly, one can prove
that wγ(DI) ⊂ C\Kγ, where DI = {z ∈ C : 0 < |z| < 1}. In view of wγ({z ∈ C : |z| = 1}) = Lγ

(see the previous step), and also in view of the continuity of wγ, the above arguments imply that
wγ(DE) = Kγ.

• Step 3: For the purpose of showing the other part this theorem, we first assume that there is a
solution ξ of (22) with ξ ∈ IntKγ. This implies that z = 1

1−ξM is a solution of (9) with |z| > 1.
Thus, we can deduce, in view of Theorem 3, that there is an instability of the zero solution of
system (5). On the other hand, if each solution of (22) belongs to C\Kγ, then all solutions of
(9) will belong to {z ∈ C : |z| < 1}, which makes the zero solution of system (5), via Theorem 3,
asymptotically stable, as required.

4. Numerical Simulations

To highlight the primary outcomes of this paper in exploring the stability of the linear
incommensurate FoDSs, Theorem 4 will be utilized to investigate two examples that explore such
stability when these systems involve full matrices in their forms.
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Example 1. Consider the following linear incommensurate FoDS: C∆
1
2
0 x1(j + 1− 1

2 )

C∆
1
4
0 x2(j + 1− 1

4 )

 =

(
−1 1
− 9

16
1
2

)(
x1(j)
x2(j)

)
, j = 0, 1, 2..., (28)

One can obtain M to be equal 4. This, however, implies:

det

((
ξ2 0
0 ξ

)
− (1− ξ4)

(
−1 1
− 9

16
1
2

))
= 0

⇔

det

(
ξ2 + (1− ξ4) −(1− ξ4)

9
16 (1− ξ4) ξ − 1

2 (1− ξ4)

)
= 0

⇔
1
16

ξ8 +
1
2

ξ6 − ξ5 − 1
8

ξ4 + ξ3 − 1
2

ξ2 + ξ +
1
16

= 0 (29)

Accordingly, the solution of (29) will be in the following form:

ξ =



−1.1634
−6.0451× 10−2

−0.78732 + 3.1894i
−0.78732− 3.1894i

1.3269− 0.4875i
1.3269 + 0.4875i

7.2415× 10−2 + 0.80874i
7.2415× 10−2 − 0.80874i


(30)

As per Theorem 4, and due to ξi ∈ C\K 1
4 , ∀i = 1, 2, ..., 8, then system (28) is asymptotically stable about its

zero solution.

In order to demonstrate the validity of the obtained outcomes, one can observe, from Figure 1,
that the two states of system (28) converge to zero, and hence it is stable.
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Figure 1. The stability of the zero solution of system (28).
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Example 2. Consider the following linear incommensurate FoDS:
C∆

1
2
0 x1(t + 1− 1

2 )

C∆
1
3
0 x2(t + 1− 1

3 )

C∆
2
3
0 x3(t + 1− 2

3 )

 =

 −1 0 −0.2
3.4 −1 0.2
0 0 −1


 x1(t)

x2(t)
x3(t)

 (31)

One can find M = 6, which leads to:

det


 ξ3 0 0

0 ξ2 0
0 0 ξ4

− (1− ξ6)

 −1 0 −0.2
3.4 −1 0.2
0 0 −1


 = 0

⇔
−ξ18 + ξ16 + ξ15 + ξ14 − ξ13 + 2ξ12 − ξ11 − 2ξ10 − ξ9

−2ξ8 + ξ7 − 2ξ6 + ξ5 + ξ4 + ξ3 + ξ2 + 1 = 0
(32)

Consequently, the solution of (32) will be in the form:

ξ =



−0.32131− 0.87498i
−0.32131 + 0.87498i
0.32131− 0.87498i
0.32131 + 0.87498i
−0.85180

−0.54463 + 0.7276i
−0.54463− 0.7276i
0.54463 + 0.7276i
0.54463− 0.7276i

0.42590− 0.73768i
0.42590 + 0.73768i

−1.1510
1.1510
−1.2106
1.2106

−0.58699− 1.0167i
−0.58699 + 1.0167i

1.1740



(33)

where
K

1
6 =

{
z ∈ C : |z| ≤ (2 cos 6 |arg z|)

1
6 and |arg z| ≤ π

12

}
Hence, in view of Theorem 4, system (31) is also asymptotically stable about its zero solution.

To confirm the final inference of Example 2, Figure 2 illustrates such stability by exhibiting the
convergence of all system’s states to zero, which shows the validity of the proposed results.
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Figure 2. The stability of the zero solution of system (31).

5. Conclusions and Future Works

In the present work, some simple applicable conditions for judging the stability of the linear
incommensurate Fractional-order Difference Systems have been reported as novel results. These results
have really been verified numerically by illustrating the stability of the solutions of such systems
via several examples. All results of this work are applicable to be implemented in lots of difference
systems, like e.g., the Duffing oscillator system which has been successfully employed to model a set
of physical schemes such as beam buckling, ionization waves in plasmas, nonlinear electronic circuits,
stiffening springs, and superconducting Josephson parametric amplifiers. Such investigation together
with studying the dynamics of the linear incommensurate FoDSs will be some of several targets that
are left for future consideration.
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