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Abstract: In this note, we prove a Schur-type lemma for bounded multiplier series. This result
allows us to obtain a unified vision of several previous results, focusing on the underlying structure
and the properties that a summability method must satisfy in order to establish a result of Schur’s
lemma type.
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1. Introduction

Throughout this paper, N will denote the set of natural numbers. If X is a normed space and
R : DR ⊂ XN → X is a linear map which assigns limits to a sequence, we will say that R is a
convergence method (or summability method) and DR is the convergence domain ofR.

With the development of Fourier theory, other convergence methods of the series were studied
which are interesting in their own right. Convergence methods have generated so much interest in
Approximation Theory and Applied Mathematics that different monographs have appeared in the
literature [1–4]; moreover, this is a very active field of research with many contributors.

A good source of problems consists in considering a result on convergence of series which is
true for the usual convergence and, to try to prove it, replacing the usual convergence by other
convergence methods [5–9]. In this way, it is possible to see a classical result from a new point of view.
Sometimes [10,11], it is possible to characterize those summability methods for which these classical
results hold. For instance, in [10], the summability methods for which the classical Orlicz–Pettis’s
result is true are characterized, namely, it is possible to obtain a version of the Orlicz–Pettis’s theorem
for any regular convergence method.

Schur lemma is one of the best known and most useful results in Functional Analysis, so that
it has attracted the interest of many people. One of the classical versions [12] states that a sequence in
`1 is weakly convergent if and only if it is norm convergent. This result was sharpened by Antosik
and Swartz using the Basic Matrix Theorem (see [13]); moreover, Swartz [4,14] obtained a version of
the Schur lemma for bounded multiplier convergent series. In this note, we aim to unify different
versions of Swartz’s result that incorporated summability methods. Of course, Swartz’s result is not
true for a general summability method; we analyze those summability methods for which Swartz’s
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result continues being true. In the way, we show up some properties of summability methods that
have been not treated and that deserves subsequent studies.

We continued the research line started in [10,11], and we aim to unify different versions of Swartz’s
result [5,7,15]. For instance, Schur type results were obtained for any regular matrix summability
method [15] and for the Banach–Lorentz convergence [5].

This paper is structured as follows. In Section 2, we are going to point out four properties
for a general summability method that will be hypotheses in our results and we will study their
basic properties. In Section 3, we will put into practice what we learned on general summability
in Section 3. We will see a result on unconditionally convergent series in the context of any general
summability method. This result is independent of the main result in Section 4.

In Section 4, we will obtain a general Schur-type lemma for general summability methods; thus,
we unify results appeared in [5,15], and finally we close the paper with a brief section with concluding
remarks and open questions.

2. Some Preliminary Results

For simplicity, we will suppose throughout the paper that (X, ‖ · ‖) is a real Banach space. Let us
denote by `∞(X) the space of all bounded sequences in X provided with the supremum norm (which
we will denote sometimes abusively by ‖ · ‖):

‖(xk)‖`∞(X) = sup{‖xn‖ : n ∈ N}.

A linear summability method in X will be denoted byR; that is,R will be a linear mapR : DR ⊂
XN → X (here DR denotes the domain ofR). Thus, a sequence (xn) ∈ XN isR-convergent to L (and

it will be denoted by xn
R−→ L) providedR((xn)) = L. We will require onR that the limit assignment

does not depend on the first terms, that is, for any (xn) ∈ DR such thatR((xn)n≥1) = L and, for any
n0 ∈ N, we also require that (xn)n≥n0 ∈ DR andR((xn)n≥n0) = L.

A sequence (xn) ∈ `∞(X) is said to be R-Cauchy if for any ε > 0 there exists n0 ∈ N, such that,
(xn − xn0)n≥n0 ∈ DR ∩ `∞(X) and ‖R((xn − xn0)n≥n0))‖ < ε.

A series ∑i xi in a real Banach space X is called weakly unconditionally Cauchy (wuc) if
∑i | f (xi)| < ∞ for every f ∈ X?, and ∑i xi is called unconditionally convergent (uc) if ∑i xπ(i) is
convergent for every permutation π of N.

Let us denote by c0 the Banach space of all sequences (an) ∈ CN such that limn an = 0
endowed with the canonical norm and by B`∞ the unit ball of the space `∞ of bounded sequences of
complex numbers. It is well known that a series ∑i xi is (wuc) if and only if ∑i aixi is convergent for
every sequence (ai) ∈ c0, or equivalently {∑n

i=1 aixi : (ai) ∈ B`∞ , n ∈ N} is bounded in the normed
space X. It is also known that a series ∑i xi is (uc) if and only if ∑i aixi is convergent for every (ai) ∈ `∞.

Let us denote by X(c0) the (wuc) series and X(`∞) will denote the space of all (uc) series.
Both spaces are real Banach spaces, endowed with the norm:

‖(xk)k∈N‖s = sup

{∥∥∥∥∥ n

∑
i=1

aixi

∥∥∥∥∥ : |ai| ≤ 1, i ∈ {1, · · · , n}, n ∈ N
}

. (1)

We aim to extend the following striking result by Swartz [14] which is a version of Schur lemma
for bounded multiplier convergent series:

Theorem 1 (Swartz-1983). Let (xn)n∈N = (xn(k)) be a sequence in X(`∞) such that, for every (a(k)) ∈ `∞,
limn→∞ ∑∞

k=1 a(k)xn(k) exists. Then, there exists x0 ∈ X(`∞) such that limn→∞ ‖xn − x0‖s = 0.
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Let S be a closed subspace of `∞ containing c0. Let us considerR : DR ⊂ XN → X a summability
method defined on a real Banach space X, and let us consider the following vector spaces:

X(S,R) =
{
(xk)k∈N : R

((
n

∑
k=1

akxk

))
exists for every (ak)k∈N ∈ S

}
.

Of course, we will need to place some limits on the summability methodsR because Theorem 1
is not true for every summability methodR. We will consider the following properties:

(h1) Regularity. That is, for any sequence (xn) convergent in X that is, limn→∞ xn = L ∈ X, it is
satisfied that (xn) ∈ DR andR((xn)) = L.

(h2) R-weak convergence. For every (xn) ∈ DR ∩ `∞(X) such that R((xn)) = L, it is satisfied that
sup f∈BX?

| f (xn)− f (L)| = 0.
(h3) Boundedness. In the following sense, there exists M > 0 such that ‖R((xn))‖ ≤ M‖(xn)‖`∞(X)

for all (xn) ∈ DR ∩ `∞(X).
(h4) R-completeness. That is, a sequence (xn) ∈ DR ∩ `∞(X) if and only if (xn) isR-Cauchy.

Another property of a summability methodR that plays an important role, and which is weaker
than property (h1), is to be regular on constant, that is, DR contains the constant sequences.

Property (h2) will be used only on Theorem 2. It requires that the sequences in DR ∩ `∞(X) must
be weakly convergent. In fact, as we will see in the proof of Theorem 2 (see Remark 1), we need a weak
version of (h2). Specifically:

(h2’) For any sequence (xn) ∈ DR ∩ `∞(X) and f ∈ X?, the sequence f (xn) converges to some L f ∈ R.

Let us observe that, ifR is regular on constant sequences, then DR is invariant by translations;
therefore, condition (xn − xn0)n≥n0 ∈ DR ∩ `∞(X) is automatically satisfied in (h4).

Proposition 1. LetR be a linear summability method such thatR is regular on the constant andR satisfies
(h3). If (xn) is a Cauchy sequence, then (xn) isR-Cauchy.

Proof. Indeed, if (xn) is Cauchy, then (xn) is bounded and, for any ε > 0, there exists n0 such that,
if n, m ≥ n0, then ‖xn − xm‖ < ε/M (M is the constant guaranteed by (h3)). Hence,

‖R ((xn − xn0)n≥n0)) ‖ ≤ M‖xn − xn0‖`∞(X) ≤ ε,

which gives the desired result.

As a consequence,

Corollary 1. let R be a linear summability method satisfying (h3) and (h4). The convergence method R is
regular on the constant if and only ifR is regular.

Example 1. Let us observe that hypothesis (h3) does not imply regularity. Indeed, we will say that a sequence
(xn) ∈ RN is ρ-convergent to x0 if limn→∞

xn
n2 = x0. Then, clearly ρ|`∞ = 0. Hence, ρ is not regular. However,

ρ satisfies trivially (h3).

The notion of induced summability was introduced in [10] and it allows us to unify several results
that incorporate different types of weak convergence. Let ρ : Dρ ⊂ RN → R be a summability method
on R. The summability method ρ could induce a summability methodR on every normed space X
as follows. A sequence (xn)n ∈ XN is said to be R convergent to L if for any f ∈ X? the sequence
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f (xn)
ρ−→ f (L). The summability methodR is called a summability method induced by ρ on the space X.

Let us define the following space:

Xω(S, ρ) =

{
(xk) ∈ XN :

n

∑
i=1

ai f (xi) ρ− converges ∀(ai) ∈ S, ∀ f ∈ X?

}
.

In particular, when the summability method is induced by the usual convergence on R,
then we denote: Xω(S) = Xω(S, | · |). Let us show some basic properties of these spaces.

Proposition 2. IfR is a summability method induced by ρ, then X(S,R) ⊂ Xω(S, ρ).

Proof. Indeed, if (xk) ∈ X(S,R), then, for all a = (aj) ∈ S, there exists La ∈ X such that ∑n
i=1 aixi

R−→
La; therefore, for all f ∈ X?, we have that ∑n

i=1 ai f (xi)
ρ−→ f (La), that is, (xk) ∈ Xω(S, ρ).

Proposition 3. Let ρ1 and ρ2 be two summability methods on R. If Dρ1 ⊂ Dρ2 then Xω(S, ρ1) ⊂ Xω(S, ρ2).
In particular, if ρ is regular, then Xω(S, ρ) ⊂ Xω(S).

Proposition 4. If ρ is a regular summability method in R and R is an induced summability method in a
normed space X, thenR is non-trivial, andR is also regular.

Proof. Indeed, if xk
‖·‖−→ L, then, for every f ∈ X?, we have f (xn)

|·|−→ f (L). Since ρ is regular, we

obtain that f (xn)
ρ−→ f (L), for any f ∈ X?. Hence, xn

R−→ L, which yields the desired result.

Proposition 5. IfR is a linear summability method satisfying (h2), then X(S,R) ⊂ Xω(S).

Proof. Indeed, if (xk) ∈ X(S,R), then

R
((

n

∑
i=1

aixi

))
= La

for each a ∈ S. Since R satisfies (h2), for any f ∈ X?, we have that ∑n
i=1 ai f (xi)

|·|−→ f (La); hence,
(xk) ∈ Xω(S) as we desired.

3. Completeness of a Normed Space through Summability Methods

We define in a abstract way theR-sequence space associated with a (wuc)-series ∑i xi as follows:

SR

(
∑

i
xi

)
=

{
(ai) ∈ `∞ :

n

∑
i=1

aixi isR convergent in X

}
.

Given a summability methodR and a series ∑i xi, under certain conditions, it is possible to obtain
when ∑i xi is (wuc) in terms of the completeness of the space SR (∑i xi). Moreover, when SR (∑i xi) is
closed in `∞ for each (wuc) series, it is possible to characterize the completeness of X.

This kind of result has been obtained for many summability methods. The results in [11]
try to unify all known results. In fact, the results in [11] are true for any summability method
defined by a non-trivial regular ideal. However, not all summability methods can be defined by
means of an ideal convergence; for instance, this result was obtained in [16] in terms of the lacunary
statistical convergence. In the following statement, we are going to put into practice what we learned
from general summability methods in Section 3, and we are going to obtain the following general result.
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Theorem 2. LetR be a convergence method on a Banach space X satisfying (h1)-(h4). The following conditions
are equivalent:

1. The series ∑i xi is a weakly unconditionally Cauchy (wuc).
2. The subspace SR(∑i xi) is closed in `∞.
3. c0 ⊂ SR(∑i xi).

Proof. To prove (1)⇒(2), let us consider the supremum

H = sup

{∥∥∥∥∥ n

∑
i=1

aixi

∥∥∥∥∥ : |ai| ≤ 1, 1 ≤ i ≤ n, n ∈ N
}

< ∞,

which is finite because the series ∑i xi is (wuc). Moreover, let us consider (am)m ∈ SN
R(∑i xi) satisfying

limm→∞ ‖am − a0‖∞ = 0 for some a0 ∈ `∞. We will show that a0 ∈ SR(∑i xi); that is, the sequence
S0

n = ∑n
i=1 a0

i xi isR-convergent.
Indeed, let m0 ∈ N be large enough such that ‖am − a0‖∞ ≤ ε

3H for all m ≥ m0. In particular,
for m ≥ m0 ∥∥∥∥∥ n

∑
i=1

3H
ε
(am

i − a0
i )xi

∥∥∥∥∥ ≤ H,

that is,
‖Sm

n − S0
n‖ ≤

ε

3M
, (2)

for any m ≥ m0 and n ∈ N, where M denotes the constant guaranteed by hypothesis (h3). On the other
hand, since am ∈ SR(∑i xi), then R(∑n

i=1 am
i xi) = Lm ∈ X, for some Lm ∈ X. In addition, since ∑i xi

is (wuc), we have that (Sm
n )n ∈ `∞(X). In particular, sinceR satisfies hypothesis (h4), the sequences

(Sm
n )n isR-Cauchy. Thus, for any ε > 0, there exists n0 such that, if n ≥ n0, then

‖R((Sm
n − Sm

n0
)n≥n0)‖ ≤

ε

3
. (3)

Since ∑i xi is (wuc), we also have that S0
n = ∑n

i=1 a0
i xi ∈ `∞(X). Therefore, in order to show that

(S0
n) is R-convergent, we will show that (S0

n) is R-Cauchy. Now, let us suppose that m ≥ m0, using
the linearity ofR and the triangular inequality, we get:∥∥∥∥R((S0

n − S0
n0

)
n≥n0

)∥∥∥∥ =

∥∥∥∥R((S0
n − S0

n0
− Sm

n + S0
n + Sm

n0
− Sm

n0

)
n≥n0

)∥∥∥∥
≤
∥∥∥∥R((S0

n − Sm
n

)
n≥n0

)∥∥∥∥+ ∥∥∥R ((Sm
n0
− S0

n0

))∥∥∥+ ∥∥∥R ((Sm
n − Sm

n0

)
n≥n0

)∥∥∥
≤ M sup

n≥n0

‖S0
n − Sm

n ‖+ M‖Sm
n0
− S0

n0
‖+ ε

3

≤ ε

3
+ M

ε

3M
+

ε

3
= ε.

We used that the constant sequences xn = L are R convergent to L for all L ∈ X, which is
guaranteed by (h1). In the second inequality, we used that R satisfies hypothesis (h3), and we also
used Equations (2) and (3). Hence, we have shown that (S0

n) is aR-Cauchy sequence; therefore, it is
R-convergent as we desired.

To establish (2)⇒(3), it is sufficient to observe that, sinceR is regular (hypothesis (h1)), the space
c00 of eventually zero sequences is contained in SR(∑i xi). Since SR(∑i xi) is a closed subspace of `∞,
we get that c0 ⊂ SR(∑i xi).

Finally, to prove (3)⇒ (1), if (xn) is not a (wuc) series, then there exists f ∈ X? such that
∑∞

i=1 | f (xi)| = ∞. In such a case, we will show that it is possible to find a sequence (an) ∈ c0 such
that ∑∞

i=1 ai f (xi) = ∞. Indeed, we can select a sequence (bn) of positive terms converging to 0
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slowly enough such that ∑∞
i=1 bi| f (xi)| = ∞. Then, the sequence an = bnsign( f (xn)) and satisfies that

∑∞
i=1 ai f (xi) = ∞. Let us observe that the sequence (an) /∈ SR(∑i xi). Indeed, if (an) ∈ SR(∑i xi),

then Sn = ∑n
i=1 aixi should be R-convergent to some L ∈ X. Hence, since R satisfies condition (h2),

we get that f (Sn) = ∑n
i=1 ai f (xi) converges to some L f ∈ R a contradiction. Thus, we have shown that

there exists a = (an) ∈ c0 such that a /∈ SR(∑i xi), which contradicts our hypothesis (3), and it yields
the desired result.

Remark 1. As we mentioned before, to prove (3)⇒ (1) above, we need only the hypothesis (h2’). To prove (1)⇒
(2) and (2)⇒ (3), we do not need completeness on X.

Remark 2. Let us see that Theorem 2 can be used to characterize the completeness of X through the completeness
of the sequences spaces SR (∑i xi). Indeed, following the ideas of Theorem 3 in [11], we can show the
following result. Let R-be a summability method satisfying (h1)–(h4) then X is complete if and only if
SR (∑i xi) is closed in `∞ for each (wuc) series ∑i xi.

Remark 3. We tried to give an overview of all methods of summability for which it is possible to
establish Theorem 2. Of course, there exist summability methods that satisfy the properties (h1)–(h4). For instance,
the results in [11] establish Theorem 2 when the summability methodR is induced by a non-trivial ideal I ⊂
P(N), that is, the I-convergence provided I is regular, that is, I contains the finite subsets. However, not every
summability method is induced by an ideal, for instance, the lacunary statistical convergence. Theorem 2 was
established for the lacunary statistical convergence in [16]. For the lacunary statistical convergence, the hypothesis
(h1) and (h4) were established in [16] Theorem 1 and Theorem 3, and the hypothesis (h2’) and (h3) can be
established also easily.

4. Schur Lemma through Summability Methods

Hypothesis (h3) will guarantee that X(S,R) is a closed subspace of X(c0) endowed with the
norm ‖ · ‖s; this is our first result in this section.

Theorem 3. LetR be a convergence method on a Banach space X satisfying (h3). Then, X(S,R) is a closed
subspace of X(c0) endowed with the norm ‖ · ‖s.

Proof. Let (xn) ∈ XN(S,R) satisfying limn→∞ ‖xn − x0‖s = 0 for some x0 = (x0
i ) ∈ X(c0) and let us

show that x0 ∈ X(S,R); that is, for all (ak) ∈ S, we have that ∑n
k=1 akx0

k isR-convergent.
By hypothesis,R satisfies (h3); therefore. there exists M > 0 such that

‖R((xk))−R((yk))‖ ≤ M‖(xk − yk)‖`∞(X)

for all (xn), (ym) ∈ `∞(X).
Since (xn) is a Cauchy sequence, for each ε > 0, there exists k0, such that, for all p, q ≥ k0,

‖xp − xq‖s < ε/M.
Let us fix (ak) in the unit ball of S. Since xm ∈ X(S,R), we obtain that the partial sums ∑n

k=1 akxm
k

areR-convergent to some ym ∈ X. Then, for p, q ≥ k0,

‖yp − yq‖ =
∥∥∥∥∥R

((
n

∑
k=1

akxq
k

))
−R

((
n

∑
k=1

akxp
k

))∥∥∥∥∥
≤ M sup

n

∥∥∥∥∥ n

∑
k=1

(ap
k − aq

k)xk

∥∥∥∥∥
≤ M‖xp − xp‖s ≤ ε.
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Thus, (ym) is a Cauchy sequence. Since X is complete, let y0 be its limit. We claim that
R
(
∑n

k=1 akx0
k
)
= y0. Indeed, for any ε > 0, there exists p such that ‖yp− y0‖ ≤ ε

2 and ‖xp− x0‖s ≤ ε
2M .

SinceR satisfies (h3):∥∥∥∥∥R
((

n

∑
k=1

akxp
k

))
−R

((
n

∑
k=1

akx0
k

))∥∥∥∥∥ ≤ M‖xp − x0‖s ≤
ε

2
.

Hence,∥∥∥∥∥R
((

n

∑
k=1

akx0
k

))
− y0

∥∥∥∥∥ =

∥∥∥∥∥R
((

n

∑
k=1

akx0
k

))
− yp + yp − y0

∥∥∥∥∥
≤
∥∥∥∥∥R

((
n

∑
k=1

akxp
k

))
−R

((
n

∑
k=1

akx0
k

))∥∥∥∥∥+ ‖yp − y0‖

≤ ε

2
+

ε

2
= ε.

Since ε was arbitrary, we obtain thatR
(
∑n

k=1 akx0
k
)
= y0 as we desired.

Remark 4. Thus, using Proposition 5, ifR is a linear convergence method satisfying (h2), then the following
chain of inclusions are true: X(`∞) ⊂ X(S,R) ⊂ Xω(S, ρ) ⊂ X(c0).

As a Corollary of Theorem 3, we get:

Theorem 4. Let ρ be a convergence method on R andR its induced convergence method in X. IfR satisfies
hypothesis (h3), then Xω(S, ρ) ⊂ X(c0) is closed.

The key to the proof of Theorem 5 is to ensure that R induces a bounded linear operator; we can
guarantee this condition thanks to the hypothesis (h3).

Lemma 1. Let X be a Banach space and letR be a convergence method satisfying (h3). For each closed subspace
S, c0 ⊂ S ⊂ `∞ and x = (xk) ∈ X(S,R), the linear operator Σx : S −→ X, defined by

Σx((ak)k) = R
((

n

∑
k=1

akxk

))
,

is bounded.

Proof. Indeed, if (ak) ∈ S, then R(∑k akxk) exists, therefore the mapping Σx is well defined.
Since (xk) ∈ X(`∞), let us denote by M = ‖x‖s. For every (ak) ∈ S ⊂ `∞, we obtain:

Σx((ak)k) = R
((

n

∑
k=1

akxk

))

= R
((
‖(ak)‖∞

n

∑
k=1

1
‖(ak)‖∞

akxk

))

= ‖(ak)‖∞R
((

n

∑
k=1

1
‖(ak)‖∞

akxk

))
, (4)
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in the last equality, we have used thatR is linear. On the other hand, sinceR satisfies (h3), there exists
M > 0 such that∥∥∥∥∥R

((
n

∑
k=1

k
1

‖(ak)‖∞
akxk

))∥∥∥∥∥ ≤ M sup
n

{∥∥∥∥∥ n

∑
k=1

1
‖(ak)‖∞

akxk

∥∥∥∥∥
}
≤ M‖x‖s.

Therefore, using the last inequality in Equation (4), we get:

‖Σx((ak)k)‖ ≤ M‖x‖s‖(ak)‖∞;

that is, the linear operator Σx is bounded as we desired.

A vector subspace M of the dual X?? of a real Banach space X is called a M-Grothendieck space if
every sequence in X? which is σ(X?, X) convergent is also σ(X?, M) convergent. In particular, X is
said to be Grothendieck if it is X??-Grothendieck, that is, every weakly-? convergent sequence in the
dual space X? converges with respect to the weak topology of X?.

There are many summability methods for which satisfy (h3) in Theorem 5. For instance, of course
the usual convergence, the statistical convergence, lacunary statistical convergence, the uniform almost
convergence, any regular bounded matrix summability method, etc.

Next, we will prove the main result that, in a way, mimics some ideas that appear in [5,15]. It is
surprising how this result unifies all known results and it applies to most summability methods.

Theorem 5. Let X be a real Banach space, and letR be a summability method satisfying (h2), (h3). Let (xn)

be a sequence in X(c0). Let S be a closed subspace of `∞ containing c0 and assume that S is `∞-Grothendieck. If,
for each (ak) ∈ S the sequence yn = ∑∞

k=1 akxn
k R-converges, then (xn) converges in X(c0).

Proof. Suppose the result is false. Then, there exist δ > 0 and a subsequence {nm} such that ‖xnm −
xnm+1‖s > δ for all m ∈ N. For each k ∈ N, let us denote zm = xnm − xnm+1 , that is, zm = (zm

i )i and
zm

i = xnm
i − xnm+1

i , for every i ∈ N.
Since

ynm − ynm+1 =
∞

∑
j=1

aj(xnm
j − xnm+1

j ) =
∞

∑
j=1

ajzm
j

andR(yn) = La, for each a = (aj) ∈ S. Using the linearity ofR, we get:

0 = R
((

ynm − ynm+1

))
= R

((
∞

∑
j=1

ajzm
j

))
. (5)

On the other hand, since

0 < δ < ‖zm‖s = sup
f∈BX?

∞

∑
j=1
| f (zm

j )|,

we obtain that, for any m, there exists fm ∈ BX? such that

∞

∑
i=1
| fm(zm

i )| > δ. (6)

Let us consider the family of linear operators Σzm : S→ X, defined by

Σzm(ai) = R
((

n

∑
i=1

aizm
i

))
.
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Since the operators Σzm are bounded fm ◦ Σzm ∈ S?. Moreover, using Equation (5) and (h2),
for each (aj) ∈ S and for any f ∈ Bx? , we get

lim
n
| f ◦ Σzm((ai)i)| = lim

n

∣∣∣∣∣ f ◦ R
((

n

∑
j=1

ajzm
j

))∣∣∣∣∣ =
∣∣∣∣∣ ∞

∑
j=1

aj f (zm
j )

∣∣∣∣∣ .

Thus, for each (aj) ∈ S,

lim
m
| fm ◦ Σzm(aj)| = lim

m

∣∣∣∣∣ fm ◦ R
((

n

∑
j=1

ajzm
j

))∣∣∣∣∣
= lim

m

∣∣∣∣∣limn n

∑
j=1

aj fm(zm
j )

∣∣∣∣∣
= lim

m

∣∣∣∣∣ ∞

∑
j=1

aj fm(zm
j )

∣∣∣∣∣
= lim

m

∣∣∣∣∣ fm ◦ R
((

∞

∑
j=1

ajzm
j

))∣∣∣∣∣ = 0

Hence, fm ◦ Σzm((ai)i) is a weakly star convergent sequence in S?, which converges to 0. Since S
is `∞-Grothendieck, we obtain that for any h = (aj) ∈ `∞:

lim
m→∞

h( fm ◦ Σzm) = lim
m→∞

∞

∑
j=1

aj fm(zm
j ) = 0.

That is, the sequence ( fm(zm
i ))i is a null weakly convergent sequence in `1; therefore, the sequence

( fm(zm
i ))i is norm convergent to 0 in `1. This contradicts (6), and we obtain the desired result.

Remark 5. Let S be a subspace of `∞ containing c0. We consider the inclusion map ι : c0 → S and the
corresponding bidual map which is an isometry from c??0 = `∞ into S??. As a consequence, it is intriguing to
characterize the subspaces S which are `∞-Grothendieck. Theorem 5 is true for S = `∞, but it also continues
true for every subspace S ⊂ `∞ which are `∞-Grothendieck.

There are non-trivial subspaces of `∞, which are `∞-Grothendieck. As it was noted in [5] Remark 4.1,
Haydon constructed, using transfinite induction, a Boolean Algebra F containing the sets {{i} : i ∈ N} whose
corresponding space C(F ) can be seen as a proper subspace of `∞, contains c0 and is also Grothendieck. We refer
to the interested reader to a forthcoming paper ([17]) where we analyze the property `∞-Grothendieck and we
obtain natural examples of such subspaces of `∞.

5. Conclusions

In this section, we are going to discuss a little bit about summability methods in general.
Summability methods are a great tool that provides many applications in Applied Mathematics. In fixed
point theory for non-expansive mappings, there are, for some classes of non-expansive mappings,
iterative methods that converge to some fixed point [18,19]. A connection of these results with different
convergence methods will be interesting.

There is a strong connection between summability methods and approximation theory—for
instance, a connection with Korovkin-type approximation theorems [20,21]. It would be very interesting
to describe those properties that should exhibit a general a summability method in order to obtain
Korovkin-type approximation theorems.



Mathematics 2020, 8, 1744 10 of 11

Author Contributions: The authors contributed equally to this work. F.L.-S. and A.S. contributed mostly
in Theorems 3–5. M.d.P.R.d.l.R. contributed mostly in Section 2, Theorem 2 and was the main writer of the
original manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: The authors are supported by Ministerio de Ciencia, Innovación y Universidades under
PGC2018-101514-B-100, Junta de Andalucía FQM-257 and Vicerrectorado de Investigación de la Universidad
de Cádiz. This work has been co-financed by the 2014-2020 ERDF Operational Program and by the Department of
Economy, Knowledge, Business, and University of the Regional Government of Andalusia—project reference:
FEDER-UCA18-108415.

Acknowledgments: The first and second authors want to thank the colleagues of the Department of Mathematics,
University of Cantabria for their support during a research visit.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Boos, J. Classical and Modern Methods in Summability; Oxford Mathematical Monographs, Oxford University
Press: Oxford, UK, 2000; p. xiv+586.

2. Zeller, K.; Beekmann, W. Theorie der Limitierungsverfahren; Zweite, erweiterte und verbesserte Auflage.
Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 15; Springer: Berlin, Germany; New York,
NY, USA, 1970; p. xii+314.

3. Mursaleen, M. Applied Summability Methods; Springer Briefs in Mathematics; Springer: Cham,
Switzerland, 2014; p. x+124. doi:10.1007/978-3-319-04609-9. [CrossRef]

4. Swartz, C. Multiplier Convergent Series; World Scientific Publishing Co. Pte. Ltd.: Hackensack,
NJ, USA, 2009; p. x+253.

5. Aizpuru, A.; Armario, R.; García-Pacheco, F.J.; Pérez-Fernández, F.J. Banach limits and uniform almost
summability. J. Math. Anal. Appl. 2011, 379, 82–90. doi:10.1016/j.jmaa.2010.12.034. [CrossRef]

6. Aizpuru, A.; Gutiérrez-Dávila, A.; Sala, A. Unconditionally Cauchy series and Cesàro summability. J. Math.
Anal. Appl. 2006, 324, 39–48. doi:10.1016/j.jmaa.2005.11.071. [CrossRef]

7. Aizpuru, A.; Pérez-Fernández, J. Spaces of S-bounded multiplier convergent series. Acta Math. Hung. 2000,
87, 135–146. doi:10.1023/A:1006781218759. [CrossRef]

8. Aizpuru, A.; Gutiérrez-Dávila, A. Summing Boolean algebras. Acta Math. Sin. (Engl. Ser.) 2004, 20, 949–960.
doi:10.1007/s10114-003-0306-y. [CrossRef]

9. León-Saavedra, F.; Moreno-Pulido, S.; Sala-Pérez, A. Completeness of a normed space via strong p-Cesàro
summability. Filomat 2019, 33, 3013–3022. [CrossRef]

10. León-Saavedra, F.; Romero de la Rosa, M.; Sala, A. Orlicz–Pettis theorem through summability methods.
Mathematics 2019, 7, 895. doi:10.3390/math7100895. [CrossRef]

11. León-Saavedra, F.; Pérez-Fernández, F.; Romero de la Rosa, M.; Sala, A. Ideal convergence and completeness
of a normed space. Mathematics 2019, 7, 897. doi:10.3390/math7100897. [CrossRef]

12. Dunford, N.; Schwartz, J.T. Linear Operators. Part I; Wiley Classics Library, John Wiley & Sons, Inc.: New York,
NY, USA, 1988; p. xiv+858.

13. Antosik, P.; Swartz, C. Matrix methods in analysis. In Lecture Notes in Mathematics; Springer:
Berlin, Germany, 1985; Volume 1113, p. iv+114. doi:10.1007/BFb0072264. [CrossRef]

14. Swartz, C. The Schur lemma for bounded multiplier convergent series. Math. Ann. 1983, 263, 283–288.
doi:10.1007/BF01457131. [CrossRef]

15. Aizpuru, A.; García-Pacheco, F.J.; Pérez-Eslava, C. Matrix summability and uniform convergence of series.
Proc. Am. Math. Soc. 2007, 135, 3571–3579. doi:10.1090/S0002-9939-07-08882-X. [CrossRef]

16. Moreno-Pulido, S.; Barbieri, G.; León-Saavedra, F.; Pérez-Fernández, F.; Sala-Pérez, A. Characterizations of
a banach space through the strong lacunary and the lacunary statistical summabilities. Mathematics 2020,
8, 1066. doi:10.3390/MATH8071066. [CrossRef]

17. González, M.; León-Saavedra, F.; Romero-de la Rosa, M.d.P. On `∞-Grothendieck subpaces. Preprint
2020, 1–6. doi:10.1016/j.jmaa.2003.08.004. [CrossRef]

18. Popescu, O.; Stan, G. Some Remarks on Reich and Chatterjea Type Nonexpansive Mappings. Mathematics
2020, 8, 1270. doi:10.3390/math8081270. [CrossRef]

19. Reich, S.; Zaslavski, A.J. On a Class of Generalized Nonexpansive Mappings. Mathematics 2020, 8, 85.
doi:10.3390/math8071085. [CrossRef]

https://doi.org/10.1007/978-3-319-04609-9
http://dx.doi.org/10.1007/978-3-319-04609-9
https://doi.org/10.1016/j.jmaa.2010.12.034
http://dx.doi.org/10.1016/j.jmaa.2010.12.034
https://doi.org/10.1016/j.jmaa.2005.11.071
http://dx.doi.org/10.1016/j.jmaa.2005.11.071
https://doi.org/10.1023/A:1006781218759
http://dx.doi.org/10.1023/A:1006781218759
https://doi.org/10.1007/s10114-003-0306-y
http://dx.doi.org/10.1007/s10114-003-0306-y
http://dx.doi.org/10.2298/FIL1910013L
https://doi.org/10.3390/math7100895
http://dx.doi.org/10.3390/math7100895
https://doi.org/10.3390/math7100897
http://dx.doi.org/10.3390/math7100897
https://doi.org/10.1007/BFb0072264
http://dx.doi.org/10.1007/BFb0072264
https://doi.org/10.1007/BF01457131
http://dx.doi.org/10.1007/BF01457131
https://doi.org/10.1090/S0002-9939-07-08882-X
http://dx.doi.org/10.1090/S0002-9939-07-08882-X
https://doi.org/10.3390/MATH8071066
http://dx.doi.org/10.3390/math8071066
https://doi.org/10.1016/j.jmaa.2003.08.004
http://dx.doi.org/10.1016/j.jmaa.2003.08.004
https://doi.org/10.3390/math8081270
http://dx.doi.org/10.3390/math8081270
https://doi.org/10.3390/math8071085
http://dx.doi.org/10.3390/math8071085


Mathematics 2020, 8, 1744 11 of 11

20. Srivastava, H.M.; Jena, B.B.; Paikray, S.K. Statistical Deferred Nörlund Summability and Korovkin-Type
Approximation Theorem. Mathematics 2020, 8, 636. doi:10.3390/math8040636. [CrossRef]

21. Srivastava, H.M.; Jena, B.B.; Paikray, S.K.; Misra, U. Statistically and Relatively Modular
Deferred-Weighted Summability and Korovkin-Type Approximation Theorems. Symmetry 2019, 11, 448.
doi:10.3390/sym11040448. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.3390/math8040636
http://dx.doi.org/10.3390/math8040636
https://doi.org/10.3390/sym11040448
http://dx.doi.org/10.3390/sym11040448
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Some Preliminary Results
	Completeness of a Normed Space through Summability Methods
	Schur Lemma through Summability Methods
	Conclusions
	References

