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Abstract: Forecasting energy consumption is not easy because of the nonlinear nature of the time
series for energy consumptions, which cannot be accurately predicted by traditional forecasting
methods. Therefore, a novel hybrid forecasting framework based on the ensemble empirical mode
decomposition (EEMD) approach and a combination of individual forecasting models is proposed.
The hybrid models include the autoregressive integrated moving average (ARIMA), the support
vector regression (SVR), and the genetic algorithm (GA). The integrated framework, the so-called
EEMD-ARIMA-GA-SVR, will be used to predict the primary energy consumption of an economy.
An empirical study case based on the Taiwanese consumption of energy will be used to verify the
feasibility of the proposed forecast framework. According to the empirical study results, the proposed
hybrid framework is feasible. Compared with prediction results derived from other forecasting
mechanisms, the proposed framework demonstrates better precisions, but such a hybrid system can
also be seen as a basis for energy management and policy definition.

Keywords: ensemble empirical mode decomposition (EEMD); autoregressive integrated moving average
(ARIMA); support vector regression (SVR); genetic algorithm (GA); energy consumption; forecasting

1. Introduction

Research on energy supply and demand has become critical since the 1973 oil crisis. In the past
decades, the average annual worldwide energy consumption grew due to the rapid economic growth
of major economies. Based on the forecast by BP [1], the worldwide energy consumption will increase
by 34% between 2014 and 2035. Over 90% of the world’s energy consumption comes from coal, oil,
natural gas, and nuclear sources [1]. Furthermore, energy consumption always plays a dominant role in
countries’ long-term sustainability. For most industries, e.g., heavy industries, much more energy will
be required for sustainable growth. Therefore, the understanding and prediction of energy consumption
in general, and of a specific economy in particular, are critical from an economic perspective.

Recently, scholars have started to forecast the demand and supply of energy by integrating various
models into a hybrid one [2–4]. In general, such hybrid forecasting methods can be divided into two:
causal models and time series models. On the one hand, causal models are mainly constructed based on
one or more independent variables. Then the dependent variables can be predicted. Strict assumptions
and theoretical bases are required for constructing such causal models. On the other hand, time series
models are based on historical data. Whether linear or nonlinear, such models are used for estimating
future values. These approaches are always regarded as the most feasible ways to predict energy
consumption. The fundamental purpose of time series is to derive trends or patterns that can be
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modeled by econometric methods such as the autoregressive integrated moving average (ARIMA).
However, the models for nonlinear time series predictions are always difficult to realize due to the
uncertainty and volatility of the time series. Since the linear models cannot be used to predict complex
time series, nonlinear approaches are more suitable for such purpose. Thus, this study aims to predict
energy consumption by using integrated methods that incorporate linear and nonlinear methods.
Due to issues that arise in time series forecasting, accurate predictions are essential. Conventional linear
approaches are effective in the event of forecasting issues. However, more studies are finding that,
compared to nonlinear methods, such as support vector machines (SVMs) and tree-based algorithms,
linear methods do not perform well in the event of various time series problems, especially complex
time sequences. This is because linear methods cannot be used to detect the complex implicit patterns
in time series. This study adopts a hybrid model by incorporating linear and nonlinear methods to
predict energy consumption and overcome this problem.

However, in accordance with previous studies, no single prediction model is applicable to all scenarios.
Therefore, many researchers have introduced hybrid models for predicting time series; such models
incorporate both linear and nonlinear models or combine two linear models [5]. Earlier works have also
revealed that such hybridization of prediction frameworks not only shows the complementary nature
of the frameworks with respect to predictions but also enhances the accuracy of predictions. Thus,
models in hybrid forms have become a common practice in forecasting. However, noise and unknown
factors exist in time series. These factors influence the volatility of time series and cannot be easily
solved by hybridizing linear and nonlinear patterns only. Such hybridization probably produces an
overfitting problem; thus, the optimal parameters required to model a prediction framework cannot be
derived. Fortunately, such difficulties can be partially solved by leveraging the ensemble empirical
mode decomposition (EEMD) proposed by Wu and Huang [6] because the EEMD can solve the noise
problems and enhance the prediction performance. Noises, such as trend, seasonality, and unknown
factors, which often exist in time series, influence forecasting performance. To make the prediction
more precise, noise problems should be carefully dealt with. There are several ways to approach
noise problems and enhance forecasting performance. One way is to tune the hyperparameter for
algorithms (such as the support vector regression, SVR). As a result, the prediction’s performance will
improve. Another way is to first deal with the time sequence using a decomposition method, such as
the EEMD method. If a decomposition approach is used, the time series can be split into several stable
sequences for prediction. The more stable the sequences, the better the model’s prediction performance.
The feasibility of EEMD has been verified by various works (e.g., [7,8]) in solving nonstationary time
series and complex signals.

Given the abovementioned advantages regarding the advantages of the hybrid prediction system
as well as the EEMD for time series, this research proposes a novel hybrid framework integrating
the EEMD, ARIMA, genetic algorithm (GA), and the SVR to predict primary energy consumption.
The concept of the proposed model comes from several sources. First, in conventional time series
methods, ARIMA is popular and powerful. It has been extensively used to deal with various forecasting
issues. Therefore, the ARIMA method is suitable for this study. Second, based on past research,
univariate or single methods used to deal with forecasting problems cannot yield a high forecasting
performance when compared to hybrid methods. Therefore, this study simultaneously uses another
nonlinear method, SVR, to enhance the prediction performance. In past decades, SVR has been useful
in a wide variety of prediction domains. Therefore, SVR is suitable for this study. Although SVR has
obtained several important prediction records, it has a significant problem: hyperparameter tuning.
Hyperparameter tuning will affect forecasting performance. It is thus necessary to find a way to select
the ideal hyperparameter for SVR. Due to computing speed, the authors cannot spend much time
searching for the ideal hyperparameters. Consequently, the greedy algorithm (grid search) will be
abandoned. Instead, the authors intend to adopt a heuristic algorithm, such as the GA approach,
to find the best hyperparameters in SVR. Finally, decomposition methods’ effectiveness in enhancing
models’ forecasting performance has been verified by past literature. The EEMD, Wavelet, and other
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methods have been hugely successful in the signal processing field. Due to the innovativeness and
power of EEMD, recent studies have widely adopted the method in signal processing research.

Based on above-mentioned reasons, the authors attempt to combine the EEMD, ARIMA, GA,
and SVR into a prediction model for energy consumption. First, the time series of energy consumption
is divided into several intrinsic mode functions (IMFs) and a residual term. Here, IMFs stand for
different frequency bands of time series, which range from high to low, while each IMF represents
a series of oscillatory functions [9,10]. That way, each time series component can be identified and
modeled accordingly. The characteristics of the time series can also be captured in detail. The ARIMA
is then introduced to predict the future values of all extracted IMFs and the residue independently.
Since the accuracy of the nonlinear time series derived using the ARIMA may be unacceptable, the SVR
is utilized based on the nonlinear pattern to further improve prediction performance. In addition,
the accuracy of the SVR-based prediction models completely depends on the control parameters,
and the parameters should be optimized. Therefore, the GA is leveraged to derive the optimal
parameters. In general, the prediction model fuses EEMD, ARIMA, SVR, and GA into a hybrid
prediction framework. The predicted IMFs and the residue will be split into a final ensemble result.
The proposed hybrid framework will be verified by a prediction of Taiwanese primary energy
consumption for the next four years. Meanwhile, the accuracy of the prediction results will be
compared with the ones derived by other forecast methods, which include ARIMA, ARIMA-SVR,
ARIMA-GA-SVR, EEMD-ARIMA, EEMD-ARIMA-SVR, and EEMD-ARIMA-GA-SVR. Based on the
empirical study results, the effectiveness of the prediction framework can be verified.

The remaining part of this work is structured as follows. Section 2 reviews the related literature
regarding the consumption and forecasting methods of energy. Section 3 introduces the methods
used in this paper, which include ARIMA, SVR, and GA. Section 4 describes the background of the
empirical study case, the dataset, and the empirical study process. Section 5 concludes the whole work,
with major findings and opportunities for future studies.

2. Literature Review

For decision-makers to effectively understand the trend of energy fluctuation, which may generate
far-reaching implications, the precise forecasting of primary energy consumption is indispensable.
On the one hand, with an accurate forecasting of energy consumption, the government can establish
energy plans for fluctuations in oil supply. On the other hand, energy predictions can be useful for the
investment of firms. Albeit important, predicting energy consumption is not always simple. Therefore,
a robust forecasting model will be necessary.

In the literature on energy prediction, several researchers have completed accurate predictions [2–4,11,12].
Some researchers adopted economic indicators by mixing various energy indicators for predicting energy
consumption. Other researchers used only time series data for forecasting. While these forecast methods
are different, the prediction results of the two categories of models can serve as solid foundations for
further investigations on energy consumption.

Furthermore, to enhance the accuracy of predictions, some authors employed hybrid models.
Of such models, linear and nonlinear ones were integrated. The fusion of linear and nonlinear
models can overcome the shortage of adopting only one kind of method and provide more
accurate results [3,5,13]. In addition to the hybrid methods involving both linear and nonlinear
models, some studies have attempted to transform the data by integrating data preprocessing
and post-processing procedures [14,15]. By doing so, the forecasting capabilities of the hybrid
models with data preprocessing and postprocessing procedures can show superior performance in
energy predictions.

Further, several studies have proposed machine learning methods for predicting energy
consumption. Al-Garni, Zubair, and Nizami [16] used weather factors as explanatory variables
of a regression model for predicting the consumption of electric energy in eastern Saudi Arabia.
Azadehet al. [12] modeled Turkey’s electricity consumption on the sector basis by utilizing the
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artificial neural network (ANN). Wong, Wan, and Lam [17] developed an ANN-based model for
analyzing the energy consumption of office buildings. Fumo and Biswas [11] employed simple and
multiple regression models as well as the quadratic regression model to predict residential energy
consumption. Ahmadet al. [13] attempted to review the applications of ANN and the SVM for energy
consumption prediction and found that both seem to show better performance in energy forecasting [13].
Ardakani and Ardehali [3] applied regressive methods consisting of linear, quadratic, and ANN models
by incorporating an optimization algorithm into the model to achieve better performance in predicting
long-term energy consumption.

Although many scholars have empirically verified the effectiveness of machine learning methods
for dealing with time series problems, no single prediction model seems applicable to all scenarios.
That is, even if the machine learning model outperforms other traditional linear methods, using a
single machine learning model to address all time series issues would be problematic and unrealistic.

Many researchers have thus employed hybrid time series forecasting models, which incorporate
linear with nonlinear models or combine two kinds of linear models [5]. Previous studies have also
revealed that such hybrid frameworks not only complement each other in prediction but also enhance
prediction accuracy. Thus, models in hybrid forms have become a common practice in forecasting.

For example, Yuan and Liu [2] proposed a composite model that combined ARIMA and the grey
forecasting model, GM (1,1), to predict the consumption of primary energy in China. Based on their
findings, the results obtained when using the hybrid model were far superior to those obtained when
only using the ARIMA or GM (1,1) models. Zhang [18] developed a hybrid prediction model consisting
of both ARIMA and ANN. Zhu et al. [4] developed a hybrid prediction model of energy demands in
China, which employed the moving average approach by integrating the modified particle swarm
optimization (PSO) method for enhancing prediction performance. Wang, Wang, Zhao, and Dong [19]
combined the PSO with the seasonal ARIMA method to forecast the electricity demand in mainland
China and obtain a more accurate prediction. Azadeh, Ghaderi, Tarverdian, and Saberi [20] also
adopted the GA and ANN models to predict energy consumption based on the price, value-add,
number of customers, and energy consumption. Lee and Tong [21] proposed a model that combined
ARIMA and genetic programming (GP) to improve prediction efficiency by adopting the ANN and
ARIMA models.

Further, Yolcuet et al. [5] developed a linear and nonlinear ANN model with the modified PSO
approach for time series forecasting. They achieved prediction results superior to those of conventional
forecasting models. According to the analytical results, the hybrid model is more effective because it
adopts a single prediction method and can thus improve the prediction accuracy.

Though hybrid models based on ARIMA and ANN have achieved great success in various fields,
they have several limitations. First, this hybrid approach requires sufficient data to build a robust model.
Second, the parameter control, uncertainties in weight derivations, and the possibility of overfitting
must often be discussed when using ANN models. Because of these limitations, more researchers
started to adopt SVR in forecasting since it can mitigate the disadvantages of ANN models. SVR is
suitable for forecasts based on small datasets.

Pai and Lin’s [22] work is a representative example of adopting SVR methods in hybrid models
for forecasting. They integrated ARIMA and SVR models for stock price predictions. Patel, Chaudhary,
and Garg [23] also adopted the ARIMA-SVR for predictions and derived optimal results based on
historical data. Alwee, Hj Shamsuddin, and Sallehuddin [24] optimized an ARIMA-SVR-based model,
using the PSO for crime rate predictions. Fan, Pan, Li, and Li [25] employed independent component
analysis (ICA) to examine crude oil prices and then used an ARIMA-SVR-based model to predict them.

Based on the results of the literature review, hybrid models, including both the SVR and the
ANN, have achieved higher prediction accuracies than traditional prediction techniques. However,
the invisible and unknown factors which can influence the volatility of time series cannot be addressed
easily by hybridizing linear and nonlinear patterns. The problem of overfitting can emerge; thus,
the optimal parameters cannot be derived.
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Fortunately, such difficulties can be partially resolved by leveraging the EEMD proposed by
Wu and Huang [6]. The method has been feasible and effective in solving problems consisting of
nonstationary time series and complex signals [7,8]. Wang et al. [7] integrated the EEMD method with
the least square SVR (LSSVR) and successfully predicted the time series of nuclear energy consumption.
Prediction performance has increased significantly and outperformed some well-recognized approaches
based on level forecasting and directional prediction. Zhang, Zhang, and Zhang [26] predicted the
prices of crude oil by hybridizing PSO-LSSVM and EEMD decomposition. The work demonstrated
that the EEMD technique can decompose the nonstationary and time-varying components of times
series of crude oil prices. The hybrid model can be beneficial to model the different components of
crude oil prices and enhance prediction performance.

The previous studies in the literature review section aimed to develop a model that could effectively
and accurately predict energy consumption and demand. In their methodologies, these works being
reviewed attempted to use linear or nonlinear methods to predict energy consumption. Furthermore,
they tried to use the parameter search algorithm in their model to enhance its prediction accuracy.
Based on the review results, complex time series can be split by the EEMD into several relatively simple
subsystems. The hidden information behind such complex time series can be explored more easily.
Thus, in the following section, a hybrid analytical framework consisting of ARIMA, SVR, and GA will
be proposed. The framework will be adopted to predict primary energy consumption.

3. Research Methods

This section first introduces the data processing method. Next, the individual models including
ARIMA and SVR will be introduced. Afterward, the optimization approach based on GA will be
introduced. Finally, the analytical process of the proposed hybrid model will be described.

3.1. EEMD

Empirical mode decomposition (EMD), an adaptive approach based on the Hilbert–Huang
transformation (HHT), is often used to deal with time series data including ones with nonlinear and
nonstationary forms [8]. Since such time series are complicated, various fluctuation modes may coexist.
The EMD technique can be used to decompose the original time series into several simple IMFs,
which correspond to different frequency bands of the time series and range from high to low; each IMF
stands for a series of oscillatory functions [9,10]. Moreover, the IMFs must satisfy two conditions [6]:
(1) in the whole data series, the number of extrema and zero crossings must either be equal or differ at
most by 1; and (2) at any point, the mean value of the envelope (envelope, in mathematics, is a curve
that is tangential to each one of a family of curves in a plane) defined by the local minima is 0.

Based on the above definitions, IMFs can be extracted from the time series y(t) according to the
following shifting procedures [27]: (1) identify the local maxima and the minima; (2) connect all local
extrema points to generate an upper envelope emax(t) and connect all minima points to generate a lower
envelope emin(t) with the spline interpolation, respectively; (3) compute the mean of the envelope,
a(t), from the upper and lower envelopes, where a(t) = (emax(t) + emin(t))/2; (4) extract the mean
from the time series and define the difference between y(t) and a(t) as c(t), where c(t) = y(t) − a(t);
(5) check the properties of c(t): (i) if c(t) satisfies the two conditions illustrated above, an IMF will be
extracted and replace y(t) with the residual, r(t) = y(t)− c(t); (ii) if c(t) is not an IMF, then y(t) will be
replaced by c(t); and (6) the residue r1(t) = y(t) − c1(t) is regarded as the new data subjected to the
same shifting process, which was described above for the next IMF from r1(t). When the residue r(t)
becomes a monotonic function or at most has one local extrema point from which no more IMF can be
extracted [27], the shifting processes can be terminated.

Through the abovementioned shifting process, the original data series y(t) can be expressed as a

sum of IMFs and a residue, y(t) =
m∑

i=1
ci(t) + rm(t), where m is the number of IMFs, rm(t) is the final
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residue, and ci(t) is the ith IMF. All the IMFs are nearly orthogonal to each other, and all have nearly
zero means.

Although the EMD has been widely adopted in handling data series, the mode-mixing problem
still exists. The problem can be defined as either a single IMF consisting of components of widely
disparate scales or a component of a similar scale residing in different IMFs. To overcome this problem,
Wu and Huang [6] proposed the ensemble EMD (EEMD), which adds white noise to the original data,
and thus the data series of different scales can be automatically assigned to proper scales of reference
built by the white noise [7]. The core concept of the EEMD method is to add the white noise into
the data processing. White noise can be viewed as a sequence with zero mean value; this sequence
does not fall under any distribution. Based on different algorithms, the white noise can be assigned to
specific distributions for calculation. In EEMD, the purpose of this method is to make the original
sequence the stable sequence. Hence, this method employs simulation, using the original sequence
to generate various sequences of normal distributions—this is the white noise concept. With this
method, the original sequence can be split into several different sequences. Meanwhile, the sum of
the decomposed sequences equals the original sequence. These decomposed sequences are called
IMFs. This way, the mode-mixing problem can be easily solved. The EEMD procedure is developed as
follows [6]: (1) add a white noise series to the original data; (2) decompose the data with added white
noise into IMFs; (3) repeat steps 1 and 2 iteratively, but with different white noise each time; and (4)
obtain ensemble means of corresponding IMFs as the final results.

In addition, Wu and Huang [6] established a statistical rule to control the effect of added white
noise: en = ε/

√
n, where n is the number of ensemble members, ε represents the amplitude of the

added noise, and en is the final standard deviation of error, which is defined as the difference between
the input signal and the corresponding IMFs. Based on previous studies, the number of ensemble
members is often set to 100, and the standard deviation of white noise is set to 0.2.

3.2. The ARIMA Model

The ARIMA model for forecasting time series was proposed by Box, Jenkins, and Reinsel [28].
The model consists of the autoregressive (AR) and the moving average (MA) models. The AR and
MA models were merged into the ARMA model, which has already become matured in predictions.
The future value of a variable is a linear function of past observations and random errors. Thus,
the ARMA can be defined as

yt = φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q (1)

where yt is the forecasting value; φi is the coefficient of the ith observation; yt−i is the ith
observation; θi is the parameter associated with the ith white noise; εt is the white noise, whose mean
is zero; and εt−i is the noise terms.

The ARMA model can satisfactorily fit the original data when the time series data is stationary.
However, if the time series are nonstationary, the series will be transformed into a stationary time
series using the dth difference process, where d is usually set as 0, 1, or 2. ARIMA is used to model the
differenced series. The process is called ARIMA (p, d, q), which can be expressed as

wt = φ1wt−1 + φ2wt−2 + · · ·+ φpwt−p + εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q (2)

where wt is denoted as ∇dyt. When d equals zero, the model is the same as Equation (1) of ARMA.
The ARIMA model was developed by using the Box–Jenkins method. The procedure of the

ARIMA involves three steps: (1) Model identification: Since the stationary series is indispensable
for the ARIMA model, the data needs to be transformed from a nonstationary one to a stable one.
For the stability of the series, the difference method is essential for removing the trends of the series.
This way, the d parameter is determined. Based on the autocorrelation function (ACF) and the partial
autocorrelation function (PACF), a feasible model can be established. Through the parameter estimation
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and diagnostic checking process, the proper model will be established from all the feasible models.
(2) Parameter estimation: Once the feasible models have been identified, the parameters of the ARIMA
model can be estimated. The suitable ARIMA model based on Akaike’s information criterion (AIC)
and Schwarz’s Bayesian information criterion (BIC) can be further determined. (3) Diagnostic checking:
After parameter estimation, the selected model should be tested for statistical significance. Meanwhile,
hypothesis testing is conducted to examine whether the residual sequence of the model is a white
noise. Based on the above procedures, the forecasting model will be determined. The derived model
will be appropriate as the training model for predictions.

In this research, the ARIMA models will be built by feeding each decomposed data. The separated
ARIMA models will then be integrated with an SVR model for further analysis. Fitting performance is
expected to be enhanced further.

3.3. SVR

SVR was proposed by Vapnik [29], who thought that theoretically, a linear function f exists to
define the nonlinear relationship between the input and output data in the high-dimensional-feature
space. Such a method can be used to solve the function with respect to fitting problems. Based on the
concepts of SVR, the basis function can be described as

f (x) = wT
·ϕ(x) + b, (3)

where f (x) denotes the forecasting values, x is the input vector, w is the weight vector, b is the bias,
and ϕ(x) stands for a mapping function to transform the nonlinear inputs into a linear pattern in a
high-dimensional-feature space.

Conventional regression methods take advantage of the square error minimization method for
modeling the forecasting patterns. Such a process can be regarded as an empirical risk in accordance
with the loss function [29]. Therefore, the ε− insensitive loss function (Tε) is adopted in the SVR and
can be defined as

Tε( f (x), y) =
{ ∣∣∣ f (x) − y

∣∣∣− ε
0

}
if
∣∣∣ f (x) − y

∣∣∣ ≥ ε
otherwise

, (4)

where y is the target output and ε is expressed as the region of ε− insensitive. When the predicted
value falls into the band area, the loss is equal to the difference between the predicted value and the
margin [30]. Tε( f (x), y) is leveraged to derive an optimum hyperplane on the high-feature space to
maximize the distance which can divide the input data into two subsets. The weight vector (w) and
constant (b) in Equations (4) can be estimated by minimizing the following regularized risk function:

P(c) = c
1
n

n∑
i=1

Tε( f (xi), yi) +
1
2
‖w‖2, (5)

where Tε( f (xi), yi) is the ε− insensitive loss function in Equation (5). Here,1/2‖w‖2 plays the regularizer
role, which tackles the problem of trade-off between the complexity and approximation accuracy of the
regression model.

Equation (5) above aims to ensure that the forecasting model has an improved generalized
performance. In the regularization process, c is used to specify the trade-off between the empirical risk
and the regularization terms. Both c and ε can be defined by hyper-parameter search algorithms and
users. These parameters significantly determine the prediction performance of the SVR.

In addition, based on the concept of the tube regression, if the predicted value is within the
ε− tube, the error will be zero. However, if the predicted value is located outside the ε− tube, the error
will be produced. Such an error, the so-called ε− insensitive error, is calculated in terms of the distance
between the predicted value and the boundary of the tube. Since some predicted values exist outside
the tube, the slack variables (ξ+ ξ∗i ) are introduced and defined as tuning parameters. These variables
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stand for the distance from actual values to the corresponding boundary values of the tube. Given the
synchronous structural risk, Equation (5) is transformed into the following constrained form by using
the slack variables:

Minimize 1
2‖w‖

2 + c
n∑

i=1
(ξ+ ξ∗i )

Subject to 
yi − (wT

·ϕ(xi)) − b ≤ ε+ ξi
(wT
·ϕ(xi)) + b− yi ≤ ε+ ξ∗i

ξi, ξ∗i ≥ 0, for i = 1, . . . , n

 (6)

The constant c determines the trade-off between the flatness of f and the amount up to which
deviations larger than ε are tolerated. To solve the above problem, the Lagrange multiplier and the
Karush–Kuhn–Tucker (KKT) conditions will be leveraged. After the derivation, the general form of the
SVR function can be expressed as

f (x, w) = f (x,αi,α∗i ) =
n∑

i=1

(αi − α
∗

i ) ×K(x, xi) + b (7)

where αi and α∗i are the Lagrange multipliers, and K(x, xi) is the inner product of two vectors in the
feature space, ϕ(xi) and ϕ(xj). Here, K(x, xi) is called the kernel function. In general, the most
popular kernel function is the Gaussian radial basis function (RBF), which can be defined as
K(xi, x j) = exp(−‖xi − x j‖

2/2σ2) [29]. In this work, the RBF is employed for predictions. In addition,
since σ is a free parameter, the RBF kernel can be described as K(xi, x j) = exp(−γ‖xi − x j‖

2), where γ is
a parameter of the RBF kernel.

3.4. Optimization by GA

While defining a prediction model, the enhancement of prediction accuracy and the avoidance
of overfitting are the most important tasks. By doing so, the training model can achieve far better
performance in predictions when testing data are inputted. In the SVR-based models, the c, ε, and γ
parameters play a dominant role in determining modeling performance. That is, if these parameters
can be defined correctly and appropriately, the forecasting model will be efficient. To select the best
parameters, the method for searching these parameters will be indispensable. In this work, GA will be
adopted in selecting the optimal values for these three SVR parameters.

GA, a concept first proposed by Holland [31], is a stochastic search method based on the ideas of
natural genetics and the principle of evolution [32,33]. GA works with a population of individual strings
(chromosomes), each of which stands for a possible solution to a given problem. Each chromosome is
assigned a fitness value based on the result of the fitness function [34]. GA allows more opportunities
to fit chromosomes to reproduce the shared features originating from their parent generation. It has
been regarded as a useful tool in many applications and has been extensively applied to derive global
solutions to optimization problems. The algorithm is also applicable to large-scale and complicated
nonlinear optimal problems [35]. The GA procedure is summarized below based on the work by [36]:

Step 1: Randomly generate an initial population of n agents; each agent is an n− bit genotype
(chromosome).

Step 2: Evaluate the fitness of each agent.
Step 3: Repeat the following procedures until n offspring has been created.

(a) Select a pair of parents for mating: A proportion of the existing population is selected to create a
new generation. Thus, the most appropriate members of the population survive in this process
while the least appropriate ones are eliminated.

(b) Apply variation operators (crossover and mutation): Such operators are inspired by the crossover
of the deoxyribonucleic acid (DNA) strands that occur in the reproduction of biological organisms.
The subsequent generation is created by the crossover of the current population.
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Step 4: Replace the current population with the new one.
Step 5: The whole process is finished when the stopping condition is satisfied. Then the best

solution is returned to the current population. Otherwise, the process will go back to Step 2 until the
terminating condition can be satisfied.

3.5. The Proposed Hybrid Model

The abovementioned prediction approaches including ARIMA and SVR deliver good performance in
general since these methods deal with regression problems effectively. For linear models, ARIMA performs
quite well in forecasting time series. However, its prediction performance is limited since it cannot
appropriately predict highly nonlinear and nonstationary time series. Therefore, the data stabilization
technique based on EEMD decomposition is introduced to handle nonlinear data; the nonstationary
process is introduced as well. Complexities such as randomness and intermittence often exist in the
time series. Even if the series have been proceeded by the EEMD, unknown factors that influence
the series remain. To enhance the forecasting accuracy of the EEMD-ARIMA, the SVR method is
integrated. SVR based on the nonlinear method is good at coping with small data and unstable data
series. Thus, the EEMD-ARIMA, integrated with the SVR, will be useful in predicting nonlinear time
series generally and energy consumption specifically. Meanwhile, GA is adopted to derive the best
parameters for SVR, which can improve the performance of the hybrid model.

In general, the proposed EEMD-ARIMA-GA-SVR prediction framework (Figure 1) is composed
of the following steps:
Mathematics 2020, 8, x 10 of 19 

 

 

Figure 1. General procedure of the proposed ensemble empirical mode decomposition- 

autoregressive integrated moving average-genetic algorithm-support vector regression (EEMD)-

(ARIMA)-(GA)-(SVR) modeling framework for primary energy consumption forecasting. 

3.6. Performance Measures for Predictions 

Different measures for prediction errors will be adopted to evaluate the accuracy of the 

prediction models. In this research, the mean absolute error (MAE), mean absolute percentage error 

(MAPE), mean square error (MSE), and root mean square error (RMSE) will be adopted. The four 

metrics are used here to evaluate the forecasting performance. The MAPE and RMSE metrics can be 

useful to explain the performance of predictions. To yield more accurate evaluation results, we 

further provide results being derived by MAE and MSE as references. These performance measures 

are defined below: 

MAE


 
1

1
ˆ

n

t t
i

y y
n

 (8) 

MAPE



 

1

ˆ1
100

n
t t

i t

y y

n y
 (9) 

 MSE


 
2

1

1
ˆ

n

t t
i

y y
n

 (10) 

 RMSE


 
2

1

1
ˆ

n

t t
i

y y
n

 (11) 

where n  stands for the size of the test data and 
t

y  as well as ˆ
t

y  denote the actual value and the 

predicted value. Based on these measures, the lower values of all performance measures represent 

superior forecasting. The MAE reveals how similar the predicted values are to the observed values 

while the MSE and RMSE measure the overall deviations between the fitted and predicted values. 

Generally, the MAPE value should be less than 10%. To prove the effectiveness of the proposed 

hybrid EEMD-ARIMA-GA-SVR model in forecasting, alternative methodologies consisting of 

ARIMA, ARIMA-SVR, ARIMA-GA-SVR, EEMD-ARIMA, and EEMD-ARIMA-SVR will be used as 

benchmark models to compare with proposed model. 

Figure 1. General procedure of the proposed ensemble empirical mode decomposition- autoregressive
integrated moving average-genetic algorithm-support vector regression (EEMD)-(ARIMA)-(GA)-(SVR)
modeling framework for primary energy consumption forecasting.

Step 1: The original time series of primary energy consumptions, yt, t = 1, 2, . . . , n, is decomposed
into m IMF components ci(t), i = 1, 2, . . . , m, and a residual component rm(t) using the EEMD method.

Step 2: ARIMA and SVR are introduced as stand-alone prediction methods to extract the IMFs
and residual of the time series, respectively. Meanwhile, GA is introduced to optimize the parameters
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associated with SVR. Accordingly, the corresponding prediction results for all components can
be obtained.

Step 3: The independent prediction results of all the IMFs and the residual are aggregated as an
output, which can be regarded as the final prediction results of the original time series y(t).

Thus, the fitted values can be accordingly derived from this proposed hybrid prediction framework.
Further, to demonstrate the effectiveness of the proposed hybrid EEMD-ARIMA-GA-SVR framework,
the time series of Taiwanese primary energy consumption will be adopted to verify the feasibility
of the proposed framework. Meanwhile, the prediction results based on ARIMA, ARIMA-SVR,
ARIMA-GA-SVR, EEMD-ARIMA, and EEMD-ARIMA-SVR will be introduced for comparison.

3.6. Performance Measures for Predictions

Different measures for prediction errors will be adopted to evaluate the accuracy of the prediction
models. In this research, the mean absolute error (MAE), mean absolute percentage error (MAPE),
mean square error (MSE), and root mean square error (RMSE) will be adopted. The four metrics are
used here to evaluate the forecasting performance. The MAPE and RMSE metrics can be useful to
explain the performance of predictions. To yield more accurate evaluation results, we further provide
results being derived by MAE and MSE as references. These performance measures are defined below:

MAE =
1
n

n∑
i=1

∣∣∣yt − ŷt
∣∣∣ (8)

MAPE =
1
n

n∑
i=1

∣∣∣∣∣ yt − ŷt

yt

∣∣∣∣∣× 100 (9)

MSE =
1
n

n∑
i=1

(yt − ŷt)
2 (10)

RMSE =

√√
1
n

n∑
i=1

(yt − ŷt)
2 (11)

where n stands for the size of the test data and yt as well as ŷt denote the actual value and the
predicted value. Based on these measures, the lower values of all performance measures represent
superior forecasting. The MAE reveals how similar the predicted values are to the observed values
while the MSE and RMSE measure the overall deviations between the fitted and predicted values.
Generally, the MAPE value should be less than 10%. To prove the effectiveness of the proposed
hybrid EEMD-ARIMA-GA-SVR model in forecasting, alternative methodologies consisting of ARIMA,
ARIMA-SVR, ARIMA-GA-SVR, EEMD-ARIMA, and EEMD-ARIMA-SVR will be used as benchmark
models to compare with proposed model.

To test the differences of means between fitted and actual values, the paired-sample Wilcoxon
signed-rank test is introduced in this research, where µ1 stands for the mean of the actual data while
µ2 represents the mean of the fitted data. The null hypothesis is defined as H0: µ1 − µ2 = 0 while the
alternative hypothesis is defined as H1: µ1 − µ2 , 0. The null hypothesis cannot be rejected while the
result of the subtraction between the mean value of the actual data and the mean value of the fitted
data is 0. Such a case means that there is no mean difference between the fitted data and the actual
data. In other words, the training model is suitable as a prediction model since it is consistent with the
real situation.

4. Forecasting Taiwan’s Primary Energy Consumption

In this section, an empirical case based on Taiwanese primary energy consumption is presented
to verify the feasibility and effectiveness of the proposed hybrid framework. Comparisons with
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other benchmark models will be provided to demonstrate the forecasting capabilities of the proposed
framework. The background of the Taiwanese primary energy consumption will be presented first.
Then the raw data and analytic process will be introduced in Section 4.2. Afterward, the time series
will be decomposed by the EEMD for the predictions in Section 4.3. Modeling via ARIMA will be
introduced in Section 4.4. The predictions of energy consumptions using the EEMD-ARIMA-SVR
model optimized by the GA method will be discussed in Section 4.5. Finally, the evaluations of hybrid
models and forecasting results will be described in Section 4.6.

4.1. Background

Because of its shortage of natural resources, Taiwan relies heavily on energy imports. In managing
energy imports, energy consumption predictions are indispensable. Such energy predictions can help
the government sector define relevant energy policies for sustainable development.

4.2. Raw Data and Modeling Method

In this study, the time series of the Taiwanese primary energy consumption (Figure 2) was adopted
to verify the effectiveness of the prediction models. Annual primary energy consumption from 1965 to
2014 was provided by BP [1]. The time series was separated into two subsets where 90% (46 samples)
of the dataset were chosen as the training set while the remaining 10% (4 samples) were selected as the
test set for verifying the prediction efficiency.Mathematics 2020, 8, x 12 of 19 
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Figure 2. Taiwan’s primary energy consumption (million barrels of oil equivalent). Source: BP Statistical
Review of World Energy 2015.

For accurate predictions, the original dataset will be transformed by the EEMD method. After the
decomposition of the time series, the results of decompositions can be further predicted by the ARIMA
method. Then, the prediction results derived from the ARIMA method will be aggregated as the final
prediction results for energy consumption.

Meanwhile, such procedures can be extended by adopting SVR. Moreover, to help build the
training model and avoid overfitting risks, the k-fold cross-validation was introduced into model
construction within the prediction process. The k-fold cross-validation is used in SVR prediction
error examinations based on selected hyperparameters from GA. In this study, the authors adopt
five-fold cross-validation. A five-fold validation entails that all samples are divided into five portions;
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four of the five portions are used for training, and one of the five portions is for testing. The process
is repeated five times. At first, the GA algorithm generates a set of hyperparameters. Through the
five-fold cross-validation, we can obtain a performance. Next, the GA algorithm will continue to
generate different hyperparameters based on cross-validation, thus obtaining a performance. Finally,
we can select the best hyperparameters in terms of the best performances. The training data was
randomly divided into k subsamples. Among the k samples, the k− 1 subsamples were selected as the
training data, and the remaining subsample was considered as validation data for testing the model.
This research adopted 5-fold cross-validation into the model construction process.

4.3. Data Preprocessing Using EEMD Decomposition

Before conducting the prediction using the proposed hybrid framework, the time series of energy
consumptions will be processed using the EEMD decomposition method, which separates the original
time series into several IMFs and a residue. The results are depicted in Figure 3. The four independent
IMF components correspond to different frequency bands of the time series, which range from high
to low.
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Figure 3. Decomposition results for primary energy consumption via EEMD.

In Figure 3, the IMFs stand for changing frequencies, amplitudes, and wavelengths. IMF1 represents the
highest frequency, maximum amplitude, and the shortest wavelength. The frequencies and amplitudes
associated with the rest of the IMFs are lower while the wavelengths are longer. The residue represents
a mode slowly varying around the long-term average.

4.4. Forecasting with the ARIMA Model

To establish the prediction model of primary energy consumption in terms of the historical time
series dataset, the ARIMA method is introduced. Since the ARIMA model must be built into the series
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stationarity, the d times difference needs to be obtained to have an ARIMA (p, d, q) model with d as the
order of differencing used. To test the stationarity of d times differencing, the augmented Dickey–Fuller
(ADF) test is utilized.

The construction of the ARIMA model depends on model identification. Here, differencing will be
important for solving non-stationarity. Moreover, the order of AR (p) and MA (q) needs to be identified.
Through ACF and PACF, the order of AR (p) and MA (q) can further be determined [28]. However,
the ACF and PACF method may not be useful when performing hybrid ARMA processes. Commonly,
AIC or BIC measures can be used to easily inspect the appropriateness of the ARMA model. In this
research, the best forecasting model is determined based on AIC measures and statistically significant
results. Once the forecasting model has been selected, the nonlinear method based on the optimization
approach will be integrated into this model.

First, the stationary test for the decomposed data series and the first difference of the original time
series derived from the ADF test is implemented and shown in Table 1. According to the results of the
ADF test, all the data series belonged to the stationary. That is, all the transformed data can be used to
model constructions.

Table 1. Stationary analysis of primary energy consumption in Taiwan.

Difference and
Decomposition

Specification t-Value
Critical Value

1% 5% 10%

First difference
of original

values

Trend −4.267 −4.150 −3.500 −3.180
Drift −2.869 −3.580 −2.930 −2.600
None −1.792 −2.620 −1.950 −1.610

IMF1
Trend −10.045 −4.150 −3.500 −3.180
Drift −10.000 −3.580 −2.930 −2.600
None −10.022 −2.620 −1.950 −1.610

IMF2
Trend −9.793 −4.150 −3.500 −3.180
Drift −9.954 −3.580 −2.930 −2.600
None −10.066 −2.620 −1.950 −1.610

IMF3
Trend −4.431 −4.150 −3.500 −3.180
Drift −4.797 −3.580 −2.930 −2.600
None −4.801 −2.620 −1.950 −1.610

IMF4
Trend −46.468 −4.150 −3.500 −3.180
Drift −20.728 −3.580 −2.930 −2.600
None −7.099 −2.620 −1.950 −1.610

To further determine the parameters of the ARIMA order, ACF and PACF will be utilized.
Likewise, such a procedure can also be followed for the decomposed data set using EEMD. To simplify
the analytical procedure of EEMD-ARIMA, the corresponding ACF and PACF diagrams are not
presented here.

Through the AIC and the statistical significance test, the suitable ARIMA models can be derived
for the first difference time series and decomposed time series via the EEMD. Then the optimal form
is specified as ARIMA(1,1,1). Table 1 shows the test results in the first difference of the original
sequence. The original sequence is not stationary. Based on the first difference in the original difference,
the sequence shows a stable status. Therefore, the difference d will be set as 1. IMF1 ~ IMF4 and
the residual are derived from the original sequence using the EEMD method. The sum of the IMFs
and the residual is equal to the original sequence. The rationality has already been explained in
the fourth paragraph of Section 3.1, where the original sequence was split into several different
sequences. The sum of decomposed sequences equals to original sequence. Finally, after determining
the proper parameters of the ARIMA models, whether the residual of the selected model possesses the
autocorrelation problem should be confirmed. Therefore, the ACF and PACF tests were conducted to
verify the selected model. Figure 4 demonstrates the estimated residuals using the ACF and PACF tests.
According to the test results, no autocorrelation and partial autocorrelation exist within the residuals.
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4.5. Forecasting with the EEMD-ARIMA-SVR Model Optimized by the GA Method

After building the EEMD-ARIMA model, the SVR method will be introduced to reduce the errors
produced by ARIMA and enhance forecasting accuracy. According to earlier works, the prediction
performance of the SVR method is outstanding; further, it can be fused with other nonlinear or
linear methods successfully. Thus, after building the EEMD-ARIMA model, the SVR method will be
introduced to reduce the errors produced by ARIMA and enhance forecasting accuracy.

Regarding the hybrid models in this research, the ARIMA initially served as a preprocessor to
filter the linear pattern of the decomposed data series. Then, the error terms of the ARIMA model
were fed into the SVR model to improve prediction accuracy. Generally, three parameters, c, ε, and γ,
can influence the accuracy of the SVR model. Currently, no clear definition and standard procedure
are available for determining the above three parameters [21]. However, the improper selection of the
three parameters will cause either overfitting or underfitting. To prevent these, the GA method with
cross-validation will be introduced to derive the best parameters for constructing the forecasting model.
Meanwhile, some studies have pointed out that the utilization of the RBF can yield better prediction
performance [21,22]. Thus, the RBF kernel with the 5-fold cross-validation based on the RMSE measure
is adopted to help derive the best parameters of the SVR using GA. The above procedures will be
applied to the ARIMA-SVR and EEMD-ARIMA-SVR models.

In GA, the number of iterations is set as 100, the population size is defined as 50, and the maximum
number of iterations is defined as 50. The search boundaries for c, ε, and γ are within the intervals
[ 10−4, 102 ], [ 10−4, 2 ], and [ 2−4, 22 ], respectively. The optimal values for c, ε, and γ can
thus be 0.441, 3.813, and 0.219, respectively. Further, the c, ε, and γ parameters of the decomposed
time series belonging to the four independent IMFs and the residual (Figure 3) are summarized in
Table 2. Once the parameters have been derived using GA, the optimal hybrid prediction model can
be established.

Table 2. The parameter selection of forecasting model optimized by GA.

Models c γ ε

ARIMA-GA-SVR 0.441 3.813 0.219

EEMD-ARIMA-GA-SVR

IMF1 0.995 1.072 0.195
IMF2 4.775 0.852 0.100
IMF3 0.751 1.134 0.461
IMF4 0.304 3.308 0.470
Residuals 0.022 1.501 0.352
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4.6. Evaluations of Hybrid Models and Forecasting Results

After the construction of the hybrid models, the effectiveness of predictions will be
compared further with those of different models including ARIMA, ARIMA-SVR, ARIMA-GA-SVR,
EEMD-ARIMA, and EEMD-ARIMA-SVR. The superiority of the proposed EEMD-ARIMA-GA-SVR
model of forecasting capability will be verified accordingly. The parameters derived using the GA
with the fivefold cross-validation will be utilized to construct the SVR model. The parameters can
yield better forecasting performances in related ARIMA-SVR models.

Based on the proposed hybrid framework and the five models for comparisons, the primary
energy consumption in Taiwan for 2010–2014 is predicted and summarized in Table 3. According to
the prediction results, EEMD-ARIMA-SVR and EEMD-ARIMA-GA-SVR outperformed the other four
models. Meanwhile, the prediction results derived using ARIMA and ARIMA-SVR were unsatisfactory
from the aspect of inconsistencies between predicted versus actual values. The four prediction
performance measures, MAE, MAPE, MSE, and RMSE, derived from the six training models versus the
actual values are illustrated in Figure 5 and summarized in Table 4. Based on the results of comparisons,
the proposed model outperformed ARIMA. MAE and MSE decreased by 70.43% and 93.28% in the
training stage, respectively; further, the two measures decreased by 71.89% and 88.51% in the testing
stage, respectively. From the aspects of MAPE and RMSE, both measures improved by 64.68% and
74.07% in the training stage, respectively; they also improved by 71.85% and 66.10% in the testing
stage, respectively.

Table 3. Data Test by four sample ranging from 2011 to 2014.

Year 2011 2012 2013 2014

Actual 109.542 109.797 110.959 112.019
ARIMA 111.896 114.527 117.200 119.914
ARIMA-SVR 110.579 113.137 115.735 118.372
ARIMA-GA-SVR 110.071 112.591 115.160 117.777
EEMD-ARIMA 113.174 110.733 111.934 115.542
EEMD-ARIMA-SVR 112.222 110.112 110.809 115.061
EEMD-ARIMA-GA-SVR 112.057 110.075 110.678 114.912
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The proposed model outperformed ARIMA-SVR. MAE and MSE decreased by 67.85% and 91.59%
in the training stage, respectively; further, the two measures decreased by 61.52% and 80.31% in the
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testing stage, respectively. Meanwhile, MAPE and RMSE improved by 62.26% and 71.01% in the
training stage and by 61.44% and 55.63% in the testing stage, respectively.

Table 4. Comparison of forecasting indices.

Models
Training Testing

MAE MAPE (*) MSE RMSE MAE MAPE (*) MSE RMSE

ARIMA 1.397 3.704 5.669 2.381 5.305 4.782 32.301 5.683
ARIMA-SVR 1.285 3.467 4.535 2.130 3.877 3.491 18.851 4.342
ARIMA-GA-SVR 1.257 3.408 4.246 2.061 3.320 2.988 14.723 3.837
EEMD-ARIMA 0.499 1.429 0.611 0.781 2.266 2.048 6.856 2.618
EEMD-ARIMA-SVR 0.425 1.351 0.388 0.623 1.547 1.396 4.139 2.034
EEMD-ARIMA-GA-SVR 0.413 1.308 0.381 0.617 1.492 1.346 3.711 1.926

Remark: *: numbers in percentage.

Compared with ARIMA-GA-SVR, the proposed model performed better as well. MAE and MSE
decreased by 67.14% and 91.02%, in the training stage and by 55.08% and 74.79% in the testing stage,
respectively. Further, MAPE and RMSE improved by 61.61% and 70.04% in the training stage and by
54.96% and 49.79% in the testing stage, respectively. Based on the above comparison results, the hybrid
model integrated with the EEMD method showed better forecasting performance than other models
without the data decomposition process.

The proposed model also outperformed EEMD-ARIMA. MAE and MSE decreased by 17.17% and
37.57% in the training stage and by 34.19% and 45.87% in the testing stage, respectively. Meanwhile,
MAPE and RMSE were enhanced by 8.41% and 20.98% in the training stage and by 34.27% and 26.43%
in the testing stage, respectively.

Compared with EEMD-ARIMA-SVR, the proposed framework performed better. From the aspect
of MAE and MSE, the proposed framework outperformed EEMD-ARIMA-SVR by reducing both
measures by 2.76% and 1.80% in the training stage and by 3.57% and 10.33% in the testing stage,
respectively. At the same time, MAPE and RMSE were enhanced by 3.19% and 0.91% in the training
stage and by 3.58% and 5.30% in the testing stage, respectively.

More specifically, from the aspect of training models, the hybrid models including
EEMD-ARIMA-SVR and EEMD-ARIMA-GA-SVR performed better, with relatively smaller residual
errors in comparison with results derived from any stand-alone or hybrid models. The predictions
based on the models without the EEMD decomposition show the limited forecasting capability
of the training models. Similarly, from the perspective of the testing model, the proposed model
achieved better performance in predicting primary energy consumption. In this study, the comparison
results show that the hybrid models with EEMD decomposition can significantly reduce overall
forecasting errors. That is, the EEMD method is useful in manipulating the nonstationary time series;
thus, better prediction results can be derived by integrating other forecasting methods. Further,
GA can reduce forecasting errors by ARIMA-SVR. Based on the analytical results, the proposed
EEMD-ARIMA-GA-SVR is a powerful tool and model for energy consumption prediction.

Finally, to identify the significant differences between the prediction results of any two models
adopted in this work, the Wilcoxon signed-rank test is performed. This test was adopted extensively
in examining the prediction results of two different models and justifying whether these results are
significantly different based on small samples [37,38]. The null and alternative hypotheses are described
as follows:

H0: µ1 − µ2 = 0 (null hypothesis) and

H1: µ1 − µ2 , 0 (alternative hypothesis),

where µ1 represents the mean of the actual data and µ2 stands for the mean of the predicted data.
The Wilcoxon test can easily determine whether the mean differences are significant or not. All the
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p-values derived from the testing of the six pairs of methods were higher than 0.05. That is, no mean
differences are observed between the test and predicted values derived from each method.

5. Conclusions

This study presented a hybrid prediction model consisting of ARIMA, SVR, EEMD, and GA.
The empirical results have verified the feasibility of the proposed method. Such a hybrid model that
combines linear and nonlinear patterns based on the ARIMA and the SVR models as well as adopts
data preprocessing and parameter optimization for time series predictions can produce more precise
prediction results. From the aspect of limitations and future research possibilities, different datasets on
energy consumption can be used at the same time to evaluate whether the forecasting performance of
the proposed model will be the best among all prediction models. The data post-processing procedure
can be integrated; the differences of the prediction results derived from the proposed model and the
framework consisting of the post-processing procedure can be compared. In the future, a dynamic
procedure in terms of multiple-step-ahead forecasting can be adopted to replace the one-step-ahead
forecasting techniques being used in this work. Much more meaningful and valuable information can
be derived for decision-makers in energy predictions.
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