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Abstract: The theory of complex spherical fuzzy sets (CSFSs) is a mixture of two theories,
i.e., complex fuzzy sets (CFSs) and spherical fuzzy sets (SFSs), to cope with uncertain and unreliable
information in realistic decision-making situations. CSFSs contain three grades in the form of polar
coordinates, e.g., truth, abstinence, and falsity, belonging to a unit disc in a complex plane, with a
condition that the sum of squares of the real part of the truth, abstinence, and falsity grades is not
exceeded by a unit interval. In this paper, we first consider some properties and their operational
laws of CSFSs. Additionally, based on CSFSs, the complex spherical fuzzy Bonferroni mean
(CSFBM) and complex spherical fuzzy weighted Bonferroni mean (CSFWBM) operators are
proposed. The special cases of the proposed operators are also discussed. A multi-attribute decision
making (MADM) problem was chosen to be resolved based on the proposed CSFBM and CSFWBM
operators. We then propose the Technique for Order Preference by Similarity to an Ideal Solution
(TOPSIS) method based on CSESs (CSFS-TOPSIS). An application example is given to delineate the
proposed methods and a close examination is undertaken. The advantages and comparative
analysis of the proposed approaches are also presented.

Keywords: fuzzy sets; complex spherical fuzzy sets; Bonferroni mean operators; TOPSIS method

1. Introduction

Multi-attribute decision making (MADM) issues are inescapable in the field of decision making.
In numerous functional applications, MADM plays a significant role in the procedure of decision
making. Many existing strategies tell us that the best way to pick the most appropriate elective
depends on the decision makers’ (DMs) assessment data. Due to the progressively intricate outer
decision-making condition and the abstract vulnerability of DMs themselves, it is hard for DMs to
clarify their genuine inclination data plainly. In this manner, Zadeh [1] characterized the idea of fuzzy
sets (FSs) to clarify the imprecision and the doubt occurring during the assessment procedure. Until
now, FSs have been examined and applied to different fields by a large number of scientists [2—4].
Later, numerous researchers have concentrated on the most proficient method to characterize the
appraisal inclinations communicated by DMs more extensively and precisely. Numerous categories
of FSs have been proposed to adjust to different application conditions, for example, intuitionistic FSs
(IFSs) explored by Atanassov [5] contain supporting and non-supporting grades with a rule that the
sum of both cannot be exceeded from a unit interval.

However, the condition of an IFS for a decision maker is somehow too restrictive for choosing
the sum of supporting and non-supporting grades that is not exceeded from a unit interval. To resolve
such issues, the theory of Pythagorean fuzzy sets (PFSs) was explored by Yager [6], with a condition
that the sum of the squares of both cannot be exceeded from a unit interval. IFSs and PFSs have had
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various applications [7-12]. Later, the theory of picture fuzzy sets (PiFSs) was presented by Cuong
and Kreinovich [13]. PiFSs are composed of the grades of truth, abstinence, and falsity with a
condition that the sum of all grades cannot be exceeded from a unit interval. Similarly, the condition
of PiFSs for a decision maker is also too restrictive for choosing the sum of truth, abstinence, and
falsity grades that is not exceeded from a unit interval. Thus, the theory of spherical fuzzy set (SES),
proposed by Mahmood et al. [14], with a condition that the sum of squares of all grades cannot be
exceeded from a unit interval, was used to resolve these issues. By extending squares with g-powers,
T-spherical fuzzy sets (TSFSs) were established by Ullah et al. [15], in which the sum of g-powers of
positive, abstinence, and negative grades belong to [0, 1] with various applications in different fields
[16-20].

From the above studies of decision maker processes, we can conclude that their introduction is
constrained and can deal with only with vulnerability in information, yet at the same time neglects
to manage changes at a given period of time. Be that as it may, data obtained, such as from a clinical
examination, or a database for biometric and facial acknowledgment, consistently changes
simultaneously with time. Along these lines, to manage such sorts of issue, the scope of a supporting
grade is arrived at from a genuine subset to the unit plate of the mind boggling plane and thus Ramot
et al. [21] established the complex FS (CFS) which has had many applications [22-24]. Additionally,
the theory of complex IFSs (CIFSs) was presented by Alkouri and Salleh [25] to provide a wide range
of options to a decision maker for taking a decision. CIFSs compose the supporting grade and the
non-supporting grade in the form of a complex number belonging to a unit disc in a complex plane.
The limitations of CIFSs is that the sum of the real part (and the imaginary part) of both grades cannot
be exceeded from a unit interval. However, a decision maker may give the grades of both real and
imaginary parts whose sum is exceeded from a unit interval. The theory of complex PFSs (CPFSs),
with a condition in which the sum of squares of the grades of both real and imaginary parts cannot
be exceeded from a unit interval, was proposed by Ullah et al. [26] for coping with this kind of issue.
The theory of CIFS and CPFS have received lots of attention with applications in different fields
[27-30].

When a decision maker faces more types of answer, such as truly, abstinence, no, or refusal in
the form of complex numbers, casting a ballot can be a genuine case in such a circumstance, as voters
might be separated into four categories of individuals, i.e., vote in favor of, abstinence, vote against,
or refusal of the democratic process, in the form of polar coordinates. For instance,
with (0.7e12770¢, 0.4e127050.1¢i27101)  the IFS, PFS, PFS, CIFS, or CPFS are not able to investigate,
because the conditions of all these notions are limited. For coping with such issues, the theory of
complex spherical fuzzy sets (CSFSs) is explored in this paper to examine proficiency and ability.
Thus, we summarize the contributions of the paper as follows:

1. To investigate the novelty of CSFS and their fundamental laws.
To investigate the Bonferroni mean (BM) operators based on CSFS and discuss their special
cases.

3. To examine the TOPSIS method based on CSFS and propose a novel CSFS-TOPSIS method.

To resolve the MADM issues based on the proposed aggregation operators.

5. To give an application example of the proposed methods with comparative analysis and
demonstrate the usefulness and effectiveness of the proposed methods.

=

The remainder of the paper is organized as follows. In Section 2, we first review some basic
definitions of CPFSs and BM operators, and then their score and accuracy function. We further
consider their operational laws with some properties. In Section 3, based on CSFS and BM operators,
the complex spherical fuzzy Bonferroni mean (CSFBM) and complex spherical fuzzy weighted
Bonferroni mean (CSFWBM) operators are proposed. The special cases of the explored operators are
also discussed to improve the novelty of the presented work. In Section 4, a MADM problem is chosen
to be resolved based on the CSFBM operator and CSFWBM operator. Additionally, the TOPSIS
method based on CSEFS is also explored to construct a CSFS-TOPSIS method. An application example
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is given to demonstrate the effectiveness of the proposed methods with comparative analysis. Finally,
we give conclusions in Section 5.

2. Preliminary Definitions with Some Properties

In this section, we review some existing notions, such as CPFSs, CSFSs and Bonferroni mean
(BM) operators. Throughout the whole paper, we use Uyppsersai to represent the universal set.

Definition 1 ([26]). A CPFS is defined as:
Cepr = {(u' TICCPF(’M'):T’CCPF(’“’)) u € UUniversal} 1)

where T o, =T CRPeiznanP and Feo,. = .‘FCRPeiznﬂ"FC‘IP expresses the grade of supporting and supporting
against with the conditions: 0 < TCRPZ(’LL) + .‘FCRPZ(/M,) <1land0 < .QTCIPZ(’LL) + .Q,.—CIPZ(/M,) < 1. Further,

. 1 i2n<1— Q7. 2(wW)+2g,. *(w) )2
the symbol He, (1) = uCRPelzm"CIP = (1 - (TCRPZ(u) + TCRPZ(u)))Z e ( cip € > is called

. , , 2110 2110 .
the hesitancy grade. In general, €cpp = (T pp Feppp) = (:TCRPeLZI7 TCIP,:FCRPelZH Tc,,,) is used to

represent the complex Pythagorean fuzzy number (CPFN).

Definition 2 ([26]). For any CPFS €cpp with its CPEFN €CpF=(T’€CPF,.‘F’€CPF)=

(TCRPeiZImT €Ip, TCRPeiZImT €ip ), the score function Ssp and accuracy function Hup are defined as:
L i 2 2 2
Sse(€cpr) = 2 (TCRP - *TCRP) + (QTc,P - 'QTC,P) @)
L i 2 2 2
Hpp(€cpr) = 2 (TCRP + *TCRP) + (QTc,P + 'QTC,P) ®)

where Sgp(€cpr), Hap(€cpr) € [—1,1].

Thus, the comparisons between two CPFNs €.pr_; and €pr_, can be defined as:

1. If Ssp(€cpr-1) > Ssp(€cpr-2), then €cpp_y > Ceppy;
If Ssr(€cpr-1) = Ssr(€cpr-2), then
1) If Hpp(€cpr-1) > Hpp(€cpr_z), then €cpp_y > Cepp_y;
2) If Hyp(€cpp-1) = Hap(€cpp2), then €cpp_y = €cpp_s.

Furthermore, we can give some important operators on CPFNs, which are considered as follows.
For any two CPFNs €pr_; and €pp_, with sz, we have
c_ 121105, 2M9s, .
1. €cpro1 = (TCRP_le ‘-1, Te,, € €"P—1),
2. €cpp-1VE€cpp-2 = ( ) ( )
i2I1. max( Qg A7 . i211.min( Qg LR .
(max(TCRp_l, TCRP—Z)' e p—1" " Crp—2 ,mm(fCRP_l,TCRP_Z). e 1p-1" TCp2) |,

3. €cpr-1 N€cprz =

i21'1.min(ﬂT€IF_1,ﬂT€’P_2)

(¢]

(min(TCRP_l, TCRP—Z)' e , max(TCRP_l, TCRP_Z ) iz"'max(nﬁm—l‘n’ﬁp-z)),—

Nl

i21.(Qg, Qr
4. €cppo1 B €cpr—z = ( €1p-1 C”"z) ;

1 -Q; ; -
R €1p-1 €ip-2
2 2 _\2z 120, 2 2
Tenps ¥ Tege, e Berpy Merp_,y (Fe,o . Fe,, ) e
: '\ €rp1¥ €rp—2J°

2 2
TCRP—lTCRP—z

1

2 2 1oon ﬂ§E€1P—1 %CIP—Z_ ’

. —\2 " 2 2

i2m.(Qr. Q. Ferpy T Fépe_ G 0%

5. €cpro1 Q€cpr_y = (‘TCRP—1‘TCRP—2)' e ( Teipoq T(~1P—2),< ;:Pz ! 72 RP=2 e €ip-1" TCRP-2
€rp-1" €Rp—2
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1
2

1 SCSF SCSF
scsr\z i2M.(1-(1-QF . s, 12179
6. spr€cproq1 = ((1 - (1 - TéRP_l) )Ze ( ( Tc,,,_l) ) I Ferp_a

Crp-1©

1
SCSF 2
s, i21.Q;C5F scsF\z 21l -03
7. €cpp_1FF = (TCC::_le Terpoq (1 — (1 ‘TCRP 1) ) e ( Ferp 1

Definition 3 ([31]). For any collection {V;,j = 1,2,3,..,m} of values with 0 < V; < 1, and 0 < p, q, the BM

operator is defined as:

1
p+q

m
1
) — P4 4
BMPA(V,,Vy, .., V) = oy Z VPV 4)
Jk=1
j*k

We next give the definition of CSFSs and their operational laws. Ali et al. [32] recently proposed
complex T-spherical fuzzy sets (CTSFSs). In fact, a CSFS is a special case of a CTSFS with g =2. The
definition of a CSFS is given as follows.

Definition 4 ([32]). A CSFS is defined as:

Cesr = {(’”" TICCSF(’”')' eéicgp(u)':ré?cgp(u)) u € UUniversal} )
where T, g, = TCRPelzmTCIP,B’CCSF = BCRPeLZImBQP and Fe, ., = TCRPelznﬂTCIP expresses the grade of
supporting, abstinence, and supporting against with the conditions: 0 < T¢p,*(u) + 0z, (u) +

2 2 2 2 _
Fepp W) <1 and 0< 'QTCIP (uw) + 'Q"Czp (w) + Qg,°(uw) <1 . Further, the symbol HCCSFl(u) =

2

210 3 i217<1—<ﬂTC 2(w) +02g,. Z(u)mf,,,z(u))) .
e, e e = (1 (T2 () + 02, () +}'€RP2(/LL))) e P i is
called the hesitancy grade. Thus, Cesr = (Topgp O Fepsy) =

(TCRP e2M7cp g CRPeizn-QGCIP, Fep PeiZImTCIP) represents the complex spherical fuzzy number (CSFN).

Definition 5. For any CSFS €gp with its CSEN €csp = (T Ot s Fepsy) =

(TCRP e?1%7¢,, g Can® o2M%0¢, Feppl e cpp ), the score function Ssp and accuracy function Hyp is defined as:
1
— 2 2 2 2 2 2
SSF(CCSF) - g ((TCRP - OCRP - :FCRP) + (QTCIP - QGCIP - HTCIP)) (6)
1
— 2 2 2 2 2 2
HAF(CCSF) - g ((TCRP + GCRP + :FCRP) + (QTCIP + QGCIP + HTCIP)) (7)

where Ssp(€csr), Hap (€csp) € [—1,1].

Thus, the comparisons between two CSFNs €¢gr_1 and €¢gr_, can be stated as:

1. If Ssp(€csp-1) > Ssp(€csp—2), then €cgp_y > Cgp
If Ssp(€csp-1) = Ssp(€csp-2), then
1) If Hyp(€cspo1) > Hap(€csp_z), then C€cgp_y > Cegp_y
2) If Hyp(€cspo1) = Hap(€csp—2), then Cogp_y = Crgpy-

We next give some important operators of CSFNs. For any two CSFNs €¢sr_1 and €¢sp_, with
scsr, we give the following operators of CSFNs:

¢ 2195, i2119,. 2197, .
1. CCSF—]. - (TCRP_le IP_l’BCRP—le IP_l'TCRP—le P-1);

) i217.max(

'QT :'QT )
max(T T €1p— €ip—
( €rp-1’Y €rp—2 )" e 1P-1 Ip-27,

) i217.min(

= i 2 A ) .
2. €espq VE€csp2 = mln(ecRP—l’ecRP—Z .e ¢ip_1"9€¢1p_ , )

) izn.min(ﬂyqp_lrﬂfqp_z)

mln(TCRP—l’TCRP—Z -€
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min(TCRp_1: TCRP_Z)- e i2H.min(ﬂT€1P_1,ﬂT€1P_2 )’

i217.max(

= o 0 ) |
3. €espo1 NCesp—z = max(GCRP_l,BCRP_Z),e ¢ip_1"09€¢p_ ,

max (TCRP—1’ TCRP—z)' eizn'max(gfﬁp—l‘nfclp_z)

1
2 2 \2
1o (e e, ,
T%‘ + Té —\z @I 02 02
Rt RP=2 .e Terp—y T€1p-2

4. €cspq B Cesp—p = T% .‘Té
RP-1 RP-2

7

(OCRP—10€RP—2)' eizn'(ngclp‘lnoqp‘Z), (TCRP_l.‘FCRP_Z). eizn'(ﬂfﬂ‘mqﬂfﬁ‘m_z)/

(TCRP—lTCRP—z)' ei217.(

0 0
Tep1" T€p—2 )

1
0. +0i.  -\2
02 + 92 % i2n< berp_1” OCrp;
el . 2 2
€Rrp- €Rp- 02 02
( P Rp=2 ) .e O€rp_1" O€rp_

5 Cosp1 O Cespz = 0%}21)—1 eéRP—Z

Nl

03 +02 -

L o Ferpoy T Fep_g

Té -I—.'Fé —\2z et 02 02

R S .e Ferp_1"Ferp2
TCRP—l‘T'CRP—Z

1

2

) SCSFN\S i2ﬂ.<1—(1—g§,€1P-1)ScsF>
6. Scsr€esp-1 = (1 - (1 - TCRP—l) ) e |

i SCSF . SCSF
i2I1.2 i2I1.02
OSCSF e GCIP—l TSCSF TCIP—l
€RrpP-1 ' €rp_q
i SCSF
i2I1.2
S T
.TCCSF e CIP—1,
RP-1

7€ SCSF — 5 sesp % i217.(1—(1—.95€ ) )ScSF)
- €espoa (1-(1-6%, )% )% .

ScsFNg i2n.<1-(1_g; )SCSF>
(1 - (1 B T%Rp—l) )ze €RP-1

3. The Bonferroni Mean Operators Based on CSFSs

In this section, we give two important Bonferroni mean (BM) operators based on CSFSs, called
CSFBM and CSFWBM. Further, the specific cases of the CSFBM operator are also justified with some
remarks.

Definition 6. For any CSFSs Ccgp—j,j = 1,2,3,..,m, the CSFBM operator is defined as:
CSFBMScSFEesF (Cogp_y, Cosp—z20 -+ Cesp-m)

1
Scsrttcsr (8)

1 t
= | gy BT (CC5; ® Cesit
m(m — 1) ok F-j

Theorem 1. The CSFBM operation result is still a CSFS, such that it has the following equation:

CSFBMScsFtcsk (CCSF—l: CCSF—Z: ., CCSF—m):
1

1
ﬁ 2(scspttese) 1- \\FED
m,(m,— )
i2ll| 1— l_[:‘l'(=1 <QSCSF QLCSF )
jEk T Tepok

1- l_[ ((TSCSF glesr )2> X e )

Crp-j~ Crp-k

1
2(scsF+tcsF)
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N =

1
Scsrttesr

Scsk m(m—1)
2-(1-62, )
K fCSF
1-]1= 1_[ 1(1_ CRP k x
Jk=1 1 — \ScsF tcsp
VAo, ) J)
\ BCRP—J‘ GCRP k

, scsF m»(m 1)\
2—-(1-2 -
( ( < %¢ipj > ‘

1

\_

SCSF'”CSF

2 tcsr
i2m| 1- 1—' s (1—99c,P_k> -

i \(<agz,:ff,.>“”>(<ns;f;>‘“”>)) ,

CSF'”CSF

SCSF —
2 »»(m 1)
2-(1-7%, )
t
(1 TCRP k or- >.

’

_ _ m
1 1 Jk=1 1-—
\ J#k ( 1 — \ScsF tcsp
2 >
\ TCRP—J‘ CRP k /
1
1 2
+t
Ferp- ;
| 102 tCSF
21| 1~ 1~| M=y ( fc,,, k
j2k 1-
1— \SCSF fcsp
%) ))
\ < Ferp-j T€1P k
e

/

202y . (2110
Proof. For any two CSFNs Ccsp_; (TCRP _€ e, OcRP_jel

0, . 2Ry,
PS, Fepp i€ 6IP_’) and Cegp—y =
2110 21102 2110 . ey
(T@RP_ke -k, Oc,,_ € GCIP—k,fF@RP_ke TCIP—k), based on the definition of CSFBM operator, we
can get
{2 2;CSF Scspng (201 1-03 o
L
Coosr = TEF e T (1 - (1 - 6% ) CSF)Z e ey (1 - (1 -
RP-j ’

CSF—j Crp-j

1
z

1 S
sese\zi2n(1-(1-0%, )CSF) . . 1210tCsF
) ) e 1P—j Jand cfesF = | gt o €1p—k (1 - (1 —

TCRP—]' CSF—k — Crp—k

1 1

2 i2n<1 (1 23 )tCSF) E izn<1 (1 22 )tCSF>
fesr)z T\ e 2 tesr\z 127
BCRH) ) e 1Pk , (1 -(1 —TCRP_k) ) e 1P~k . Then, we have
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1
SCSF 2
2—(1-03 . \
< gﬁlp—j)
tesr |
—(1-02% ) —
1, ( cip
) ScsF 5 SCSF
2-(1-62, ) \ (-(-a5e, ) )
- -j
tesk tcsr
. i2neiest glese | —(1-62, )" = | <1 (1-93, ) )
TSCSF CSF o Cip—j T€pi RP— e €Ip—k

Crp—j" Crp-k ’ ((1 - (1 - eéRP—j)SCSF)
)

ScsF tesk ~ YCrpk
ccsp—j ® Cespk =

2_ (1 _ T%RP_].)SCSF %
_(1 _ j:éRp_k)tCSF _
((1 -(1- T%Rp_,-)SCSF)> i

(1-(1-72,.)"")

And

ScsF - qrtcsk
Crp-j~ Crp-k

1- 2
1-— % iZn(l—HZ’}_1<(QSCSF _qfcsp >2>>
(- )

Jj*k

|

|

1o, |

2-(1-0, )"\ il ( \|

" _(1 - eéRP—k)tCSF - e K(l_(l_angP-kYCSF)))
m ScsF tesp ],i:}{l (1 - (1 — 6% _)SCSF) ’

jk=1Ccsr—; ® Cesp_i = J Crp-j .

j*k (1 _ (1 _ B(ZERP_k)tCSF)

L d _(1 - ‘TéRP—k)tCSF -
((1_@_?@,?,,_,.)*”)) e

(1-(1-%2,.0)"")

R .
2- (1 - Tém»—j)SCSF o Hl}ﬁlk((l_(i'géclp—j) CSF)\J

Thus, we have

1 m ScsF tesp _
m(m—1) Zik=1 Cesr—j ®Cesrir = | 1
Jj*k

1
1

1 2
) 1- ) m(m—1)
1 3 20| 1- H?’kzl (_056517 QtcsF )
< j#k Tep_j Tep_g

1- m(m—1)
L4 2
[T} =1 (TSCSF gtesr ) e ’
j£k Crp-j~ CrP-k
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m
]k=1
Jj*

m

\

ScsF
CRP -j

tesr
OCRP k) -

SCSF
CRP )

fCSF
CRP k

" 1-—

2
l_[ SCSF  qlcSF
Jk=1 ((TC'RP—jT@RP—k) )

/

1-]11-

—

SCSF
2
z_(l_ggqp_j)

2 tesk
_(l_ﬂgclp—k) -

l m(m D 20| O,

)

1

1\ m(m-1) i2n
2

|

! 5
m(m — 1)

1

2-(1

(ez

CrRP-k

_ ecR,,_j)s“F)>

- GéRP_J.)

H]k 1

Jrk (1_(1 nfCP
=J

1—

(1 1)\2(SCSF+fCSF)
m(m—
i2n| 1-( 1% _ SCSF tcsF
< Jrk—1<<ﬂ7. 0
Xe

€ip_j TCipk

jzk

)fcsp'

(1-(1-62,.)°")

Jk=1
j#k

|

SCSF

2- (1 - TéRP-J')
_(1 _ :FéRp_k)tCSF _

(1-(1-

t
CRP k) CSF)

SCSF
j#k 1-(1-03
(-o-0ie,,) )
(1 oz )tCSF
b¢rp_i

1
1 Scsrtt
ScsF m\ csFtlcsF

(1- (1=, ,.)SC")>

l\m'(»»—l)
2

\_

1

N

o |
)
)

ScsFttcsk
ScSF tesr —
] k 1 (CCSF Jj ® CCSF—k -

1
1
2>>m)2(5c31?+t csF)

N =

1
— 1\ ScsFttcsF
m(m—1)

1
m(m—1)

_1
1\ m(m-1)

1
z

ScsFttcsr

20 of 19
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1

1 s, +t,
, scsF =ty | "CSFECsF
o-(i-at,,, )
(1 02 )tcs;r
Fe -
. 1P-k
2| 1= 1=| M=y scsF
j=k /(1—(1—9%(,”, ) )\
‘IP-j
o2 tcsr
1_(1_ TCIP—k)
e .0

We next investigate the properties of idempotency, monotonicity, and boundedness for the
CSFBM operator.

Theorem 2 (Idempotency). For any CSFSs Ccsp—j,j = 1,2,3,..,m, we have
CSFBMSCsFresF (€csp_y1, €csp-zs--» €csim) = Ecsr-

Proof. Suppose CSFBMSCSF'tCSF(CCSF_l,CCSF_Z, . -'Ccsp—m) = (u,w, ). First, we choose the

. . _— i20%g,, _ _ _ -
supporting grade with &;_ = @, e . Let @c,, = Pey, Vo e = Yo .y and @¢,, = O¢,, ., ¥s _—
2. 2%, 2. P29,
Yo, - Then, &¢, e *ar = @g,, e “r-j and @¢, e P =P, e “ar-k, and
1 1
1- 2(scsrttesr) 1- 2(scsrttesr)
1 1
m(m—1) m(m—1)
ﬁ ( - ) ) ] ( - ) )
2 | | 2
SCSF  qrtcSF SCSF qrtcSF
= k= (TCRP— 'TCRP—k) = (k= (TCRP— 'TCRP—k)
u = Jk=1 J = Jk=1 j
jk jk
[ S [ S
2(scsF+tcsF) __1__\2(scsr+tcsr)
s . 2\ \m@m-1) s . 2\ \m(m-1)
i2m| 1= ™ 1_(_(2 csF gtesF ) i2m1| 1= ™ _ 1_(_(2 csF gtesF )
1}';‘,{1 Terpoj Terpoi 1},’;',(1 Terpoj Terpoi
e e
1
1 2(scsF+tcsr)
(-1
2(scsr+tcsr)
1- | |(1—(:rRP) ) x
Jke=1
= j#k
N S
1\ 2(scsr+tcsF)
. 2 2scsrrtese)) | (P
21| 1~{ Tjpe=s( 1-(27 )

Jjzk
e
1

2(scsF+tcsF)

1
1— ((1 _ TéSIESF+tC$F))m'(m_l))”l'(mr—l) %

1
2(scsr+tcsF)

1
i2n<1—<(1—ﬂf<r;p Z(SCSF+fcsp))""(""_l)>"”(""_1)>

e
1
N S 1-1+ 2(scsr+tcsF)
1—-1+4 \azlscsr+tcsr) iZU(_QTC 2(Scsp+fc51-')> 2105,
= TE(SCSF‘H?CSF) e P = TCRPe . [
RP

Similarly, we can examine for abstinence and non-supporting grades, such that 8¢ ., =

i2102g i2MQF
(s ! — € S N4 —
Ocppe r and Fe ., = Feppe ip. Hence, CSFBMSCSFCSF(Crgp_y, €csp—zy -+ Ccspom) = Cesr-
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Theorem 3 (Monotonicity). For any two CSFSs

200y, 200, 200y,
CCSF'—]' = (TCRP—je IP_]’OCRP 4€ IP_]'TCRP ;€ Ip_j) and

2104, i2I10Qy . i2[10f,. . . o

Cesp—sk = (TCRP_*kel Tap—ie, Oc,, ' ”ﬁlP—*k,TCRP_*kel T‘IP—*k),(],k =1.2,..,m), with the conditions
Tre-j = Trp—sicr @75 2 Ly Orp—j < Oppss Loy, < Loy Frp—j < Frpou and Ry, < Qg , we

it it
have CSFBMS¢SFACSF (€ pgp_y, €ospz,- - Cospom,) = CSFBMSCSFICSF (Cogpn, €cspvzr- - €csr—sm)-

PI’OOf. Let CSFBMSCSF’tCSF(CCSF_l, CCSF—ZJ ey CCSF—m,) = (’M/, ’U/) al‘ld

CSFBMScsrtest (€ ogp_ vy, €cspa - -
part is with &' <u. If Trp_j 2 Trp_ O, 2

Q,_; < Q,_,, then we have

ScSF atcsk izn(ﬂ*?lp_-SCSFﬂ
T ro—i T Rp-sx® !

_ ScSF aqrlcsF
(1 (T*RP—jT*RP—

[T (i
SCSF tesk
=1 (‘T*RP—]T*RP
Jj*k

)

*Flp—

sk ) SCSF
= TRP —j

tc
*k

Q710 OrP-j =< Orp—oio Qo < Qoo

t
T;{Cst lzn(n‘ﬁp—jsCSFn‘ﬁP—k CSF)

1-—
CSFQ,

_1
m(m—1)
¢ 2
CSF
Fp—sk )

1
1- 5 m(m—1)
tcsp)
—k and

1
1- m(m—1) iZH(l'I,'-";ﬂ( s
k=1| (0 SCSFQ
= Hﬁc=1 SCSF aptcsF )2 e j#k (TIP_I Fip
ik (TRP ]TRP k
1- Z(SCSF"'tCSF)
(
< p
ScsF qrlcsr
\ k=1 (T*RP ]T*RP—*]() /
j=k
SCSF"’tCSF)
(
i2ll 1—(“11.1;11(1—(9*%]:_]_SCSF CSF )
e j
1
1- 2(scsr+tesr)
1
m,(m,—1)
m, 1-— y
| | JSCSF TtCSF 2
< ] RP-jJ RP—k
j=k
1
__ 1\ 2(scspttcsF)
2 m(m,—1)
S t
i2n| 1-{ I 1(1 (ﬂflp-j cSFQg csp) )
j=k /
e

,€csp—em) = (', v"). The proof of the truth grade is to show that the real
:FRP—]' < TRP—*k and

2
2 . s, 2 s s t,

n(1-(0ry 5Py, e57)’) tese \2) 20(1(ryy 5Pyt

*k) )e ( Frp—j TlP—*k ) > (1 _( SCSF T CSF ) e ( F1p—j Fip-k ) ,

_ 1
m(m—1)
i2n| 11 s
jk=1
e ek (n*T 1P—j

Hence, «' < . Similarly, w' = w,v' = v, for abstinence and falsity grades. Thus, we obtain the

result Wlth CSFBMSCSF'tCSF(CCSF_l,Ccsp_z, ey CCSF—IM,) > CSFBMSCSF'tCSF(CCSF_*l,CCSF_*z, . CCSF—*”})‘
O
Theorem 4 (Boundedness). For any two CSFSs
lznmax.(lfelp LGmtnﬂgﬁm lZHmjL‘n!)T(’,IP_ . d
€lep_ = m]ax:TCRP _ j manCRP Z i, m]ln:FCRP _ I)an
LZI'Im]m.{ZTCIP lZI'Imax.QgCIP LGm]cle!lfqp_‘ .
Cesp—j = mmTcRP - i maxOCRP ] -1, mJaxTCRP ~ 1), =12,..,m), we
scspit
Proof. Based on monotonicity, we have CSFBMSCSFCSF (€ gp_y, €gsp—yy--» Cospom) <

CSFBMSCSFCSF (€pgp_1, €cspg, -
idempotency, we get CSFBMSCSFtcSF (€ggp 1, €gsp_y, .-

'CCSF—m.) < CSFBMSCSFICSF(CZSF—I'CZSF—Z' .
'CESF—m.) = €csp—j and

) CZSF—m,)' By
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CSFBMSCSF'tCSF(Cz:SF_l, Czsp_z, ..

CSFBMSCSFACSF(€csp_y, €cspy ) €cspm) < €esp—j- O

,Cgsp_m,) = Cfsr—;. Then, we obtain the result with €ggp_; <

23 of 19

We previously have examined the three properties of idempotency, monotonicity, and
boundedness for CSESs. We next discuss more special cases with remarks.

Remark 1. When tcgr = 0 in Definition 6, we have
CSFBMScsPO(€csp_y, €cspg - €csiom) =
1

1 25csF
m(m—1) LG<1 <n]=1<1—(95C:§F
/ e
1
1 ScsF
m s m(m—1)
2 CSF
_\1_ H(l‘(l‘BCRP—f) )
j=1 /

1

EEEIN
izn(1—(1—<n,"cl<1—<1—ns€,,;-l)“”D”“""”)SCSF)

e

1

| )

1 sosr )
i2n<1_<1‘(Hﬁi(l_(l_ﬂéﬂpﬂ)SCSF))"y(m_l)yCSF>

e

Remark 2. When togr = 0, scsr = 1 in Definition 6, we have
CSFBMLO (CCSF—1'€CSF—2! ..

Terp-j

1 ScsF
( m sesr mf(m,—l)w
1= (]G (-7e)™) .

1
1 2
)2)>m(m—1)> SCsk

N

1
2

\_

m

U

= im0 8121'1(]‘[ (nz

HCRP —-j
Jj=1

O¢cip—j

1
1 2
m,(m—1)

1- n( (TCRP ])2) e

m

>)M—M l_[ (TC}zeP—j)

’ Ccsp—m,) =

LG<1 (n] 1< -("fc,p-j)z»m)z

_ 1
2my,(m—1)

j=1

Remark 3. When togr = 1, scsr = 0 in Definition 6, we have

)

’

1
. m 2 2m,(m—1)
elzn(nle(ﬂfﬂp—j))

CSFBM®Y(€¢sp_1, €cspz - -

’ €CSF—m.) =
1
1 2

1
S ISl

1- (n (1- (TCRP_,C)Z)>m e B :

k=1

(ﬁ(eczp_k))W

1

1) 1 m m 1
eizH(HZL1("§€1p-k))mm_1)'(n(fazzp_k)) - o2 (Ms (25, )P0

k=1

Remark 4. When s¢sr = tcsp = 1 in Definition 6, we have

CSFBMl'l (CCSF—IJ CCSF—Z’ .

rCCSF—m) =
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1-—
1-—

(((ﬁ

121'1<1

A1

k=1

<(TCRP—jT€RP—k

2
m,(m, 1))
2 2 2 2
(TCRP—j +Ferpoi TCRP—jTCRP—k) X

1\ 2
1 2
; P 2 2 _02 2 m(m—1)
12H<1 (1 (Hf=k=1(nglP—j+'Qf€1P—k ﬂfﬁp—jﬂfﬁp—k)) >>
e

1\ 2
2
m(m—1)
2 2
GCRP -j +0€RP Kk GCRP—jGCRP—k) X
)
1
1\ 2
1 2
2 2 2 m(m—1)
k= ﬂﬂcm T 0¢1p_ Poc;p_ i Porp_ k)) ) >
1
1\ 2

)

1

o S—
i)
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We next give the definition of the CSF-weighted-BM (CSFWBM) operator where the weight

vector is expressed by W,, = (W,,_;, W, _,,.

©)

W Wyy) with 3% W,,_; = 1and W,,_; € [0,1], G =
1,2,..,m,).
Definition 7. For any CSFSs C¢gp—j,j = 1,2,3,..,m, the CSFWBM operator is defined as:
CSFWBM?csrtesr (€CSF—1'€CSF—2' ¥ CCSF—m,)
1
1 Scsrttcsk
S
= e (my — 1) ]JI;kl ((Ww i€csp- ]) “F QR (Wy,_x€esp_i) CSF)
Theorem 5. The aggregation result from Definition 7 is still a CSFS such that
CSFWBM?ScsPtesF (€esp_y, €csp_zy - €csp-m)=
1
/ m(”i_l)\z(SCSF"'tCSF)
m
W,,—;\ SCSF W,,_\tesF
Kl - 1_[ (1 - (1 -(1-7%, ) }) (1-(1-72,. )" ) x
k=1

/ i Wyy— )\ SCSF ) Wy g\ EesF\ (%1
12Hk1— MMiea| - <1_(1_HT€1P—1) > (1_(1_97@}’—1) )
Jjzk
e

/]

1
1 )\Z(Scstr’ffcsx:)

)
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1
1 2
1 ScsFttcesk
2W ScsF 2W tesr mm—1)
- =6,) —(1-08,) " -
j
-1 1- l_[ ZWW—_] ScsF 2W,,_ \ FCSF x
\] he=1 1 - - CRP—j ) ) 1= (1 - OCRP—k ) / )
J*
( o et
—— .\ ScsFttcsF
SCSF t m(m—1)
| 2—(1 —a, ™" ’) (1—!2,2,u,"""‘> e o
. m €1p—j €Ip—k
e e e Hj,k=ki ( 2W,,_; ) "CSF ( 2w k) tesk
J* 1—(1—99 e > ><1 1-9, ¥~ ) /
€1p—j €1p—k
e \
1
1 2
1 Scsrttesr
2W,,_:\ SCSF 20, tesr o =1)
", 2_(1_TCW,]) (1 TCWk) _
1-]1- RP-j RP-k %
2W,,_j\ S¢Sk 2W,y_i \ LCSF
et (1—(1 F, ) )(1—(1 fCR”) )
\ o s /
+t, %
S,
/ 2_(1_ﬂzww—j )SCSF (1 PV k rcsp \\n;(m, o\ ¢SF CSFW
Fe, F,
€rp-j €Ip- k
S H’k h 2w,,_; \*CSF CSF
Vo oo )
P—j P- k

Proof. The proof of this theorem is similar to that of Theorem 1. O

Similarly, we can obtain the properties of idempotency, monotonicity, and boundedness for the

CSFWBM operator.

Theorem 6 (Idempotency). For any CSFN €¢gp_j,j = 1,2,3
CSFWBMSCSFACSF (€cgp_q, €csp—2s - €cspom) = €csr-

s ey My, WOE

Proof. The proof of this theorem is similar to that of Theorem 2. O

Theorem 7 (Monotonicity). For any two CSFNs

zznﬂTCIP , 2110, i2110
€esr- -J (TCRP i€ ]’OCRP—je ]’TCRP—je

have

F. .
C’P") and €cgp_v =

i2[1Qg
c
(TCRP—*ke "

—k, BCRP—*k

2110
e 9¢;p

—k, TCRP—*k

e

iZH.QTCIP

TRP—j 2 TRP—*k’ QT[p_j 2

—*k),(j,k =12,..,m), with the conditions

'QTIP «k
CSFWBMScseicsr (€cspos1 €csposzr-

Proof. The proof of this theorem is similar to that of Theorem 3. O

Theorem 8 (Boundedness). For any two CSFNs

i2lImax2.

+ —
Cesp-j = <maxT€RP ;e J

i2lImin

Cesp—j <mm.‘T€RP i€ I

1,2,..,m), we have that €¢ep_; < CSFWBMSCSF teSF(€esp1, €cspz - -

Proof: The proof of this theorem is similar to that of Theorem 4. O

T . i i2lIminQg . i
€1p-j mlnBCRP e JCp—j, m]m.‘FCRP "

T lznmax!)g
Crp-j maxGCRP e 1P-i, maxFe,,_ i€
j

+
€espom) < Ctsp-j.

i2Imin2
7 TCIP—]')

i2llmaxN
i c,p_,-)

and

U=

Opp_; <0 2y, <0 F <F and 0 .
IP—x - — -
!Z.Tp k’ RP—-j = RP—xk» GIP j 9”3 k’ RP—] - RP—xk fFIp j—
we have CSFWBMScsFtesF (€ogp_y, €esp_gy ) Cospom) =
. CCSF—*m.)-



Mathematics 2020, 8, 1739 26 of 19

4. MCDM and TOPSIS Methods Based on the CSFSs, CSFBM and CSFWBM operators

In this section, we first use the proposed CSFBM and CSFWBM operators to solve MCDM
problems. Furthermore, the Technique for Order Preference by Similarity to an Ideal Solution
(TOPSIS) is an approach to identify an alternative that is closest to the positive ideal solution (PIS)
and farthest from the negative ideal solution (NIS). We then consider the TOPSIS based on CSFSs and
create a novel CSFS-TOPSIS.

4.1. MADM Method Based on the Proposed Operators

The aims of this subsection are to investigate MADM problems using the proposed CSFBM and
CSFWBM operators. To resolve the MADM issues, we choose a family of alternatives and a family of
attributes with respect to weight vectors to examine the reliability and proficiency of the proposed
approaches, whose expressions are as follows: €csp = {€csp-1, €csp-2,€csp—3 --» €csp-n} and Ly =
{Lar—1, Lar—2, o Lar—m} with the weight W, = {W,,_;,W,,_5, ..., W,,_,} by using the complex spherical

i2IQg B i2I1Qg B i2IQf .
€IP-ij Q. e Cip-ij Fe. @ €1P-ij ) . Thus, the
€rp-ij €rp-ij

steps of the proposed procedures are summarized as follows:

fuzzy information with €cgp = (T Crp—ij©

Step 1: Standardize the decision framework by using the following formula, if needed, then

i2I1Qy i2I1Qg i2I1QF
= €Ip—ij €Ip—ij €p-ij
Tij (TCRP—i)'e ’ eCRP—L‘je ’ TCRP—i}'e

2070 i211Q i211Q
T e Tepoij @ e Cpoij F e “<r-i)  for benefite types of attributes
€rp-ij » VERp-ij » < Crp-ij

i2I1Q 12119, 12119
F e Tep-ij @ e Cr-ij T e G-y for cost types of attributes
€rp-ij » VE€Rp—ij »< €Rrp-ij

Step 2: By using the proposed operators of Equations (8) and (9), we investigate the complex
spherical fuzzy number to aggregate the family of complex spherical fuzzy information.

Step 3: By using Equation (7), we investigate the score values of the aggregated values in Step 2.
Step 4: Rank all alternatives and find the best one.

To consider an application of the proposed MADM method, we next give an example which a
venture organization needs to organize an expansion of income.

Example 1. If a venture organization needs to contribute to expand income, there are four possible
organizations as choices, which are Lyr_q, Lyr—5, Lyr—3, and Lyr_4. There are five attributes used to
assess options, including €¢gr_1: the risk examination; €¢sr_,: the development condition; €¢sr_3:
the social-political effect; €csp_4: the environmental sway; €.sr_s: the advancement of the general
public. To solve this problem, we choose the weight vector with W,, = (0.3,0.2,0.15,0.35)T. In fact,
users can choose a weight vector according to their preference. Thus, the steps of the decision making
procedures are summarized as follows:

Step 1: Standardize the decision framework by using the following formula
2119 i219

T = (TCRP—ije TCIP—U" OCRP—ije eCIP—L]’ TCRP—ijelzn jr:C]P—L])
T ianTCIP—i' iznﬂeCIP—L iznﬂjpclp_i . .
( Crp—i;© i, BCRP_ije I, Fepp e J) for benefite types of attributes
iZHQTC . iZH.QeC » i2n T . .
(T‘CRP_Ue 1P-ij, BCRP_ije 1P-ij, :TCRP_U.e “’—U) for cost types of attributes

We obtain the decision matrix as shown in Table 1. We then go to the next Step 2.

Table 1. Decision matrix.

LAT—I LAT—Z
CCSF—l (0.7ei21'1(0.6)' O.3ei217(0.2)' OlzeiZH(OA)) (0.71ei217(0.61)’ 0.3 1ei217(0.21)’ 0.2 1ei217(0.41))
CCSF—Z (0.89i2n(0'8), 0.26i2n(0'2), O.Zei2”(0'3)) (0.81ei2”(°'81), 0.2 1ei21'[(0.21)’ 0.2 1ei21'[(0.31))

CCSF—S (0.98i21'1(0.7)' O.1ei2”(°'2), O.1ei2”(°'3)) (0.91ei217(0.71)’ 0.11ei2”(0'21), 0.11ei2”(0'31))
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Cospa (0.6ei217(0.8)’ 0.5¢i27(03), 0_1eizn(o.1)) (0.6181217(0.81), 0.51ei27(0:31) 0_11eizn(0.11))
Cosr_s (0.5eizn(0'5), 0.4¢i211(04), O_Beizn(o.s)) (0'5 1ei271(051) () 41i271(041) (3 1eizn(o.31))
Lar—s3 Lar—a
Cosp_1 (0.72e121'1(0.62)' 0.32¢1271(0.22), 022eizn(o.42)) (0_73ei217(0.63)’ 0.33¢i271(0.23), 0_23eizn(0.43))
Cesp_z (0.82ei217(0.82)’ 0.22ei2M(0-22) 0_22eizn(o.32)) (0.83ei217(0.83)’ 0.23ei2M(023) 0_23eizn(0.33))
Cesr_s (0_92eizn(o.72)' 0.12¢1271(0.22), 0_12eizn(o.32)) (0_93eizn(o.73)’ 0.13¢277(0.23), 0_13eizn(0.33))
Cospa (0.6zei21'1(0.82)' 0.52¢i27(0.32) O.12ei2”(°-12)) (0.63ei217(0.83)’ 0.53¢i27(0:33) 0_13ei2n(0.13))
Cosp_s (0_52eizn(o.sz), 0.42¢1211(0.42). 0_32eizn(o.32)) (0.536i2”(°'53), 0.43¢i271(0.43) 0'336i217(0.33))

Step 2: By using the proposed operators of Equations (8) and (9), we investigate the complex spherical
fuzzy number to aggregate the family of complex spherical fuzzy information, for s¢gr =
tcse = 1. We obtain the aggregated values as shown in Table 2.

Table 2. Aggregated values by using Equations (8) and (9).

Methods

cCSF—l

CSFBM
0.3331ei217(0.2111)’
0.0925¢21(0.041),
0.041ei217(0.1626)
0.4957ei217(0.4957),
0_041ei2H(0.041)’
0.0419121—1(0'0925)
0.709261217(0'3331),
0.0102ei217(0.04—1)'
0.0 102ei2ﬂ(0.0925)
0.211 lei217(0.4—957),
0.2493ei217(0.0925),
0.01029121—1(0'0102)
0_1234eiZH(0.1234)’
0_1626e1217(0.1626)’
0_0925ei2[7(0.0925)

CCSF—Z

CCSF—3

CCSF—4

CCSF—S

CSFWBM
0.0005ei217(0.0016)’
0.023261217(0'0098),

0.0098¢!27(0.043)
0_0001e1217(0.0001)’
0.0098ei217(0.0098),

0.0098ei2"(°'°232)>

0.0ei217(0.0005)

0.0023ei217(0.0098),
0_0023ei217(0.00232)
0_0016e1217(0.0001)’
0.06929121—1(0'0232),
0.0023ei217(0.0023)
0_0037e1217(0.0037)’
0_043ei2H(0.043)’
0_00232ei217(0.0232)

Step 3: By using Equation (6), we investigate the score values of the aggregated values in Step 2. The
score values of the CSFBM operator are given as
Ssp(€csp—1) = 0.0391, S5 (€csp—2) = 0.1593, S5 (€csp-3) = 0.2012, Sgp (€csr-4) = 0.0731, Sgp (€csr—s5)
= —-0.013
The score values of the CSFWBM operator are given as
Ssi(€csp-1) = —0.0009, Ssp(€csr-2) = —0.0003, S5r (€csp—3) = —0.0002, S (€csp-a) = —0.002, S (€csr—s)
= —0.002

Step 4: Rank all alternatives, and find the best one. The ranking results for the CSFBM operator are
€esr-3 2 €esp-z 2 €csp-a 2 €cspo1 2 €csp—s
The ranking results for the CSFWBM operator are
€esp-a 2 €espos 2 €cspo3 = €esp-z 2 €esp-1
The two different operators give different results. The best alternative is €¢gr_3 using the CSFBM
operator; the best alternative is €¢gr_, using the CSFWBM operator.

4.2. The TOPSIS Method Based on CSFSs

We know that the TOPSIS is an approach to identify an alternative according to PIS and NIS. In
this subsection, we construct the TOPSIS based on CSFSs, called a CSFS-TOPSIS. The steps of the
CSF-TOPSIS method are as follows:

Step 1: First, we normalize the decision matrix based on CSFSs by considering the following formula:
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T i2l12g 1P-ij @ i2l102g 1P T 1.217.9}' 1pii
L= -y e ij -t
Tij ( rp-ij€ 'Y Rp-ij rP-ij€ )

i2[1Qg i2l102g i2l12F
€1p-ij €1p-ij €1p-ij i i
(:TCRP_U.e i, GCRP—ije J,TCRP_Ue 1) for benefite types of attributes

21102

F eiZH.Q}'CIP_l.]. 0 e for cost types of attributes
€RrP-ij » VCRp-ij

Step 2: By using the following Equations (10) and (11), we can examine the PIS and NIS among the
alternatives.

R* = (rw i2’ 13"" m)
LZH.min.QTCIP_ij) (10)

+ i20. max.Qg-CIP i21. an!quP
ij ij
;= (max.‘]' Crp_ij© ,Mminbc,, ;€ yminFe,, ;€

(11' i2/ 13"" l;}.) (11)

i2Il. mln.(lTC i2Il. max.(29€ LZI'[.max.(lfC .
T (mm.‘TCRP i@ P=ij, maxBc,_ i@ P=i, maxFep,_ i@ ”’—U)

ij
Step 3: Use the following Equation (12) to examine the complex spherical fuzzy PIS (CSF-PIS):
K, i (Tl‘ jr R +)

2t
n TCRP UTCRP ij +'QTCIP ij TCIP ij + GCRP UGCRP ij
i=1 Ww—t 2 2+ +T fF +_Q 2t
_ OCIP—ij GCIP—L] CRrP-ij CRP i Ferp- ij Ferp- ij (12)

4 4 4 4+ 4+
TCRP ij + OCRP—ij + TCRP—ij + TCRP ij + OCRP —ij TCRP —ij + \
n LW n LW
13 l w—l1

03 + 025 ! o 10t 104
Te Oc, . .. Fe .
€Ip-ij €IpP-ij €Ip-ij Terpoij Oc;p_ij Feppoij

Examine the CSF-NIS by using the following Equation (13):
Ki (rij, R_)
2 27 2 2” 2 2-
TCRP—ijTCRP—ij + 'QTCIP_U-‘QTCIP_U + OCRP—ijOCRP—ij +

n
now. . _ ! "
i=1 Ww—i 2 2 2 2 2 2
+F F + 02
Ocip_i;" O€ip_ij €rP-ij” CRP-ij Ferp_ij " Ferpyj (13)

4 4 4- 4= ’
( n o, <T€RP ij + GCRP ij + TCRP ij + n W TCRP ij GCRP ij + TCRP—ij +
i=1 03 + 05 + 03 =1 Twoi\ 07 +05  +0%
Terp-ij Ocipij Ferp-ij TCIP—ij Ocipij Ferp-ij ,

Step 5: Use the following Equation (14) to examine the closeness of each alternative:

Ki(ry, R*)
Ki(rij,R*') + Ki(rl-]-,R‘)

P, = (14)

Step 6: Rank all alternatives and choose the best one.

Based on the above proposed CSFS-TOPSIS method, we apply it to Example 1. Thus, we get the
following results:

Step 1: According to the decision matrix based on CSFSs, we obtain the same decision matrix in Table
1, as Step 1 in the MADM method of Section 4.1, and so we go to step 2.

Step 2: By using Equations (10) and (11), we obtain the following PIS R* and NIS R~ among the
alternatives:
Rt = ( (OlgeiZI'l(O.B), 0.1e12"(°'2), 0.1e12"(°'1)), (09 1ei2ﬂ(0.81)’ 0_11ei2[7(0.21)’ 0_11ei2[7(0.11)), )
(0.92ei2”(0'82), 0.12ei2ﬂ(0.22)’ 0.12ei2ﬂ(0.12)), (0.93ei217(0.83)’ 0.13ei217(0.23)’ 0.13ei217(0.13))
ae = ( (0.7ei21'1(0.5), 0.59121—1(0'4), 0.3e1217(0.4—))' (0_71ei2[7(0.51)’ 0.5 1ei2[7(0.4-1)’ 0.3 1ei2ﬂ(0.41)), )
(0.72ei2ﬂ(0.52)’ 0.52ei2ﬂ(0.42)’ 0.32ei2ﬂ(0.42)), (0.73ei217(0.53)’ 0.53ei217(0.4—3)’ 0.33ei217(0.4—3))

Step 4: By using Equation (12), we obtain the following CSF-PIS:
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K;(€csp-1,R*) = 0.7887,K;(€¢sp—o, RT) = 0.8849, K;(€¢sp—3, RY) = 0.8967,K;(€csp—g, RY)
= 0.7911,K;(€¢sp—s, RT) = 0.4522

Similarly, by using Equation (13), we obtain the following CSF-NIS:

Ki(€csp—1,R™) = 0.6647, K;(€cspz, R™) = 0.7346, K;(Cegp_s, R™) = 0.8178, K;(Cpgr—gr RY)
= 0.5678,K;(€Ccsp_s, RT) = 0.3917

Step 5: By using Equation (14), we obtain the following closeness of the alternatives:
P, = 0.5427,P, = 0.5464,P; = 0.5230,P, = 0.5822,P5; = 0.5358

Step 6: Rank all alternatives with
P,>P,>P, >P;>P,
Thus, the best alternative is P,.

4.3. Comparative analysis

Additionally, to investigate the reliability and effectiveness of the proposed operators, we chose
some existing operators and compared with the proposed operators. The information on existing
operators is as follows: Wang et al. [33] presented the aggregation operator based on PFS, and Ashraf
and Abdullah [34] investigated the aggregation operator based on SES and compared this with some
special cases of the proposed approaches. The comparative analysis for the information in Table 1 on
Example 1 is shown in Table 3.

Table 3. Comparative analysis for the information in Table 1.

Method Operators Score Values Ranking
Wang et al. [33] BM Fail Fail
WBM Fail Fail
Ashraf and BM Fail Fail
Abdullah [34] WBM Fail Fail
CPFS BM Fail Fail
WBM Fail Fail
Proposed method BM Ser(€csp—1) = 0.0391, Sgp (€csp—2) €Cesp-3 = €espoa
= 0.1593, > €rspa
Ssr(€csp-3) = 0.2012, Sgp (€csp-4) 2 €esp-1 2 €csp-s
= 0.0731,
Sse(€csp_s) = —0.013
WBM Ssr(€csp-1) = —0.0009, Sgr (Ccsp-2) Cesr-4 2 €csp-s
= —0.0003, > €ospz
Ssr(€csp—3) = —0.0002, Sp(Ccsp—4) 2 €Cesr—2 2 €cspo1
= —0.002,

Ssr(€csp-5) = —0.002

From the above analysis, we find that the existing operators of Wang et al. [33] with picture
fuzzy BM and picture fuzzy WBM, and of Ashraf and Abdullah [34] with spherical fuzzy BM and
spherical fuzzy WBM, fail to rank for the decision matrix in Table 1. However, our proposed
operators actually rank alternatives, with the best alternative €gr_3 or €csr—_4, respectively.

5. Conclusions

In general, CSFSs are a mixture of CFSs and SFSs to cope with uncertain information in realistic
decision-making issues, in which CSFSs consider the grades of truth, abstinence, and falsity, with a
condition where the real part (and the imaginary part) of the three grades is not exceeded from a unit
interval. In this paper, we investigate the operational laws of CSFSs with some properties.
Additionally, based on CSFSs and Bonferroni mean (BM) operators, we construct two aggregation
operators, called the complex spherical fuzzy Bonferroni mean (CSFBM) and the complex spherical
fuzzy weighted Bonferroni mean (CSFWBM) operators. We also give the properties of idempotent,
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monotonicity, and boundedness for both CSFBM and CSFWBM operators. A MADM problem was
chosen to be resolved based on the CSFBM and CSFWBM operators. We then propose the TOPSIS
method based on CSFSs to construct the CSFS-TOPSIS method. To examine the effectiveness and
reliability of the proposed methods, an application example is given to delineate the proposed
approaches, with comparisons of existing methods. The results actually demonstrate that the
proposed CSFBM and CSFWBM operators and CSFS-TOPSIS method are well suited to these fuzzy
environments. In our future work, we will extend the proposed method to complex T-spherical fuzzy
sets, complex neutrosophic sets, complex neutrosophic hesitant sets, and complex T-spherical
hesitant fuzzy sets.
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