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Abstract: Surrogate modeling techniques are widely used to replace the computationally expensive
black-box functions in engineering. As a combination of individual surrogate models, an ensemble
of surrogates is preferred due to its strong robustness. However, how to select the best quantity
and variety of surrogates for an ensemble has always been a challenging task. In this work, five
popular surrogate modeling techniques including polynomial response surface (PRS), radial basis
functions (RBF), kriging (KRG), Gaussian process (GP) and linear shepard (SHEP) are considered as
the basic surrogate models, resulting in twenty-six ensemble models by using a previously presented
weights selection method. The best ensemble model is expected to be found by comparative studies
on prediction accuracy and robustness. By testing eight mathematical problems and two engineering
examples, we found that: (1) in general, using as many accurate surrogates as possible to construct
ensemble models will improve the prediction performance and (2) ensemble models can be used as an
insurance rather than offering significant improvements. Moreover, the ensemble of three surrogates
PRS, RBF and KRG is preferred based on the prediction performance. The results provide engineering
practitioners with guidance on the superior choice of the quantity and variety of surrogates for
an ensemble.

Keywords: ensemble of surrogates; surrogate models; prediction accuracy; robustness

1. Introduction

Surrogate models, also called metamodels, utilize interpolation and regression methods to
approximate the computation-intensive black-box functions. They has attracted more attention in
recent decades. Researchers are expecting to develop a best surrogate modeling technique for all
engineering applications. Therefore, many comparative studies on surrogate modeling techniques
under multiple modeling criteria are presented. Jin et al. [1] provide the first systematic comparative
report on the performances of four surrogates polynomial response surface (PRS), radial basis
functions (RBF), kriging (KRG) and multivariate adaptive regression splines (MARS) based on multiple
performance criteria and multiple test problems. The results show that these four surrogate modeling
techniques have both advantages and disadvantages. Mullur [2] proposes an extended radial basis
function (E-RBF), which offers more flexibility than the typical radial basis functions (RBF). To further
understand the advantages and limitations of this new surrogate modeling technique, Mullur and
Messac [3] compared the performances of E-RBF to that of PRS, RBF, KRG. The E-RBF is found to
outperform the other surrogate models. Zhao and Xue [4] observed the relationships between the
sample quality merits and the performance measures of the PRS, RBF, KRG and Bayesian neural
network (BNN) models. They provide simple guidelines to select the candidate surrogate models
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according to the sample quality merits and the performance measures. Gelder et al. [5] carry out a
comparative study of five surrogate modeling techniques containing PRS, RBF, KRG, MARS and neural
networks (NN). This work contributes to guiding users to select a reliable and time-efficient surrogate
modeling technique for building energy simulations and they recommend KRG and NN models. Salem
and Tomaso [6] proposed an automatic selection method to determine the most suitable surrogate
models for the specific problems. They measured the quality of general surrogate models based on the
internal accuracy, predictive performance and a roughness penalty. Keane and Voutchkov [7] compared
and contrasted a wide range of surrogate models for aerodynamic section performance modeling.
They found that the NN model outperforms many existing surrogate modeling techniques when large
quantities of data are available. Kianifar and Campean [8] evaluated the performances of surrogate
modeling techniques PRS, RBF, KRG using eighteen test problems and four engineering examples. The
results show that KRG performs consistently well across different problems although it can be very
time-consuming for large samples. It has been proved that different surrogate modeling techniques
with diverse characteristics are suitable for different engineering problems. Most researchers face the
difficulties of selecting the appropriate surrogate models for their own engineering applications. Thus,
there is a great interest in an intuitive way to combine multiple surrogate models.

Research focusing on the ensembles of surrogates in the literature can be divided into two parts:
(1) the measures for evaluating the weight factors, (2) the engineering applications using ensembles of
surrogates. According to the measures for evaluating the weight factors, existing ensemble modeling
techniques can be generally classified as global measures [9–13], local measures [14–18] and combing
global and local measures [19,20]. The weight factors evaluated by global measures remain constant
over the entire design space. Goel et al. [9] allocate weight factors for the chosen individual surrogates
PRS, RBF, and KRG by using the generalized mean square cross-validation error (GMSE). They state
that the ensemble of surrogates can improve the robustness of the predictions by reducing the impact
of a poor surrogate model. Acar and Rais-Rohani [10] consider that the selection of weight factors
can be directly determined based on the minimization of the certain global error metric. The results
show that the optimized ensemble model provides more accurate predictions than the stand-alone
surrogates. In contrast, the weight factors evaluated by local measures are pointwise changed with the
variation of prediction points. Lee and Choi [15] presented a new pointwise ensemble of surrogates
whose weights are calculated by using a v nearest points cross-validation error. The regression models
are also suggested as basic surrogates for ensemble construction, it can interpolate the function values
at training points by the proposed control function. To take advantages of both global and local
measures, Chen et al. [19] divided the design space into two parts, whereas the weight factors are
evaluated by using the different strategies, respectively. A large proportion of research indicates
that the ensemble of surrogates can provide more accurate and robust results. Therefore, successful
engineering applications using ensembles of surrogates are continuously reported [21–26]. Hamza
and Saitou [21] presented a multi-scenario co-evolutionary genetic algorithm (MSCGA) for vehicle
structural crashworthiness via an ensemble of surrogates. Gu et al. [22] employed an ensemble of
surrogates to deal with the reliability-based design optimization for a vehicle occupant protection
system. Dhamotharan et al. [23] proposed an ensemble of surrogates based optimization framework
for Savonius wind turbine design. Chen and Lu [24] developed a new adaptive approach for reliability
analysis by the ensemble learning of multiple competitive surrogate models including KRG, support
vector regression (SVR) and polynomial chaos expansion. In all instances, the quantity and variety of
individual surrogates in the ensembles are chosen in advance.

This work aims to carry out a systematic and comprehensive study on selecting the best quantity
and variety of surrogates for an ensemble. Five classical surrogates including PRS, RBF, KRG, GP
and SHEP are used as the basic surrogate models for building twenty-six ensembles whose weight
factors are determined by the authors’ previous work [27]. The performances of twenty-six ensembles
along with five individual surrogates are measured using prediction accuracy and robustness. Thus,
guidelines for selecting the appropriate quantity and variety of surrogates for an ensemble are proposed.
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2. Research Objectives

The question of how to determine the weight factors for constructing an ensemble of
surrogates, attracts most researchers’ attention. Thus, many weights selection methods have been
presented [9,10,14,15,27,28]. When forming an ensemble of surrogates, we generally select the basic
surrogate models according to past experience and personal preference. However, it’s possible that
selecting inappropriate surrogates will result in a loss of accuracy. Moreover, selecting excessive
surrogates will lead to a loss of modeling efficiency. The research objective presented in this work, is to
carry out a systematic and comprehensive study to answer the following two questions:

(1) How to select the appropriate variety of surrogates for an ensemble? Do we need to use surrogates
that are as accurate as possible?

(2) How to select the appropriate quantity of surrogates for an ensemble? Do we need to use as
many surrogates as possible?

We do not discuss the measures for evaluating the weight factors in this paper. The existing
weights selection method presented in the authors’ previous work is used [27]. It will be briefly
introduced in the next section.

3. Weights Selection Method

Intelligent selection of weights is important for building a superior ensemble of surrogates. The
weights are carefully allocated to improve the overall prediction accuracy of the ensemble. Goel et al. [9]
consider that the weights should not only reflect the confidence in the surrogates, but also filter out the
adverse effects of surrogates which perform poorly in sampling sparse regions. A weights selection
method addressing these two issues is proposed and formulated as:

wi = w∗i

/
m∑

i=1
w∗i , w∗i =

(
Ei + αE

)β
,

E = 1
m

m∑
i=1

Ei, α < 1, β < 0
(1)

where wi is the weight associated with the ith basic surrogate, Ei is the given error measure of the ith
basic surrogate, E indicates the average value of all surrogates’ error measures. This weighting scheme
needs to specify two parameters α and β which control the importance of averaging and individual
surrogates, respectively. Goel et al. [9] found that α = 0.05 and β = −1 results in a better ensemble
model in their study.

Acar and Rais-Rohani [10] considered that the fixed values of two key parameters α and β will
lead to a loss of flexibility. Inspired by the work from Goel et al. [9], Acar and Rais-Rohani [10] selected
the weights by solving an optimization problem of the form:

Find wi
min εe = Err

{
ŷe(wi, ŷi(xk)), y(xk)

}
, k = 1, 2, . . . N

s.t.
m∑

i=1
wi(x) = 1

(2)

where Err{} indicates the chosen error metric that measures accuracy of the ensemble model ŷe. N is
the number of training points, y(xk) denotes the true response value at the kth sample point xk, ŷi(xk)

indicates the predicted response of the ith basic surrogate at the kth sample point xk. It is noticed that
the number of optimal parameters in this weights selection method equals to the number of basic
surrogates. That is, the more surrogates that are used to construct the ensemble of surrogates, the more
computational cost is required. Here, we advise the parameters α and β can be optimized to minimize
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the error measure of the ensemble model. We propose a weights selection method through solving the
optimization problem formulated as:

Find α, β

min Ee =

√
1
N

N∑
k=1

(
y(xk) −

m∑
i=1

wi·ŷ
(−k)
i (xk)

)2

wi = w∗i

/
m∑

i=1
w∗i , w∗i =

(
Ei + αE

)β
,

E = 1
m

m∑
i=1

Ei, Ei =

√
1
N

N∑
k=1

(
y(xk) − ŷ(−k)

i (xk)
)2

s.t. α < 1 , β < 0, Ei + αE > 0

(3)

where Ee and Ei represent the error measure, i.e., Prediction sum of squares of root mean square
(PRESSRMS) of the ensemble model and ith basic surrogate, respectively. ŷ(−k)

i (xk) indicates the
predicted response of the ith basic surrogate generated using N − 1 training points without the kth
sample point xk(i.e., leave-one-out cross-validation strategy). Here, a more restrictive constraint
Ei + αE > 0 is added to improve the quality of the proposed weights selection method in contrast to
the work [9,10]. The MATLAB® function “fmincon” is employed to produce the sequential quadratic
programming (SQP) algorithm for solving this optimization problem.

4. Numerical Experiments

4.1. Basic Surrogate Models and Derived Ensemble Models

Five basic surrogate models including PRS, RBF, KRG, GP and SHEP are selected to form twenty-six
different ensembles of surrogates. For the sake of simplicity, the selected individual surrogates and
formed ensemble models are named as IS1~IS5 and ES1~ES26, respectively. Table 1 provides details
about twenty-six ensemble models and five basic surrogates used during the investigation. The
SURROGATES toolbox developed by Viana [29] was employed to build five basic surrogate models.
The SURROGATES toolbox fits the radial basis function model using the RBF toolbox of Jekabsons [30],
fits the KRG model using the DACE toolbox of Lophaven et al. [31], and fits the GP model using the
GP toolbox of Forrester [32]. PRS is a typical regression method that has benefits in handling convex
problems. The second-order fully quadratic polynomial is used in this work. And the unknown
regression coefficients can be determined by the least squares method. The RBF model is more
appropriate for predicting the scattered multivariate data. It is composed of multiple radial basis
functions. The RBF model is based on the multi-quadric formulation with the constant, c = 1. The KRG
model is good at dealing with nonlinear problems. It estimates the value of a function as a combination
of a known function and unknown departures. A Gaussian correlation function and a constant trend
model are used in the KRG model. The GP model provides a flexible model and model-based estimate
of the prediction error even if the simulation itself is deterministic. It can also be used when the
simulation is stochastic, although this requires an extension of the model. The covariance function in the
GP model is selected as the squared exponential function with an automatic relevance determination
distance measure. The SHEP model is well suited for interpolating the material density field by using
nodal density values. The linear Shepard interpolation scheme is employed to build the SHEP model.
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Table 1. Information on the selected individual surrogates and forming ensemble models.

Abbreviation Surrogates Selected Abbreviation Surrogates Selected

IS1 PRS ES11 PRS-RBF-KRG
IS2 RBF ES12 PRS-RBF-GP
IS3 KRG ES13 PRS-RBF-SHEP
IS4 GP ES14 PRS-KRG-GP
IS5 SHEP ES15 PRS-KRG-SHEP
ES1 PRS-RBF ES16 PRS-GP-SHEP
ES2 PRS-KRG ES17 RBF-KRG-GP
ES3 PRS-GP ES18 RBF-KRG-SHEP
ES4 PRS-SHEP ES19 RBF-GP-SHEP
ES5 RBF-KRG ES20 KRG-GP-SHEP
ES6 RBF-GP ES21 PRS-RBF-KRG-GP
ES7 RBF-SHEP ES22 PRS-RBF-KRG-SHEP
ES8 KRG-GP ES23 PRS-RBF-GP-SHEP
ES9 KRG-SHEP ES24 PRS-KRG-GP-SHEP

ES10 GP-SHEP ES25 RBF-KRG-GP-SHEP
/ / ES26 PRS-RBF-KRG-GP-SHEP

4.2. Test Problems

The prediction capability of surrogate models is tested by eight mathematical problems and
two engineering examples from the publications [10,27]. The specific mathematical formulas are
summarized as follows

(1) Branin-Hoo (BH) function with n = 2

f (x) =
[
x2 − 5.1(x1/2π)2 + (5/π)x1 − 6

]
2 + 10[1− (1/8π)] cos x1 + 10, x1 ∈ [−5, 10] , x2 ∈ [0, 15] (4)

(2) Camelback function (CB) with n = 2

f (x) = 4x2
1 − 2.1x4

1 + x6
1/3 + x1x2 − 4x2

2 + 4x4
2, x1 ∈ [−3, 3] , x2 ∈ [−2, 2] (5)

(3) Goldstein and Price function (GF) with n = 2

f (x) =
[
1 + (x1 + x2 + 1)2

(
19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)]
∗[

30 + (2x1 − 3x2)
2
(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

)]
, x ∈ [−2, 2]n

(6)

(4) Hartman function (HN3) with n = 3

f (x) = −
4∑

i=1

ci exp

− n∑
j=1

αi j
(
x j − pi j

)2 , x ∈ [0, 1] n (7)

αi j =


3 10 30

0.1 10 35
3 10 30

0.1 10 35

, pi j =


0.3689 0.1170 0.2673
0.4699 0.4387 0.7470
0.1091 0.8732 0.5547
0.03815 0.5743 0.8828

, ci =


1

1.2
3

3.2


(5) Shekel function (SK) with n = 4

f (x) = −
5∑

i=1

 n∑
j=1

(
x j − ai j

)2
+ ci

 −1, x ∈ [0, 10]n (8)
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[
ai j

]
=


4
1
8
6
3

4
1
8
6
7

4
1
8
6
3

4
1
8
6
7


, ci =

[
0.1 0.2 0.2 0.4 0.4

]

(6) Hartman function (HN6) with n = 6

f (x) = −

4∑
i=1

ci exp

− n∑
j=1

αi j
(
x j − pi j

)2
, i = 1, 2, . . . , n. ci =

[
1 1.2 3 3.2

]
, x ∈ [0, 1] n (9)

[
ai j

]
=


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14

 ,
[
pi j

]
=


1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

 ∗ 10−4

(7) Extended Rosenbrock function (ER) with n = 9

f (x) =
n−1∑
i=1

[
(1− xi)

2 + 100
(
xi+1 − x2

i

)2
]
, x ∈ [−5, 10]n (10)

(8) Dixon-Price function (DP) with n = 12

f (x) = (x1 − 1)2 +
n∑

i=2

i
(
2x2

i − xi−1
)2

, x ∈ [−10, 10]n (11)

(9) The tension spring design (TSD) problem is taken from Arora [33]. The schematic of this design
is illustrated in Figure 1. The objective is to minimize the weight of a tension spring, whose
response function is written as

f (x) = (2 + x3)x2
1x2,

x1 ∈ [0.05, 2], x2 ∈ [0.25, 1.3], x3 ∈ [2, 15]
(12)

Three variables are identified: diameter x1, mean coil diameter x2, and number of active coils x3.
(10) The I-beam design (IBD) problem was firstly presented by Messac and Mullur [34]. The schematic

of this design is illustrated in Figure 2. It aims to minimize the vertical deflection of an I-beam,
whose objective function is formulated as

f (x) = 5000
/(

1
12 x3(x1 − 2x4)

3 + 1
6 x2x3

4 + 2x2x4
( x1−x4

2

)2
)

x1 ∈ [10, 80], x2 ∈ [10, 80], x3 ∈ [0.9, 5], x4 ∈ [0.9, 5]
(13)

Mathematics 2020, 8, x FOR PEER REVIEW 6 of 19 

 

(6) Hartman function (HN6) with n = 6 

( ) ( ) [ ] [ ]
4 2

1 1
exp , 1,2,..., . 1 1.2 3 3.2 , 0, 1

n
n

i ij j ij i
i j

f x c x p i n c xα
= =

 
=− − − = = ∈ 

 
    (9) 

-4

10 3 17 3.5 1.7 8 1312 1696 5569 124 8283 5886
0.05 10 17 0.1 8 14 2329 4135 8307 3736 1004 9991

, *10
3 3.5 1.7 10 17 8 2348 1451 3522 2883 3047 6650

17 8 0.05 10 0.1 14 4047 8828 8732 5743 1091 381

ij ija p

   
   
      = =      
   
   

 

 

(7) Extended Rosenbrock function (ER) with n = 9 

( ) ( ) ( ) [ ]
1 22 2

1
1

1 100 , 5,10
n

n
i i i

i
f x x x x x

−

+
=

 = − + − ∈ −     (10) 

(8) Dixon-Price function (DP) with n = 12 

( ) ( ) ( ) [ ]22 2
1 1

2
1 2 , 10, 10

n
n

i i
i

f x x i x x x−
=

= − + − ∈ −   (11) 

(9) The tension spring design (TSD) problem is taken from Arora [33]. The schematic of this design 
is illustrated in Figure 1. The objective is to minimize the weight of a tension spring, whose 
response function is written as 

( ) ( ) 2
3 1 2

1 2 3

2 ,
[0.05, 2], [0.25, 1.3], [2, 15]

f x x x x
x x x

= +
∈ ∈ ∈

  (12) 

Three variables are identified: diameter x1, mean coil diameter x2, and number of active coils x3. 

2x

1x
 

Figure 1. Schematic of tension spring design (TSD). 

(10) The I-beam design (IBD) problem was firstly presented by Messac and Mullur [34]. The 
schematic of this design is illustrated in Figure 2. It aims to minimize the vertical deflection of 
an I-beam, whose objective function is formulated as 

( )
2

3 3 1 4
3 1 4 2 4 2 4

1 2 3 4

1 1( ) 5000 2 2
12 6 2

[10, 80], [10, 80], [0.9, 5], [0.9, 5]

x xf x x x x x x x x

x x x x

 − = − + +     
∈ ∈ ∈ ∈

  (13) 

The known parameters for the IBD problem include: Young’s modulus of elasticity E = 20000 
kN/cm2, maximal bending forces P = 600 kN and length of the beam L = 200 cm. 

Figure 1. Schematic of tension spring design (TSD).



Mathematics 2020, 8, 1721 7 of 19

Mathematics 2020, 8, x FOR PEER REVIEW 7 of 19 

 

1x

2x

3x

4x

L P

2L

 
Figure 2. Schematic of I-beam design (IBD). 

The Latin hypercube sampling (LHS) method is used to determine the locations of the points 
for all test problems. The MATLAB® function “lhsdesign” and “maximin” criterion with a 
maximum of 100 and 10 iterations are employed to generate the training points and test points, 
separately. The details about the training and test data for each test problem are given in Table 2. As 
shown in Table 2, the training set for each test problem is composed of 12 to 182 points depending 
on the number of input variables. In order to reduce the influence of random sampling, 1000 
different training sets are used for all test problems. 

Table 2. Summary of training and test data used for each test problem. 

Fun. No. of Design Variables No. of Training Points No. of Test Points No. of Training Sets 
BH 2 12 441 1000 
CB 2 12 441 1000 
GF 2 12 441 1000 

HN3 3 36 512 1000 
TSD 3 36 512 1000 
SK 4 36 512 1000 
IBD 4 36 512 1000 
HN6 6 56 512 1000 
ER 9 110 1000 1000 
DP 12 182 1000 1000 

4.3. Performance Measures 

The prediction accuracy of five individual surrogate models and twenty-six ensemble models is 
evaluated by three classical performance measures including the coefficient of determination R2, 
root mean square error (RMSE) and maximum absolute error (MAE) [35–37]. They are expressed as 

( )
( )( )

( ) ( )
2

1 ˆ ˆ
ˆ,

ˆ
V
y y y y dVVR y y
y yδ δ

− −
=    (14) 

( )2

1

ˆRMSE
K

i i
i
y y K

=

= −   (15) 

1
ˆMAE Max i ii K

y y
≤ ≤

= −   (16) 

where K is the number of test points, yi and ˆiy  are the actual and predicted response values at the 
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The known parameters for the IBD problem include: Young’s modulus of elasticity E = 20000
kN/cm2, maximal bending forces P = 600 kN and length of the beam L = 200 cm.

The Latin hypercube sampling (LHS) method is used to determine the locations of the points for
all test problems. The MATLAB® function “lhsdesign” and “maximin” criterion with a maximum
of 100 and 10 iterations are employed to generate the training points and test points, separately. The
details about the training and test data for each test problem are given in Table 2. As shown in Table 2,
the training set for each test problem is composed of 12 to 182 points depending on the number of
input variables. In order to reduce the influence of random sampling, 1000 different training sets are
used for all test problems.

Table 2. Summary of training and test data used for each test problem.

Fun. No. of Design Variables No. of Training Points No. of Test Points No. of Training Sets

BH 2 12 441 1000
CB 2 12 441 1000
GF 2 12 441 1000

HN3 3 36 512 1000
TSD 3 36 512 1000
SK 4 36 512 1000
IBD 4 36 512 1000
HN6 6 56 512 1000
ER 9 110 1000 1000
DP 12 182 1000 1000

4.3. Performance Measures

The prediction accuracy of five individual surrogate models and twenty-six ensemble models is
evaluated by three classical performance measures including the coefficient of determination R2, root
mean square error (RMSE) and maximum absolute error (MAE) [35–37]. They are expressed as

R2(y, ŷ) =
1
V

∫
V (y− y)

(
ŷ− ŷ

)
dV

δ(y)δ(ŷ)
(14)

RMSE =

√√√ K∑
i=1

(yi − ŷi)
2
/
K (15)

MAE = Max
1≤i≤K

∣∣∣yi − ŷi
∣∣∣ (16)

where K is the number of test points, yi and ŷi are the actual and predicted response values at the ith
test point, separately. yi and ŷ are the average values of actual and predicted response values at all test
points, respectively. In this work, the MATLAB® function “corrcoef ” is employed to calculate R2. A
larger R2 and smaller RMSE and MAE would indicate a good prediction capability.
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5. Results and Discussions

The prediction accuracy and robustness of all twenty-six ensemble models derived from five basic
surrogate models PRS, RBF, KRG, GP, SHEP were tested and compared and the results are presented in
this section. The average values of the performance measures R2, RMSE and MAE for all test problems
are given in Tables 3–5. In order to facilitate the comparison, the average values of RMSE and MAE are
normalized with respect to the most accurate stand-alone surrogates while the R2 metric is not (since it
is already a normalized value). The best values of each performance measure are shown in boldface.
Thereinto, the numbers in brackets indicate the ranks of the prediction accuracy and the summation of
ranks for all test problems are also provided. As shown in Tables 3–5, there is no one surrogate model
that performs the best for all test problems. The individual surrogate models IS1 (PRS) and IS2 (RBF)
perform the best for test problem CB and GF, respectively, while IS3 (KRG) performs the best for test
problem BH. That is, the ensemble of surrogates may be less accurate than individual surrogates for
some certain problems. Moreover, the stand-alone surrogate models PRS, RBF and KRG generally
perform better than the GP and SHEP models. It is unclear how to accurately and efficiently select the
appropriate surrogate models.

Firstly, we will discuss the first question from Section 2. Do we need to use surrogates that are
as accurate as possible? As shown in Table 3, for individual surrogate models, IS3 (KRG) performs
best, IS2 (RBF) takes second place, and IS1 (PRS) comes in third. For ensembles of two surrogates
ES1~ES10, the performance measures of R2 for ES5 (RBF-KRG), ES2 (PRS-KRG), ES1 (PRS-RBF) are
larger than others. It can be found that ES5, ES2 and ES1 select more accurate stand-alone surrogates
KRG, RBF and PRS. Furthermore, two more accurate surrogates KRG and RBF lead to the most accurate
ensemble model ES5 (RBF-KRG). Similarly, for ensembles of three surrogates ES11~ES20, the total rank
of ES11 (PRS-RBF-KRG) is significantly smaller than other ensembles of three surrogates. With regard
to ensembles of four surrogates, ES21~ES25, ES21 (PRS-RBF-KRG-SHEP) and ES22 (PRS-RBF-KRG-GP)
rank as the top two. It is noted that the performance measure of R2 for ES11 is larger than other
surrogate models used. When considering the results for RMSE and MAE in Tables 4 and 5, the same
phenomenon appears as in Table 3. For the performance measure of RMSE, the top three individual
surrogate models RBF, KRG, PRS result in the most accurate ensemble models: ES11 (PRS-RBF-KRG),
ES5 (RBF-KRG) and ES22 (PRS-RBF-KRG-SHEP). As is the case for performance measure R2, the smaller
the value of the performance measure RMSE indicates that the ensemble model ES11 (PRS-RBF-KRG)
has the best prediction performance. As for the performance measure MAE, the top three individual
surrogate models PRS, KRG, RBF result in the most accurate ensemble models ES11 (PRS-RBF-KRG),
ES2 (PRS-KRG) and ES22 (PRS-RBF-KRG-SHEP). In accordance with the performance measures R2

and RMSE, the performance measure of MAE for ES11 (PRS-RBF-KRG) is smallest among the selected
thirty-one surrogate models. In summary, we can conclude that selecting surrogates that are as
accurate as possible will lead to more accurate ensemble models when using the same quantity of
stand-alone surrogates.

Then, we will discuss the second question from Section 2. Do we need to use as many surrogates
as possible? The comparison results shown in Table 3, indicate that using poor surrogate models
will result in a loss of accuracy of ensemble models. For example, the performance measure of R2

for ensemble model ES5 (RBF-KRG) is larger than the ensemble models ES17 (RBF-KRG-GP), ES18
(RBF-KRG-SHEP) and ES25 (RBF-KRG-GP-SHEP). On the contrary, satisfactory surrogate models will
lead to the advancement of accuracy of ensemble models. For instance, the performance measure of
R2 for ensemble model ES11 (PRS-RBF-KRG) is better than the ensemble models ES1 (PRS-RBF), ES2
(PRS-KRG) and ES5 (RBF-KRG). When considering the results on RMSE and MAE, in Tables 4 and 5,
the same conclusion is reached as in Table 3. That is, whether or not to use more surrogate models
depends on their prediction performance.
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Table 3. Comparison of performance measure coefficient of determination (R2) for all test problems.

No. Surr. BH CB GF HN3 TSD SK IBD HN6 ER DP Total

1 IS1 0.813 (29) 0.768 (1) 0.802 (24) 0.742 (28) 0.986 (17) 0.584 (28) 0.724 (22) 0.507 (30) 0.888 (19) 0.911 (11) 209
2 IS2 0.885 (17) 0.754 (3) 0.850 (1) 0.695 (29) 0.961 (25) 0.687 (16) 0.846 (1) 0.541 (28) 0.904 (9) 0.861 (17) 146
3 IS3 0.914 (1) 0.611 (25) 0.830 (10) 0.881 (2) 0.989 (4) 0.690 (12) 0.618 (30) 0.678 (1) 0.600 (28) 0.429 (25) 138
4 IS4 0.414 (31) 0.454 (31) 0.733 (31) 0.665 (31) 0.872 (31) 0.255 (31) 0.128 (31) 0.557 (19) 0.023 (31) 0.026 (31) 298
5 IS5 0.862 (25) 0.527 (29) 0.790 (29) 0.823 (23) 0.895 (30) 0.469 (30) 0.717 (23) 0.484 (31) 0.580 (29) 0.214 (30) 279
6 ES1 0.873 (21) 0.757 (2) 0.843 (2) 0.808 (25) 0.986 (19) 0.682 (22) 0.842 (3) 0.546 (27) 0.907 (1) 0.914 (1) 123
7 ES2 0.904 (9) 0.724 (10) 0.833 (9) 0.882 (1) 0.991 (1) 0.692 (9) 0.711 (25) 0.670 (6) 0.888 (18) 0.911 (12) 100
8 ES3 0.807 (30) 0.712 (15) 0.790 (27) 0.797 (26) 0.986 (18) 0.592 (26) 0.725 (21) 0.557 (20) 0.888 (20) 0.911 (13) 216
9 ES4 0.858 (26) 0.747 (5) 0.817 (14) 0.824 (21) 0.985 (24) 0.591 (27) 0.756 (17) 0.536 (29) 0.887 (24) 0.911 (14) 201

10 ES5 0.910 (3) 0.722 (11) 0.842 (3) 0.878 (6) 0.988 (10) 0.697 (2) 0.838 (6) 0.671 (3) 0.904 (11) 0.861 (21) 76
11 ES6 0.884 (18) 0.697 (19) 0.811 (18) 0.686 (30) 0.959 (26) 0.688 (14) 0.846 (2) 0.554 (23) 0.904 (10) 0.861 (18) 178
12 ES7 0.883 (19) 0.745 (6) 0.840 (4) 0.828 (20) 0.959 (27) 0.684 (20) 0.828 (9) 0.550 (25) 0.904 (13) 0.861 (20) 163
13 ES8 0.913 (2) 0.536 (27) 0.790 (28) 0.879 (5) 0.989 (5) 0.692 (8) 0.618 (29) 0.671 (2) 0.600 (27) 0.429 (26) 159
14 ES9 0.909 (4) 0.595 (26) 0.822 (12) 0.881 (3) 0.988 (8) 0.687 (17) 0.707 (26) 0.666 (15) 0.634 (26) 0.349 (27) 164
15 ES10 0.852 (28) 0.471 (30) 0.749 (30) 0.823 (22) 0.897 (29) 0.490 (29) 0.705 (27) 0.558 (18) 0.580 (30) 0.214 (29) 272
16 ES11 0.902 (11) 0.732 (7) 0.837 (6) 0.873 (13) 0.990 (2) 0.693 (6) 0.836 (7) 0.670 (5) 0.907 (2) 0.913 (5) 64
17 ES12 0.870 (24) 0.727 (9) 0.818 (13) 0.793 (27) 0.985 (21) 0.684 (19) 0.841 (4) 0.550 (26) 0.906 (8) 0.911 (8) 159
18 ES13 0.872 (22) 0.749 (4) 0.837 (5) 0.842 (17) 0.985 (22) 0.680 (23) 0.826 (11) 0.553 (24) 0.906 (5) 0.913 (7) 140
19 ES14 0.902 (10) 0.692 (21) 0.810 (22) 0.872 (14) 0.989 (6) 0.694 (4) 0.713 (24) 0.670 (7) 0.888 (17) 0.911 (10) 135
20 ES15 0.900 (14) 0.716 (14) 0.829 (11) 0.880 (4) 0.989 (3) 0.687 (15) 0.740 (19) 0.666 (16) 0.888 (22) 0.911 (9) 127
21 ES16 0.857 (27) 0.700 (18) 0.795 (25) 0.836 (18) 0.986 (20) 0.599 (25) 0.754 (18) 0.560 (17) 0.888 (23) 0.911 (15) 206
22 ES17 0.909 (5) 0.673 (23) 0.810 (20) 0.878 (7) 0.988 (12) 0.697 (1) 0.839 (5) 0.671 (4) 0.904 (12) 0.861 (24) 113
23 ES18 0.906 (7) 0.717 (13) 0.835 (7) 0.875 (9) 0.988 (13) 0.693 (5) 0.823 (14) 0.667 (11) 0.904 (14) 0.861 (22) 115
24 ES19 0.879 (20) 0.694 (20) 0.810 (19) 0.820 (24) 0.958 (28) 0.683 (21) 0.826 (10) 0.555 (21) 0.904 (16) 0.861 (19) 198
25 ES20 0.908 (6) 0.536 (28) 0.791 (26) 0.875 (8) 0.989 (7) 0.686 (18) 0.704 (28) 0.668 (10) 0.634 (25) 0.330 (28) 184
26 ES21 0.901 (12) 0.707 (16) 0.817 (17) 0.867 (16) 0.988 (11) 0.695 (3) 0.836 (8) 0.669 (8) 0.906 (6) 0.913 (3) 100
27 ES22 0.900 (15) 0.728 (8) 0.834 (8) 0.875 (10) 0.988 (9) 0.690 (11) 0.821 (15) 0.667 (14) 0.906 (4) 0.913 (4) 98
28 ES23 0.871 (23) 0.722 (12) 0.817 (15) 0.831 (19) 0.985 (23) 0.680 (24) 0.825 (12) 0.555 (22) 0.906 (3) 0.913 (2) 155
29 ES24 0.900 (13) 0.685 (22) 0.809 (23) 0.874 (11) 0.987 (15) 0.689 (13) 0.740 (20) 0.667 (13) 0.888 (21) 0.911 (16) 167
30 ES25 0.906 (8) 0.672 (24) 0.810 (21) 0.874 (12) 0.988 (14) 0.692 (7) 0.823 (13) 0.668 (9) 0.904 (15) 0.861 (23) 146
31 ES26 0.899 (16) 0.705 (17) 0.817 (16) 0.868 (15) 0.987 (16) 0.691 (10) 0.821 (16) 0.667 (12) 0.906 (7) 0.913 (6) 131
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Table 4. Comparison of performance measure root mean square error (RMSE) for all test problems.

No. Surr. BH CB GF HN3 TSD SK IBD HN6 ER DP Total

1 IS1 1.534 (29) 1.000 (1) 1.183 (29) 1.364 (28) 1.113 (17) 1.158 (27) 1.318 (24) 1.385 (24) 1.083 (20) 1.000 (12) 211
2 IS2 1.151 (17) 1.005 (2) 1.000 (1) 2.065 (29) 1.804 (25) 1.000 (14) 1.000 (2) 1.550 (30) 1.000 (9) 1.263 (17) 146
3 IS3 1.000 (1) 1.252 (25) 1.029 (5) 1.000 (7) 1.000 (4) 1.036 (23) 1.417 (29) 1.000 (1) 2.058 (27) 2.320 (27) 149
4 IS4 2.977 (31) 1.403 (29) 1.187 (31) 2.262 (31) 3.195 (31) 2.016 (31) 1.901 (31) 1.490 (28) 4.513 (31) 5.856 (31) 305
5 IS5 1.326 (25) 1.501 (31) 1.182 (28) 1.345 (25) 3.021 (30) 1.637 (30) 1.410 (28) 1.619 (31) 2.217 (29) 3.105 (29) 286
6 ES1 1.234 (21) 1.009 (3) 1.035 (6) 1.203 (21) 1.128 (18) 1.004 (17) 1.013 (4) 1.357 (23) 0.973 (1) 0.967 (1) 115
7 ES2 1.067 (9) 1.068 (13) 1.059 (11) 0.951 (1) 0.926 (1) 1.001 (15) 1.290 (23) 1.003 (4) 1.083 (22) 1.000 (11) 110
8 ES3 1.669 (30) 1.074 (14) 1.135 (25) 1.239 (22) 1.134 (20) 1.099 (26) 1.280 (21) 1.333 (18) 1.083 (21) 1.000 (13) 210
9 ES4 1.337 (26) 1.034 (6) 1.136 (26) 1.173 (20) 1.138 (23) 1.162 (28) 1.261 (18) 1.339 (19) 1.084 (24) 1.000 (14) 204

10 ES5 1.017 (2) 1.057 (9) 1.013 (2) 1.014 (11) 1.045 (10) 0.993 (12) 1.019 (6) 1.001 (3) 1.000 (12) 1.263 (21) 88
11 ES6 1.166 (18) 1.080 (15) 1.063 (12) 2.124 (30) 1.840 (26) 0.966 (1) 1.000 (1) 1.500 (29) 1.000 (10) 1.263 (18) 160
12 ES7 1.171 (19) 1.020 (4) 1.020 (3) 1.318 (24) 1.849 (27) 1.012 (20) 1.073 (9) 1.457 (27) 1.000 (11) 1.263 (20) 164
13 ES8 1.027 (3) 1.323 (27) 1.100 (23) 1.009 (8) 1.002 (5) 0.984 (6) 1.424 (30) 1.001 (2) 2.058 (28) 2.320 (28) 160
14 ES9 1.029 (4) 1.289 (26) 1.055 (10) 1.012 (9) 1.032 (8) 1.048 (24) 1.325 (25) 1.010 (9) 1.865 (25) 2.307 (26) 166
15 ES10 1.450 (28) 1.404 (30) 1.185 (30) 1.348 (26) 2.931 (29) 1.310 (29) 1.382 (27) 1.437 (25) 2.217 (30) 3.105 (30) 284
16 ES11 1.074 (10) 1.052 (7) 1.043 (7) 0.994 (3) 0.970 (2) 0.996 (13) 1.023 (7) 1.005 (5) 0.979 (2) 0.977 (6) 62
17 ES12 1.268 (24) 1.052 (8) 1.073 (17) 1.259 (23) 1.139 (24) 0.973 (5) 1.013 (3) 1.356 (22) 0.983 (8) 0.991 (8) 142
18 ES13 1.249 (22) 1.024 (5) 1.048 (8) 1.117 (17) 1.136 (21) 1.016 (21) 1.079 (10) 1.340 (20) 0.979 (4) 0.977 (7) 135
19 ES14 1.091 (14) 1.111 (21) 1.096 (21) 0.996 (4) 1.019 (7) 0.968 (3) 1.285 (22) 1.006 (6) 1.082 (18) 1.000 (10) 126
20 ES15 1.086 (12) 1.082 (16) 1.070 (15) 0.972 (2) 0.989 (3) 1.018 (22) 1.272 (19) 1.009 (8) 1.083 (19) 1.000 (9) 125
21 ES16 1.390 (27) 1.095 (20) 1.156 (27) 1.140 (18) 1.130 (19) 1.096 (25) 1.255 (17) 1.327 (17) 1.083 (23) 1.000 (15) 208
22 ES17 1.032 (5) 1.120 (22) 1.066 (13) 1.014 (10) 1.047 (11) 0.967 (2) 1.016 (5) 1.007 (7) 1.000 (13) 1.263 (24) 112
23 ES18 1.039 (6) 1.066 (12) 1.029 (4) 1.043 (15) 1.051 (14) 1.004 (18) 1.087 (14) 1.010 (10) 1.000 (15) 1.263 (22) 130
24 ES19 1.214 (20) 1.083 (17) 1.070 (14) 1.363 (27) 1.865 (28) 0.986 (7) 1.079 (11) 1.451 (26) 1.000 (14) 1.263 (19) 183
25 ES20 1.049 (8) 1.329 (28) 1.109 (24) 1.038 (14) 1.018 (6) 1.001 (16) 1.338 (26) 1.011 (11) 1.907 (26) 2.300 (25) 184
26 ES21 1.086 (13) 1.085 (18) 1.074 (18) 1.028 (12) 1.051 (13) 0.969 (4) 1.024 (8) 1.012 (12) 0.980 (7) 0.976 (5) 110
27 ES22 1.086 (11) 1.058 (10) 1.051 (9) 0.999 (6) 1.035 (9) 1.007 (19) 1.091 (15) 1.012 (13) 0.979 (5) 0.976 (3) 100
28 ES23 1.268 (23) 1.061 (11) 1.075 (20) 1.164 (19) 1.136 (22) 0.992 (11) 1.083 (12) 1.346 (21) 0.979 (3) 0.974 (2) 144
29 ES24 1.095 (16) 1.123 (24) 1.100 (22) 0.999 (5) 1.071 (15) 0.986 (9) 1.273 (20) 1.013 (14) 1.081 (17) 1.000 (16) 158
30 ES25 1.047 (7) 1.122 (23) 1.071 (16) 1.046 (16) 1.050 (12) 0.987 (10) 1.087 (13) 1.014 (15) 1.000 (16) 1.263 (23) 151
31 ES26 1.092 (15) 1.089 (19) 1.075 (19) 1.030 (13) 1.077 (16) 0.986 (8) 1.093 (16) 1.016 (16) 0.980 (6) 0.976 (4) 132
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Table 5. Comparison of performance measure maximum absolute error (MAE) for all test problems.

No. Surr. BH CB GF HN3 TSD SK IBD HN6 ER DP Total

1 IS1 1.253 (25) 1.000 (1) 1.035 (11) 1.217 (18) 1.000 (1) 1.033 (25) 1.062 (17) 1.013 (20) 1.000 (9) 1.000 (2) 129
2 IS2 1.240 (22) 1.178 (13) 1.000 (1) 2.886 (29) 1.911 (25) 1.013 (19) 1.000 (1) 1.107 (27) 1.006 (13) 1.425 (17) 167
3 IS3 1.000 (1) 1.491 (25) 1.007 (3) 1.000 (4) 1.489 (17) 1.000 (1) 1.261 (29) 1.000 (16) 2.035 (27) 2.385 (25) 148
4 IS4 2.114 (31) 1.662 (30) 1.250 (31) 3.032 (31) 3.531 (31) 1.232 (31) 1.523 (31) 1.063 (25) 3.023 (31) 3.801 (29) 301
5 IS5 1.225 (19) 1.795 (31) 1.136 (28) 1.748 (27) 2.977 (29) 1.190 (30) 1.131 (22) 1.426 (31) 2.589 (30) 3.901 (31) 278
6 ES1 1.240 (21) 1.089 (3) 1.012 (4) 1.204 (17) 1.086 (8) 1.014 (20) 1.003 (3) 1.011 (19) 0.940 (1) 1.007 (14) 110
7 ES2 1.042 (4) 1.132 (5) 1.021 (6) 0.938 (1) 1.211 (9) 1.002 (3) 1.138 (23) 0.989 (14) 1.007 (22) 1.000 (6) 93
8 ES3 1.401 (30) 1.169 (11) 1.134 (26) 1.229 (20) 1.055 (5) 1.049 (28) 1.156 (24) 1.001 (17) 1.000 (10) 1.000 (3) 174
9 ES4 1.210 (17) 1.075 (2) 1.075 (14) 1.279 (23) 1.050 (3) 1.040 (26) 1.072 (18) 1.057 (24) 1.007 (21) 1.000 (4) 152

10 ES5 1.046 (5) 1.232 (19) 1.007 (2) 1.026 (8) 1.533 (21) 1.003 (5) 1.017 (8) 0.976 (2) 1.006 (16) 1.425 (21) 107
11 ES6 1.254 (26) 1.269 (21) 1.104 (24) 2.947 (30) 1.951 (26) 1.013 (18) 1.002 (2) 1.072 (26) 1.006 (14) 1.425 (18) 205
12 ES7 1.211 (18) 1.197 (16) 1.023 (7) 1.684 (25) 1.955 (27) 1.019 (23) 1.033 (10) 1.164 (30) 1.006 (15) 1.425 (20) 191
13 ES8 1.025 (2) 1.556 (27) 1.135 (27) 1.015 (5) 1.492 (18) 1.003 (4) 1.283 (30) 0.975 (1) 2.035 (28) 2.385 (26) 168
14 ES9 1.025 (3) 1.527 (26) 1.036 (12) 1.087 (12) 1.518 (20) 1.005 (9) 1.157 (26) 0.992 (15) 1.971 (25) 2.409 (28) 176
15 ES10 1.326 (29) 1.662 (29) 1.236 (30) 1.718 (26) 2.993 (30) 1.095 (29) 1.183 (28) 1.134 (28) 2.589 (29) 3.901 (30) 288
16 ES11 1.070 (12) 1.133 (6) 1.017 (5) 1.000 (3) 1.254 (10) 1.005 (8) 1.014 (5) 0.982 (8) 0.951 (3) 1.006 (11) 71
17 ES12 1.269 (27) 1.152 (9) 1.088 (18) 1.273 (22) 1.075 (7) 1.012 (17) 1.007 (4) 1.010 (18) 0.960 (8) 1.007 (12) 142
18 ES13 1.230 (20) 1.103 (4) 1.031 (10) 1.225 (19) 1.067 (6) 1.020 (24) 1.033 (9) 1.044 (23) 0.952 (4) 1.007 (13) 132
19 ES14 1.069 (11) 1.204 (17) 1.093 (19) 0.995 (2) 1.280 (12) 1.005 (7) 1.157 (25) 0.979 (3) 1.006 (12) 1.000 (7) 115
20 ES15 1.060 (9) 1.147 (8) 1.040 (13) 1.016 (6) 1.267 (11) 1.007 (14) 1.114 (20) 0.988 (13) 1.009 (24) 1.000 (8) 126
21 ES16 1.271 (28) 1.174 (12) 1.140 (29) 1.253 (21) 1.034 (2) 1.046 (27) 1.111 (19) 1.033 (21) 1.004 (11) 1.000 (5) 175
22 ES17 1.056 (7) 1.306 (23) 1.099 (22) 1.025 (7) 1.534 (22) 1.005 (10) 1.014 (6) 0.981 (5) 1.006 (17) 1.425 (24) 143
23 ES18 1.056 (8) 1.245 (20) 1.024 (8) 1.124 (16) 1.536 (24) 1.008 (15) 1.044 (14) 0.982 (9) 1.006 (19) 1.425 (22) 155
24 ES19 1.248 (23) 1.270 (22) 1.102 (23) 1.753 (28) 1.973 (28) 1.015 (21) 1.039 (12) 1.139 (29) 1.006 (18) 1.425 (19) 223
25 ES20 1.048 (6) 1.561 (28) 1.133 (25) 1.113 (14) 1.507 (19) 1.001 (2) 1.179 (27) 0.981 (4) 2.005 (26) 2.407 (27) 178
26 ES21 1.080 (15) 1.182 (15) 1.083 (16) 1.039 (9) 1.315 (15) 1.006 (12) 1.015 (7) 0.982 (10) 0.955 (7) 1.011 (16) 122
27 ES22 1.078 (14) 1.140 (7) 1.031 (9) 1.054 (11) 1.302 (13) 1.011 (16) 1.045 (16) 0.983 (12) 0.952 (5) 1.002 (10) 113
28 ES23 1.250 (24) 1.156 (10) 1.085 (17) 1.292 (24) 1.054 (4) 1.016 (22) 1.037 (11) 1.041 (22) 0.951 (2) 1.010 (15) 151
29 ES24 1.073 (13) 1.210 (18) 1.094 (20) 1.051 (10) 1.314 (14) 1.004 (6) 1.128 (21) 0.981 (6) 1.008 (23) 1.000 (9) 140
30 ES25 1.063 (10) 1.307 (24) 1.097 (21) 1.123 (15) 1.535 (23) 1.005 (11) 1.043 (13) 0.982 (7) 1.006 (20) 1.425 (23) 167
31 ES26 1.084 (16) 1.182 (14) 1.082 (15) 1.090 (13) 1.323 (16) 1.007 (13) 1.044 (15) 0.983 (11) 0.954 (6) 0.998 (1) 120
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In order to facilitate the comparison of the prediction performances of the ensemble models with
different quantities, Table 6 provides their average values of total ranks of performance measures for all
test problems. It can be seen that the overall prediction performances of stand-alone surrogate models
are inferior to the ensemble models. Furthermore, the more surrogate models we use for constructing
ensemble models, the more accurate prediction performances we obtain. The results also show that
the average prediction performance of the ensemble of four surrogates ES21–ES25 is compared to that
of the ensemble of five surrogates ES26. We can conclude that using as many as possible surrogates
may not improve the prediction performances of ensemble models due to the inaccurate surrogates.
However, using as many as possible accurate surrogates will contribute to enhance the prediction
performance. In fact, the ensemble model ES11 (PRS-RBF-KRG) shows the best prediction performance
among twenty-six ensemble models and five individual surrogate models.

Table 6. Comparison of performance measures on ensemble models with different quantities.

Performance
Measures

Individual
Surrogate

Ensemble of Two
Surrogates

Ensemble of
Three Surrogates

Ensemble of Four
Surrogates

Ensemble of Five
Surrogates

R2 214.0 165.2 144.1 133.2 131.0
RMSE 219.2 166.2 140.7 132.6 132.0
MAE 204.6 166.4 146.0 138.6 120.0

In order to reveal the robustness of the different surrogate models, statistical graphics i.e., boxplots
are used to show the deviations of the performance measures results. A smaller/shorter box implies
a small standard deviation and the symbol (+) denotes an abnormal value. Figures 3–5 show the
boxplot of performance measures for R2, RMSE and MAE, respectively. The comparative results
show that the sizes of boxes of all surrogate models for different test problems are obviously variable.
Moreover, the abnormal values from the used surrogate models mainly appear for all test problems
due to the substantive experiments. Meanwhile, the standard deviation of individual surrogate models
PRS, RBF and KRG is smaller than many ensemble models. Certainly, the standard deviation of all
ensemble models is smaller than the worst stand-alone surrogate model. The relatively smaller boxes
of ensemble models for most test problems demonstrate that it has a higher robustness, compared with
the individual surrogate models and other ensemble models. In conclusion, it can be seen that: (1) The
prediction performances of the five individual surrogate models and twenty-six ensemble models vary,
apparently with different test problems; (2) The individual surrogate models PRS, RBF and KRG reveal
the satisfactory prediction performances which are not worse than most of the ensemble models; (3)
The twenty-six ensemble models perform better than the worst individual surrogate model, which
demonstrates the necessity for adopting the ensemble techniques; (4) The ensemble of four surrogates
ES21–ES25 and ensemble of five surrogates ES26, on the whole provide better accuracy and robustness
under three performance measures for ten test problems in this work. In general, we suggest that
ensemble models can be used as an insurance, rather than for offering significant improvement. From
the accuracy and robustness perspectives, the ensemble model ES11 (PRS-RBF-KRG) is suggested in
this work.
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of three surrogates ES11 (PRS-RBF-KRG) is preferred in view of prediction accuracy and robustness. 
The objective of this work is to guide researchers in selecting the appropriate quantity and variety of 
surrogate modeling techniques for building ensemble models, rather than concentrating on 
developing novel ensemble modeling methods. However, there are still some limitations in this 
study. Firstly, the use of only five basic surrogate models is limited. Secondly, the selection of weight 
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6. Conclusions

In this work, five basic surrogate models PRS, RBF, KRG, GP and SHEP are selected to form
twenty-six ensemble models, through using a previously presented weights selection method. The
prediction performances of the total thirty-one surrogate models are tested using eight mathematical
problems and two engineering examples. The performance measures R2, RMSE and MAE are calculated
to reflect the prediction accuracy and robustness. The comparative studies answer two questions
raised in this paper. We suggest that more accurate surrogates should be used to construct the
ensemble models on the premise of sufficient computational resources. Moreover, the ensemble of
three surrogates ES11 (PRS-RBF-KRG) is preferred in view of prediction accuracy and robustness.
The objective of this work is to guide researchers in selecting the appropriate quantity and variety of
surrogate modeling techniques for building ensemble models, rather than concentrating on developing
novel ensemble modeling methods. However, there are still some limitations in this study. Firstly,
the use of only five basic surrogate models is limited. Secondly, the selection of weight factors is not
investigated and discussed. More individual surrogate models will be selected as the basic surrogate
models for the comparative study in future work. Additionally, the investigation on the choice of
weights in different ensembles will also be studied.
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GMSE Generalized mean square cross-validation error
SVR Support vector regression
PRESSRMS Prediction sum of squares of root mean square
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RMSE Root mean square error
MAE Maximum absolute error
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