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Abstract: For many nonlinear systems in our life, the chaos phenomenon generated under certain
conditions in special cases will split the system and result in a crash-down of the system. This
paper discusses the stable control of one class of chaotic systems and a control method based on
the accurate exponential solution of a differential equation is used. Compared with other methods,
the advantages are: this method determines that the system can exponentially converge at the origin
and the convergence rate can be easily regulated. The chaotic system with unknown parameters is
also deduced and validated by using this method. In practical application, it is found that the ship’s
electric system also has the same model, so it has certain practical significance.

Keywords: chaos control; accurate exponential solution of a differential equation; global exponential
stability; convergence speed regulation; parameter identification

1. Introduction

A chaos system is a special kind of nonlinear system, and chaos will occur in many aspects [1].
The chaos phenomenon is generally caused by disturbances and the system parameters satisfying
certain conditions. Thus, to improve the operation reliability of the system, sometimes this chaos
phenomenon should be avoided [2]. Discussions on the relation between the chaos and bifurcation
phenomenon and the nonlinear oscillation of the system are very popular [3]. Most scholars study how
to ensure stable operation of the system. This research is also of significance for the abovementioned
chaos control of one class of system in practice.

Now, plentiful methods have been proposed for chaos control, including adaptive control [4],
sliding mode control [5,6], fuzzy control [7], the backstepping method [8], PID control [9], optimal
control [10], linear feedback control [11], neural network intelligent control [12], and pulse control [13].
Most of the implemented methods are based on the Lyapunov method. Firstly, a proper Lyapunov
function is designed. Secondly, if the computed derivative is negative, then the system is asymptotically
stable as a whole [14]; however, this method cannot determine whether the system is exponentially
stable as a whole and the convergence speed cannot be simply and easily adjusted.

This paper proposes a control method called the accurate exponential solution method of the
differential equation. This method is used to control one class of system, quickly controls the chaos
phenomenon, and makes the system stable. Compared to the Lyapunov method, this method can
determine if the system is exponentially stable as a whole and easily adjust convergence speed. Based
on this method, the system proposed in this paper is deduced, validated, and simulated using some
algorithms. The results show the effectiveness of this method and the feasibility of the controller.

Mathematics 2020, 8, 1740; doi:10.3390/math8101740 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0003-3187-9129
http://dx.doi.org/10.3390/math8101740
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/10/1740?type=check_update&version=3


Mathematics 2020, 8, 1740 2 of 13

The designed parameters of some nonlinear systems are diversified and the complicated application
environment results in parameter fluctuation and uncertainty. Thus, it is necessary to control the
chaotic system with unknown parameters [15]. This paper also gives an unknown parameter control
process based on the above method, which not only makes the system’s global exponent stable at the
origin but also identifies unknown parameters according to the adaptation law of unknown parameters.
For the ship’s electric chaotic system, rolling chaotic system, course keeping chaotic system, and so on,
which have similar system models to the model mentioned in this paper under certain conditions, this
is significant in application.

The main contents of this paper are structured as follows. Part 1 describes one class of chaotic
system and analyzes its chaos. Part 2 describes controlling the class of chaotic system with the known
parameters by using the accurate exponential solution method of the differential equation, describes
the strengths of this method, and simulates and validates it. Part 3 describes controlling the class
of chaotic system with unknown parameters by using the accurate exponential solution method of
the differential equation, gives the identification method of unknown parameters, and simulates and
validates the method. In Part 4, the similarity between the ship’s electric system model and this class
of model is expounded. Finally, Part 5 gives some conclusions.

2. Analysis of One Class of Chaos Phenomenon

2.1. Introduction to System Model

In this paper, we first analyze one class of nonlinear system and prove that it is a chaotic system
under certain conditions. The model is as follows:{ .

x1 = x2
.

x2 = a− bx2 − sin x1 + α cosγt sin x1
(1)

where x1 and x2 are the state variables, a, b are the system parameters, α cosγt sin x1 is the system
disturbance term, α is the disturbance amplitude, and γ is the disturbance frequency.

2.2. Simulation Analysis

The following shows that the system is chaotic under certain conditions, which
is simulated by using MATLAB. The initial values and parameters are taken as
x1(0) = 1, x2(0) = 2, a = 0.2, b = 0.4,γ = 0.8 [16], and step = 0.01 s. The bifurcation diagram of
the disturbance amplitude α when the disturbance frequency does not change is shown in Figure 1.
The chaos phenomenon occurs in the system in cases where α > 1.25. The above initial values and
parameters are still taken and α = 1.29 is used in the simulation to obtain Figures 2 and 3, which show
the time response diagrams of the state variables x1 and x2. As shown, the system is under an irregular
operation state at this time. The phase diagram in Figure 4 shows visible chaos status. The above
information fully indicates that the system is under a chaotic status at this time.
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This affects the operation reliability of the system and should be controlled. The following sections
propose specific methods and strengths to control this chaos phenomenon.

3. The Application of Accurate Exponential Solution of a Differential Equation in Stability
Control of One Class of Chaotic System with Known Parameters

This section describes an accurate exponential solution method of the differential equation, which
can stably control one class of chaotic system with known parameters, make the global exponent of the
system stable at the origin, and make it so that the convergence rate is easily adjusted. This method
can eliminate the influences of the chaos phenomenon on the system.
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3.1. Methods Proposed

Firstly, the disturbance term α cosγt sin x1 of the system is removed from System (1) to obtain
System (2). We control System (2) firstly.{ .

x1 = x2
.

x2 = a− bx2 − sin x1
(2)

To control System (2), the controller u is added as follows:{ .
x1 = x2
.

x2 = a− bx2 − sin x1 + u = f (x) + u
(3)

Before the system is controlled, one definition is given below. Definition 1 is a common
sense definition.

Definition 1. If ρ > 0 and λ < 0 exist and |xi| ≤ ρeλt, t ≥ 0, i = 1, 2 is satisfied, then System (3) remains
stable at the origin for any initial global exponent.

Theorem 1 is given according to the accurate exponential solution method of the
differential equation.

Theorem 1. For the differential equation expressed by System (3), if the controller is

u = λ1
2A1 + λ2

2A2 − f (x) (4)

The global exponent of System (3) remains stable at the origin, where λi < 0, i = 1, 2 and λ1 , λ2,λi
are the eigenvalues of the closed loop system given by Equations (3) and (4).

A1 =
1

λ2 − λ1
(x1λ2 − x2) (5)

A2 =
1

λ2 − λ1
(x2 − λ1x1) (6)

Proof 1. To let System (3) make the global exponent stable at the origin, the solution of System (3) is
assumed to be

x1 = a1eλ1t + a2eλ2t (7)

where a1 and a2 are the constants related to the initial values. limt→∞x1 = 0 because λ1 < 0 and λ2 < 0.
Since

.
x1 = x2, thus

x2 = a1λ1eλ1t + a2λ2eλ2t (8)

and limt→∞x2 = 0 is evident.

u =
.

x2 − f (x) = a1λ1
2eλ1t + a2λ2

2eλ2t
− f (x) (9)

is obtained from System (3)
Based on the above description, if the controller u exists in the form of Equation (9), then System

(3) has the following solution: {
x1 = a1eλ1t + a2eλ2t

x2 = a1λ1eλ1t + a2λ2eλ2t (10)

The solution of System (3) is unique, Equation (10) is the solution of System (3), and limt→∞x1 = 0
and limt→∞x2 = 0; thus, the global exponent of System (3) remains stable at the origin.



Mathematics 2020, 8, 1740 5 of 13

u is expressed as x1 and x2 in the following section. With Cramer’s Rule [17], the following results
are obtained from Equation (10):

a1eλ1t = k

∣∣∣∣∣∣ x1

x2

1
λ2

∣∣∣∣∣∣ = 1
λ2 − λ1

(x1λ2 − x2) (11)

a2eλ2t = k

∣∣∣∣∣∣ 1
λ1

x1

x2

∣∣∣∣∣∣ = 1
λ2 − λ1

(x2 − λ1x1) (12)

and

k =

∣∣∣∣∣∣ 1
λ1

1
λ2

∣∣∣∣∣∣−1

=
1

λ2 − λ1
(13)

where the following results are found: a1eλ1t = A1 and a2eλ2t = A2. They are substituted into
Equation (9), and the following equation is obtained:

u = λ1
2A1 + λ2

2A2 − f (x), (14)

which is the same as Equation (4).
Take λ = max{λ1,λ2} and let |xi| ≤ ρeλt, t ≥ 0, i = 1, 2 under the condition ρ > 0. According to

Definition 1, the global exponent of System (3) remains stable at the origin and the convergence speed
is related to λ. The bigger the absolute value of λ is, the quicker the system’s convergence speed is.
This cannot be embodied by a general control method and is one of the issues described in this paper
along with the strength of this control algorithm. Theorem 1 is proved. �

3.2. Simulation Result

System (3) is simulated and validated according to Theorem 1. The initial values and parameters
are defined as follows: x1(0) = 1, x2(0) = 2, a = 0.2, b = 0.4 λ1 = −1,λ2 = −2, and the step is 0.01 s.
Figure 5 is the time response diagrams of the state variables x1 and x2 before disturbance is added to the
system. The figure shows that the system remains stable at the origin at this time and the convergence
time is about 8 s. If λ1 = −2,λ2 = −3, the simulation figure changed to Figure 6, the convergence time
is 5 s. It can be seen that the convergence time can be controlled by parameters λ1 and λ2. The absolute
value is bigger and the convergence time is smaller. From the phase diagram Figure 7, it is evident that
the chaos phenomenon disappears and the system quickly remains stable at the origin. The above
analysis indicates that the system without disturbance is globally exponentially stable at the origin.Mathematics 2020, 8, x FOR PEER REVIEW 6 of 14 
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In fact, the disturbance α cosγt sin x1 has been removed in System (3), and now we added it to
the system as follows: 

.
x1 = x2
.

x2 = a− bx2 − sin x1 + α cosγt sin x1 + u
= f (x) + α cosγt sin x1 + u

(15)

System (15) is simulated and validated according to above method. The initial values and
parameters are defined as follows: x1(0) = 1, x2(0) = 2, a = 0.2, b = 0.4,γ = 0.8, α = 1.29,
λ1 = −1,λ2 = −2 and the step is 0.01 s. Figure 8 is the time response diagrams of the state variables x1

and x2 after disturbance is added to the system. The figure shows that the system still remains stable at
the origin at this time and the convergence time is about 9 s. Compared with Figure 5, the convergence
time is 1 s more, the convergence trajectory is almost same, and the error can be accepted by one. From
the phase diagram Figure 9, it is evident that the system still remains stable at the origin. The above
analysis indicates that the system with disturbance is globally exponentially stable at the origin, and it
has good robustness.
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Remark 1. The above controller depends greatly on x1 and different x1have different controllersu.

Remark 2. The Lyapunov function can be used to prove Theorem 1. The Lyapunov function is taken as follows:

V =

∣∣∣∣∣∣ x1

x2

1
λ2

∣∣∣∣∣∣2 +
∣∣∣∣∣∣ 1
λ1

x1

x2

∣∣∣∣∣∣2 ≥ 0, after Equations (11), (12), and (13) are substituted, the

following can be obtained: V =
(

a1eλ1t

k

)2
+

(
a2eλ2t

k

)2
.

Then,

.
V = 2

(
a1eλ1t

k

)(
a1λ1eλ1t

k

)
+ 2

(
a2eλ2t

k

)(
a2λ2eλ2t

k

)
= 2λ1

(
a1eλ1t

k

)2

+ 2λ2

(
a2eλ2t

k

)2

≤ 0

From the Lyapunov stability theorem, we can know that System (3) remains globally stable at the
origin. However, it is unknown whether the system converges at the origin exponentially in this case
and whether the convergence rate is easy to adjust.

Remark 3. Many papers provide a control or synchronization method for the chaotic system, and the section
above also proposed some control methods, but some common methods, such as a nonlinear method [18],
an intermittent control method [19], and a state feedback control method [20], do not indicate whether the system
converges at the origin exponentially and no method is given to adjust the convergence rate. However, the method
in this paper gives conclusions.

4. The Application of Accurate Exponential Solution of a Differential Equation in Stability
Control of One Class of Chaotic System with Unknown Parameters

Most research on chaos control is for known parameters, but some system parameters are generally
designed based on complicated factors in the actual design and the system parameters vary in the
actual system operation. Thus, control over the chaos system with unknown parameters is significant
in practice. An accurate exponential solution control method of the differential equation is proposed
for the chaos phenomenon with unknown parameters in the following section.

4.1. Methods Proposed

When unknown parameters exist in System (1), the form is as follows:{ .
x1 = x2
.

x2 = a− bx2 − sin x1 + α cosγt sin x1
(16)

where a and b indicate unknown parameters in the system.



Mathematics 2020, 8, 1740 8 of 13

Firstly, the system disturbance term α cosγt sin x1 is removed from System (16) to obtain System
(17). We control System (17) firstly. { .

x1 = x2
.

x2 = a− bx2 − sin x1
(17)

Theorem 2. After the controller u is added into System (17), the form is changed as follows:
.

x1 = x2
.

x2 = a− bx2 − sin x1 + u
= ag(x) + bh(x) + i(x) + u

(18)

where 
g(x) = 1
h(x) = −x2

i(x) = − sin x1

(19)

for the differential equation in System (18), we use the controller:

u = −i(x) +
.

u0 − (x2 − u0) − (âg(x) + b̂h(x)) (20)

u0 = λ1x1 (21)

and 
.
â = (x2 − u0)g(x)
.
b̂ = (x2 − u0)h(x)

(22)

where â and b̂ are the estimated values of a and b. At this time, System (18) remained globally stable at the origin.

Proof 2. From System (18), one could obtain

.
x2 −

.
u0 = ag(x) + bh(x) + i(x) + u−

.
u0 (23)

Substituting Equation (20) to Equation (23) obtains

.
x2 −

.
u0 = −(x2 − u0) + (a− â)g(x) + (b− b̂)h(x) (24)

Take the Lyapunov function as

V =
1
2
(x2 − u0)

2 +
1
2
(a− â)2 +

1
2
(b− b̂)

2
≥ 0 (25)

and then,
.

V = (x2 − u0)(
.

x2 −
.

u0) − (a− â)
.
â− (b− b̂)

.
b̂ (26)

Substituting Equations (22) and (24) to Equation (26) obtains

.
V = (x2 − u0)(−(x2 − u0) + (a− â)g(x) + (b− b̂)h(x)) − (a− â)(x2 − u0)g(x) − (b− b̂)(x2 − u0)h(x)
= (x2 − u0)(−(x2 − u0))

= −(x2 − u0)
2
≤ 0

System (18) remains globally stable at the origin according to the Lyapunov stability theorem.
Theorem 2 is proved. �
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4.2. Simulation Result

System (18) is simulated and validated according to Theorem 2 in the following part. The initial
values and parameters are defined as follows:

x1(0) = 1, x2(0) = 2, â(0) = 0.2, b̂(0) = 0.3, λ1 = −1, and the step is 0.01 s. Figure 10 is the time
response diagrams of the state variables x1 and x2 before disturbance is added to the system with
unknown parameters. The figure shows that the system remains stable at the origin at this time and
the convergence time is about 10 s. If λ1 = −2, the simulation figure changed to Figure 11 and the
convergence time is 8 s. It can be seen that the convergence time can be controlled by parameters λ1.
The absolute value is bigger and the convergence time is smaller. From phase diagram Figure 12, it is
evident that the chaos phenomenon disappears and the system quickly remains stable at the origin.
Figure 13 is the time response diagram of the two unknown parameters. The figure shows that two
unknown parameters could quickly converge to the boundary values within 5 s.Mathematics 2020, 8, x FOR PEER REVIEW 10 of 14 
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The above information fully indicates that the system is free of the chaotic state and the global
exponent remains stable at the origin. The unknown parameters identified the boundary values under
the adaptation law. This indicates that the system is under control and the related unknown parameters
are identified, which is significant in practice.

In fact, the disturbance α cosγt sin x1 has been removed in System (17), and now, we add it to the
system as follows: 

.
x1 = x2
.

x2 = a− bx2 − sin x1 + α cosγt sin x1 + u
= ag(x) + bh(x) + i(x) + α cosγt sin x1 + u

(27)

where a and b indicate unknown parameters in the system.
System (27) is simulated and validated according to above method. The initial values and

parameters are defined as follows: x1(0) = 1, x2(0) = 2, a = 0.2, b = 0.4,γ = 0.8, α = 1.29, λ1 = −1,
and the step is 0.01 s. Figure 14 is the time response diagrams of the state variables x1 and x2 after
disturbance is added to the system with unknown parameters. The figure shows that the system
still remains stable at the origin at this time and the convergence time is about 13 s. Compared with
Figure 10, the convergence time is 3 s more and the convergence trajectory and the error can be accepted
by one. From the phase diagram Figure 15, it is evident that the system still remained stable at the
origin. Figure 16 is the time response diagram of the two unknown parameters. The figure shows that
two unknown parameters could quickly converge to the boundary values within 8 s.
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The above analysis indicates that the chaotic system with disturbance and unknown parameters is
globally exponentially stable at the origin, the unknown parameters can be identified, the convergence
rate can be adjusted by parameter λ1, and it has good robustness.

5. The Application of Ship’s Electric Chaotic System

The following is a brief introduction to the application of the model mentioned above, taking the
ship’s electric chaotic system as an example.

The ship’s electric system is an enclosed system in most cases and has no association with the
outside world. Two machines are connected in parallel, which is the foundation of multi-machine
complicated systems. The multi-machine system analysis can be extended from the two-machine
system and plentiful complicated systems can be discussed as equivalent two-machine systems. Thus,
chaos control of the two-machine system has universal meaning [21]. When electronic disturbances
exist, assuming that a machine is an infinite bus system, the basic model is as follows:{ dδ

dt = ω
H dω

dt = Pm −Dω− Pe sin δ− Pe∆p cos βt sin δ
(28)

where δ is the operating angle of the generator rotor, ω is the operating angular velocity of the motor
rotor, Pm is the input mechanical power, Pe is the output electric power, D is the damped coefficient,
H is the moment of inertia, ∆p is the amplitude of electromagnetic power disturbance, and β is the
disturbance frequency of the electromagnetic power [16].

Let 
τ = t

√
Pe
H

x(τ) = δ(t)

y(τ) =
√

H
Pe

w(t)
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and then,  dx
dτ = y
dy
dτ = − sin x− by + a + α cosγt sin x

where b = D
√

H
Pe

, a = Pm
Pe

,α = ∆p,γ = β
√

H
Pe

, let x = x1 and y = x2, and then,

{ .
x1 = x2
.

x2 = a− bx2 − sin x1 + α cosγt sin x1
(29)

It can be seen that Formula (29) is the same as Formula (1), so the method mentioned in this
paper can be applied to a ship’s electric chaos control and can be further studied.

6. Conclusions

In this paper, an accurate exponential solution method of the differential equation is used to study
the exponential stabilization of one class of chaotic system; control the chaos phenomenon under
certain conditions; avoid harming systems, such as splitting and crash-down; and guarantee reliable
operation. The method used in this paper has the following strengths: the solution can be designed to
exponentially converge to the origin and the convergence rate can be easily adjusted, namely, several
known parameters can be adjusted and set with proper values in advance for quick convergence. The
simulation data show that the chaos phenomenon of the controlled chaotic system disappears and the
system quickly converges to the origin in an exponential manner. Based on this, the chaotic system
with unknown parameters is stably controlled, unknown parameters are identified, and the system
could quickly converge to the boundary values under control of the adaptation law. The above analysis
fully proves that the proposed control method is effective. It is found that the ship’s electric system has
the same model, which has more practical significance.
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