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Abstract: In this paper, we study the problem of the explicit intersection of two sequences.
More specifically, we find all repdigits (i.e., numbers with only one repeated digit in its decimal
expansion) which can be written as the product of a Fibonacci by a Tribonacci number (both with the
same indexes). To work on this problem, our approach is to combine lower bounds from the Baker’s
theory with reduction methods (based on the theory of continued fractions) due to Dujella and Pethö.
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1. Introduction

Before starting with the main problem of this paper, we recall some nomenclature and symbols
for the convenience of the reader:

The Fibonacci sequence (Fn)n is defined by the recurrence

Fn+1 = Fn + Fn−1, (1)

with initial values F0 = 0 and F1 = 1.
The Tribonacci numbers t n (Tn)n are defined by the third-order recurrence

Tn+1 = Tn + Tn−1 + Tn−2, (2)

with initial values T0 = 0 and T1 = T2 = 1.
A repdigit (short for “repeated digit”) is also a number of the form

a

(
10` − 1

9

)
, (3)

where ` ≥ 1 and a ∈ [1, 9] (here, for integers a < b, we set [a, b] = {a, a + 1, . . . , b}), that is, a number
with only one distinct digit in its decimal expansion.

The main subject of this work is the Diophantine equations. It is almost unnecessary to stress that
these objects play an important role in the Number Theory—for example, the equations x2 + y2 = z2

(Pythagoras equation), x2 − Dy2 = c (Pell equation), and xn + yn = zn (Fermat equation) intrigued
several mathematicians at different times. It is also important to notice that their studies contributed
strongly to the advance of mathematics. There are many articles that address Diophantine equations
concerning Fibonacci and Lucas numbers (see, e.g., [1–8]). The linear forms in logarithms, which were
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probably firstly used for solving Diophantine equations in Dujella and Jadrijević [9], have proved to be
a very effective tool for finding solutions to all these equations.

Recently, many authors have been interested in solving Diophantine equations involving repdigits
(their sums, products concatenations, etc.) and some special types of linear recurrences (usually their
product, sums, etc.), where we refer the reader to [10–18] and references therein.

We point out that Luca [19] and Marques [20] proved that the largest repdigits in the Fibonacci
and Tribonacci sequence are F10 = 55 and T8 = 44, respectively.

The aim of this paper is to continue the study of Diophantine problems involving recurrence
sequences and repdigits. More precisely, we search for repdigits which are the product of Fibonacci
and Tribonacci numbers with the same index. Our main result is the following:

Theorem 1. The only solutions of the Diophantine equation

FnTn = a

(
10` − 1

9

)
, (4)

in positive integers n, a and `, with a ∈ [1, 9], are

(n, `, a) ∈ {(1, 1, 1), (2, 1, 1), (3, 1, 4)}. (5)

2. Auxiliary Results

We recall a well-known non-recursive formula for generating Fibonacci numbers. Binet’s formula
asserts that:

Fn =
φn − (−φ)−n

√
5

, (6)

where φ = (1 +
√

5)/2 (the golden number). With this formula, we can deduce that:

φn−2 ≤ Fn ≤ φn−1, for all n ≥ 1. (7)

It is also possible to infer that

Fn =
φn
√

5
+ ν, (8)

where |ν| ≤ 1/
√

5.
Spickerman [21] (in 1982) found the following “Binet-like” formula for Tribonacci numbers

(see also [22] (pp. 527–536) for some properties of this sequence):

Tn =
αn

−α2 + 4α− 1
+

βn

−β2 + 4β− 1
+

γn

−γ2 + 4γ− 1
, for all n ≥ 1, (9)

where α, β, γ are the roots of x3 − x2 − x− 1 = 0. More precisely, we have

α =
1
3
+

1
3
(19− 3

√
33)1/3 +

1
3
(19− 3

√
33)1/3, (10)

β =
1
3
− 1

6
(1 + i

√
3)(19− 3

√
33)1/3 − 1

6
(1− i

√
3)(19 + 3

√
33)1/3, (11)

γ =
1
3
− 1

6
(1− i

√
3)(19− 3

√
33)1/3 − 1

6
(1 + i

√
3)(19 + 3

√
33)1/3. (12)

Another very useful formula provided by Spickermann is

Tn =

⌊
α

(α− β)(α− γ)
αn
⌉

, (13)
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where, as usual, bxe denotes the nearest integer to x (the so-called Nint function). In particular,
the formula

Tn = α′αn + η, (14)

holds, where |η| < 1/2 and α′ := α/(α− β)(α− γ). Moreover, since α−2 < α′ = 0.33622 · · · < α,
the previous identity implies that

αn−3 < Tn < αn+2, for all n ≥ 1. (15)

To prove Theorem 1, we will use Baker’s theory. Specifically, we shall use a lower bound for a
linear form in three logarithms:

Lemma 1. Let α1, α2, α3 ∈ R be algebraic numbers and let b1, b2, b3 be non-zero integer numbers. Define

Λ = b1 log α1 + b2 log α2 + b3 log α3. (16)

Let D = [Q(α1, α2, α3) : Q] (degree of field extension) and let A1, A2, A3 be real numbers, such that

Aj ≥ max{Dh(αj), | log αj|, 0.16}, for j ∈ {1, 2, 3} . (17)

Take
B ≥ max{1, max{|bj|Aj/A1; 1 ≤ j ≤ 3}}. (18)

If Λ 6= 0, then
log |Λ| ≥ −C1D2 A1 A2 A3 log(1.5eDB log(eD)), (19)

where
C1 = 6750000 · e4(20.2 + log(35.5D2 log(eD))). (20)

The proof of this result can be found in [23].
In the previous statement, the logarithmic height of a t-degree algebraic number α is defined by

h(α) =
1
t

(
log |a|+

t

∑
j=1

log max{1, |α(j)|}
)

, (21)

where a is the leading coefficient of the minimal polynomial of α (over Z), and (α(j))1≤j≤t are the
algebraic conjugates of α. The next lemma provides some useful properties of this function (we refer
to [24] for the proof of the following facts):

Lemma 2. We have

i. h(xy) ≤ h(x) + h(y);
ii. h(xy) ≤ h(x) + h(y) + log 2;

iii. h(αr) = |r| · h(α), for all r ∈ Q.

Our last tool is a reduction method provided by a variant of the well-known Baker-Davenport
lemma, proved by Dujella and Pethő. For x ∈ R, set ‖x‖ = min{|x − n| : n ∈ Z} = |x − bxe| for
the distance from x to the nearest integer. We refer the reader to Lemma 5 in [25] for the proof of the
following lemma.
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Lemma 3. For a positive integer M, let p/q be a convergent of the continued fraction of γ 6∈ Q, such that
q > 6 M, and let µ, A, and B be real numbers, with A > 0 and B > 1. If the number ε = ‖µq‖ −M‖γq‖
is positive, then there is no solution to the Diophantine inequality

0 < mγ− n + µ < A · B−m (22)

in integers m, n > 0 with
log(Aq/ε)

log B
≤ m < M. (23)

Now, we are ready to prove the main theorem.

3. The Proof of Theorem 1

3.1. Finding an Upper Bound for n and `

By using Equations (8) and (14) in Equation (4), we have(
φn
√

5
+ ν

) (
α′αn + η

)
= a

(
10` − 1

9

)
. (24)

After some manipulations, we arrive at∣∣∣∣∣α′(αφ)n
√

5
− a

10`

9

∣∣∣∣∣ < 1.6αn, (25)

where we used that |ν| ≤ 1/
√

5, |η| < 1/2 and φ < 1.7 < α. On dividing through by α′(αφ)n/
√

5,
we get ∣∣∣∣∣1− a

√
5

9α′
10`

9

∣∣∣∣∣ < 12
φn , (26)

where we used that α′ > 0.3. Define

Λ = ` log 10− n log(φα) + log θa, (27)

where θa := a
√

5/9α′ (for a ∈ [1, 9]). Then, Equation (26) can be rewritten as

|eΛ − 1| < 12
φn . (28)

First, we claim that Λ 6= 0. To obtain a contradiction, suppose that Λ = 0, and thus, 10`θa = (φα)n,
and so φ2n ∈ Q(α). Since [Q(α) : Q] = 3, then φ2n is either a rational or a 3-degree algebraic number.
However, φ is a quadratic algebraic number, and since Q(φn) ⊆ Q(φ), then the degree of φ2n is
either 1 or 2. So, we conclude that φ2n ∈ Q, which is an absurd, since (by the Binomial theorem)
φ2n = An + Bn

√
5, for some positive rational numbers An and Bn. Therefore, we have that Λ 6= 0.

If Λ > 0, then Λ < eΛ− 1 < 12φ−n (see Equation (28)). If Λ < 0, then 1− e−|Λ| = |eΛ − 1| < 12φ−n.
Thus, we get

|Λ| < e|Λ| − 1 <
φ−n

1− φ−n < φ−n+1. (29)

Hence, we have |Λ| < 12φ−n+1. Therefore,

log |Λ| < −(n− 1) log φ + log 12. (30)
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Now, we are in the position to apply Lemma 1. For that, take

α1 = 10, α2 = φα, α3 = θa, b1 = `, b2 = −n, b3 = 1. (31)

Since Q(α1, α2, α3) = Q(α, φ), then D ≤ 6, and so C1 < 1.4 · 1010.
By using the properties of the logarithm height, we deduce that h(α1) = h(10) = log 10 and

h(α2) ≤ h(φ) + h(α) = (log φ)/2 + (log α)/3 < 5(log 2)/6. Additionally,

h(α3) = h(θa) ≤ h(a) + h(
√

5) + h(9) + h(α′) < 8.6, (32)

where we used the definition of α′ together with the fact that h(α) = h(β) = h(γ) (since they are
algebraic conjugates). Thus, we can take

A1 = 14, A2 = 4 and A3 = 52 . (33)

If ` ≥ 4, we have

max{1, max{|bj|Aj/A1; 1 ≤ j ≤ 3}} = max{`, 2n/7}. (34)

Now, we combine the bounds in Equations (7) and (15) to derive

• φn−2αn−3 < FnTn = a(10` − 1)/9 < 10` =⇒ n < 4.8`+ 2
• φn−1αn+2 > FnTn = a(10` − 1)/9 > 10`−1 =⇒ 4.7`− 6 < n.

In conclusion, we have
4.7`− 6 < n < 4.8`+ 2. (35)

However, 4.7`− 6 ≥ ` for ` > 1, and so, we can choose B := n. Hence, by Lemma 1, we get

log |Λ| > −1.5× 1015 log(69n). (36)

By combining the estimates Equations (30) and (36), we obtain

n < 2.9× 1015 log(69n). (37)

From this inequality, we deduce that n < 1.3× 1017, and by the estimate 4.7`− 6 < n, we infer
that ` < 3× 1016.

3.2. Reducing the Bound

Now, we need to reduce the upper bound for n and `. For that, we may suppose, with no loss of
generality, that Λ > 0 (the other case is simply a mimic, considering that 0 < Λ′ = −Λ).

Since 0 < Λ < 12φ−n+1, we obtain

0 < ` log 10− n log(φα) + log θa < 1536 · 12−`. (38)

On dividing through by log(φα), we have

0 < `γ′ − n + µa < 1448 · 12−`, (39)

with γ′ := log 10/ log(φα) and µa := log θa/ log(φα).
Clearly, γ′ is an irrational number (because α and φ are multiplicatively independent). Therefore,

we shall denote pn/qn as the n-th convergent of the (infinite) continued fraction of γ′.
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To reduce our bound on `, we shall apply Lemma 3. For that, we choose M = 3× 1016, and so

p40

q40
=

1014377782556875091
480446934735032799

(40)

is enough of an approximant of γ′ to fulfill the hypotheses of that lemma. Indeed,
q40 = 480, 446, 934, 735, 032, 799 > 6 M. Additionally, by defining

εa := ‖µaq40‖ −M‖γ′q40‖ (41)

for a ∈ [1, 9], we have that mina∈[1,9] εa = ε9 = 0.0089973 . . . (here, we used Mathematica software
(Wolfram Mathematica version 12, Wolfram Research of Champaign, Illinois, USA), see Appendix A).

Hence, the hypotheses of Lemma 3 are fulfilled for the choice of A = 1448 and B = 12. Thus,
there is no solution of the Diophantine inequality in Equation (39) for ` belonging to the range[⌊

log(Aq40/εa)

log B

⌋
+ 1, M

]
= [22, 3× 1016]. (42)

Since ` < M, then ` ≤ 21 and so n ≤ 103. Thus, we prepare a Mathematica routine which shows
that the solutions of FnTn = a(10` − 1)/9, in the range n ∈ [1, 103], ` ∈ [1, 22] and a ∈ [1, 9], are

(n, `, a) ∈ {(1, 1, 1), (2, 1, 1), (3, 1, 4)}. (43)

This completes the proof.

4. Conclusions

In this paper, we solved the Diophantine equation FnTn = a(10` − 1)/9, where (Fn)n and (Tn)n

are the Fibonacci and Tribonacci sequences, respectively, in positive integers n, ` and a, with a ∈ [1, 9].
In other words, we found all repdigits (i.e., positive integers with only one distinct digit in its decimal
expansion) which can be written as a product of a Fibonacci number and a Tribonacci number (both
with the same index). In particular, we proved that the only repdigits with the desired property are the
trivial ones, that is, those with only one digit (` = 1). To prove this result, we combined the theory
of lower bounds for linear forms in the logarithm of algebraic numbers (from Baker’s theory) with
reduction methods from Diophantine approximation (based on the theory of continued fractions) due
to Dujella and Pethö.
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Appendix A

In this section, we shall provide the main routines and commands (in Mathematica software)
which were used during the preparation of this work.

Appendix A.1. Tribonacci Sequence, Polynomial, and Roots

The n-th Tribonacci number:

t [n_] := SeriesCoefficient [Series [x/(1 − Sum [x^j, {j, 1, 3}]), {x, 0, 5000}], n]

The characteristic polynomial of (Tn)n:
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f [x_] := x^3 − x^2 − x − 1

The roots α, β, and γ:

alpha := x /. NSolve [f [x], x, 140][[3]]

beta := x /. NSolve [f [x], x, 140][[2]]

gamma := x /. NSolve [f [x], x, 140][[1]]

Appendix A.2. The Constants

The constants α′, θa, γ′, and µa:

alpha’ := alpha/((alpha − beta) * (alpha − gamma))

theta [a_] := a * Sqrt [5]/(9 * alpha’)

gamma’ := Log [10]/Log [alpha * GoldenRatio]

mu [a_] := Log [theta [a]]/Log [alpha * GoldenRatio]

Appendix A.3. Functions and Routines

The n-th denominator of the continued fraction expansion of x:

DeFrac [x_, n_] := Last [Denominator [Convergents [x, n]]]

The distance to the nearest integer:

Near [x_] := Min [Abs [x − Floor [x]], Abs [Ceiling [x] − x]]

The numbers εa, for a ∈ [1, 9]

e [a_] :=
N [Near [Mu [a] * DeFrac [gamma’, 40]] −
3 * 10^(16) * Near [gamma’ * DeFrac [gamma’, 40]],5]

The routine for searching solutions of the main equation in the obtained range:

Catch [Do [If [Fibonacci [n] * t [n] == a * (10^l − 1)/9, Print [{n,l,a}]], {n,1, 103}, {l,1,22},{a,1,9}]]
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