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Abstract: For the first time, the concept of conditional probability on intuitionistic fuzzy sets was
introduced by K. Lendelová. She defined the conditional intuitionistic fuzzy probability using a
separating intuitionistic fuzzy probability. Later in 2009, V. Valenčáková generalized this result and
defined the conditional probability for the MV-algebra of inuitionistic fuzzy sets using the state
and probability on this MV-algebra. She also proved the properties of conditional intuitionistic
fuzzy probability on this MV-algebra. B. Riečan formulated the notion of conditional probability for
intuitionistic fuzzy sets using an intuitionistic fuzzy state. We use this definition in our paper. Since the
convergence theorems play an important role in classical theory of probability and statistics, we study
the martingale convergence theorem for the conditional intuitionistic fuzzy probability. The aim of
this contribution is to formulate a version of the martingale convergence theorem for a conditional
intuitionistic fuzzy probability induced by an intuitionistic fuzzy state m. We work in the family of
intuitionistic fuzzy sets introduced by K. T. Atanassov as an extension of fuzzy sets introduced by L.
Zadeh. We proved the properties of the conditional intuitionistic fuzzy probability.

Keywords: intuitionistic fuzzy event; intuitionistic fuzzy observable; intuitionistic fuzzy state;
product; conditional intuitionistic fuzzy probability; martingale convergence theorem
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1. Introduction

The notion of intuitionistic fuzzy sets was introduced by K. T. Atanassov in [1,2]. In this paper we
work with the family of intuitionistic fuzzy events given by

F = {(µA, νA) ; µA + νA ≤ 1Ω},

where µA, νA are S-measurable functions, µA, νA : Ω→ [0, 1].
In [3] K. Lendelová introduced the conditional intuitionistic fuzzy probability p

(
(a1, a2) | y

)
as a

couple of two Borel measurable functions p[
(
(a1, a2) | y

)
, p]
(
(a1, a2) | y

)
: R→ R such that[ ∫

B

p[(a1|y[) dP [,
∫
B

p](1− a2|y]) dP ]

]
= P

(
(a1, a2) · y(B)

)
for each B ∈ B(R), where P is a separating intuitionistic fuzzy probability given by P

(
(a1, a2)

)
=[

P [(a1), 1−P ](a2)
]
, the functions P [, P ] : T → [0, 1] are probabilities, T is Lukasiewicz tribe and

a1, a2 ∈ T with a1 + a2 ≤ 1.
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Later in [4] V. Valenčáková defined a conditional probability p(A | y) on a family M =

{(µA, νA) ; µA, νA : Ω → [0, 1], µA, νA are S-measurable} using an MV-state m : M → [0, 1] as a
Borel measurable function such that∫

C
p(A | y) dmy = m

(
A · y(C)

)
for each C ∈ B(R). Here, A ∈ M and y : B(R) → M are MV-observable. The algebraic
system (M, 0M, 1M,¬,⊕,�, ·) is an MV-algebra with product, 1M = (1Ω, 0Ω), 0M = (0Ω, 1Ω),
¬(µA, νA) = (1Ω − µA, 1Ω − νA), (µA, νA) ⊕ (µB, νB) = ((µA + µB) ∧ 1Ω, (νA + νB − 1Ω) ∨ 0Ω)),
(µA, νA) � (µB, νB) = ((µA + µB − 1Ω) ∨ 0Ω, (νA + νB) ∧ 1Ω)), (µA, νA) · (µB, νB) = (µA · µB, νA +

νB − νA · νB). Here, the corresponding `-group is (M,+,≤) with the neutral element 0 = (0Ω, 1Ω),
(µA, νA) + (µB, νB) = (µA + µB, νA + νB − 1Ω), (µA, νA) ≤ (µA, νA)⇐⇒ µA ≤ µB, νA ≥ νB and with
the lattice operations (µA, νA)∨ (µB, νB) = (µA ∨µB, νA ∧ νB), (µA, νA)∧ (µB, νB) = (µA ∧µB, νA ∨ νB).
Since F ⊂ M and by [5] to each intuitionistic fuzzy state m : F → [0, 1] there exists exactly one
MV-state m :M→ [0, 1] such that m | F = m, V. Valenčaková in [4] defined a conditional intuitionistic
fuzzy probability of an intuitionistic fuzzy event A ∈ F wit respect to an intuitionistic fuzzy observable
x : B(R) → F with help of a conditional probability defined onM. She proved the properties of a
conditional probability onM, too.

In [6] B. Riečan introduced the conditional intuitionistic fuzzy probability p(A | x) as a Borel
measurable function f (i.e., B ∈ B(R) =⇒ f−1(B) ∈ B(R)) such that∫

B
p(A | x) dmx = m

(
A · x(B)

)
for each B ∈ B(R), where m : F → [0, 1] is the intuitionistic fuzzy state, A ∈ F is an intuitionistic
fuzzy event and x : B(R)→ F is an intuitionistic fuzzy observable.

The convergence theorems play an important role in the theory of probability and statistics and
in its application (see [7–9]). In [10–12] the authors studied the martingale measures in connection
with fuzzy approach in financial area. They used a geometric Levy process, the Esscher transformed
martingale measures and the minimal Lp equivalent martingale measure on the fuzzy numbers
for an option pricing. A practical use of results is a good motivation for studying a theory of
martingales. In this paper, we formulate the modification of the martingale convergence theorem for
the conditional intuitionistic fuzzy probability using the intuitionistic fuzzy state m. As a method, we
use a transformation of an intuitionistic probability space to the Kolmogorov probability space.

The paper is organized as follows: Section 2 includes the basic notions from intuitionistic fuzzy
probability theory as an intuitionistic fuzzy event, an intuitionistic fuzzy state, an intuitionistic
fuzzy observable and a joint intuitionistic fuzzy observable. In Section 3 we present a definition
of a conditional intuitionistic fuzzy probability using an intuitionistic fuzzy state and we prove its
properties. In Section 3, we formulate a martingale convergence theorem for a conditional intuitionistic
fuzzy probability. Last section contains concluding remarks and a future research.

We note that in the whole text we use a notation IF as an abbreviation for intuitionistic fuzzy.

2. Basic Notions of the Intuitionistic Fuzzy Probability Theory

In this section we recall the definitions of basic notions connected with IF-probability theory
(see [13–15]).

Definition 1. Let Ω be a nonempty set. An IF-set A on Ω is a pair (µA, νA) of mappings µA, νA : Ω→ [0, 1]
such that µA + νA ≤ 1Ω.

Definition 2. Start with a measurable space (Ω,S). Hence S is a σ-algebra of subsets of Ω. By an IF-event
we mean an IF-set A = (µA, νA) such that µA, νA : Ω→ [0, 1] are S-measurable.
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The family of all IF-events on (Ω,S) is denoted by F , µA : Ω −→ [0, 1] is called the membership
function and νA : Ω −→ [0, 1] is called the non-membership function.

If A = (µA, νA) ∈ F , B = (µB, νB) ∈ F , then we define the Lukasiewicz binary operations ⊕,�
on F by

A⊕ B = ((µA + µB) ∧ 1Ω, (νA + νB − 1Ω) ∨ 0Ω)),

A� B = ((µA + µB − 1Ω) ∨ 0Ω, (νA + νB) ∧ 1Ω))

and the partial ordering is given by

A ≤ B⇐⇒ µA ≤ µB, νA ≥ νB.

In the IF-probability theory (see [6]) we use the notion of state instead of the notion of probability.

Definition 3. Let F be the family of all IF-events in Ω. A mapping m : F → [0, 1] is called an IF-state, if the
following conditions are satisfied:

(i) m((1Ω, 0Ω)) = 1 , m((0Ω, 1Ω)) = 0;
(ii) if A� B = (0Ω, 1Ω) and A, B ∈ F , then m(A⊕ B) = m(A) + m(B);
(iii) if An ↗ A (i.e., µAn ↗ µA, νAn ↘ νA), then m(An)↗ m(A).

One of the most useful results in the IF-state theory is the following representation theorem ([16]):

Theorem 1. To each IF-state m : F → [0, 1] there exists exactly one probability measure P : S → [0, 1] and
exactly one α ∈ [0, 1] such that

m(A) = (1− α)
∫

Ω
µAdP + α

(
1−

∫
Ω

νAdP
)

for each A = (µA, νA) ∈ F .

Proof. In [16] Theorem.

The third basic notion in the probability theory is the notion of an observable. Let J be the family
of all intervals in R of the form

[a, b) = {x ∈ R : a ≤ x < b}.

Then the σ-algebra σ(J ) is denoted B(R) and it is called the σ-algebra of Borel sets. Its elements are
called Borel sets.

Definition 4. By an IF-observable on F we understand each mapping x : B(R) → F satisfying the
following conditions:

(i) x(R) = (1Ω, 0Ω), x(∅) = (0Ω, 1Ω);
(ii) if A ∩ B = ∅, then x(A)� x(B) = (0Ω, 1Ω) and x(A ∪ B) = x(A)⊕ x(B);
(iii) if An ↗ A, then x(An)↗ x(A).

If we denote x(A) =
(

x[(A), 1Ω − x](A)
)

for each A ∈ B(R), then x[, x] : B(R)→ T are observables,
where T = { f : Ω→ [0, 1]; f is S −measurable}.

Remark 1. Sometimes we need to work with n-dimensional IF-observable x : B(Rn)→ F defined as a mapping
with the following conditions:

(i) x(Rn) = (1Ω, 0Ω), x(∅) = (0Ω, 1Ω);
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(ii) if A ∩ B = ∅, A, B ∈ B(Rn), then x(A)� x(B) = (0Ω, 1Ω) and x(A ∪ B) = x(A)⊕ x(B);
(iii) if An ↗ A, then x(An)↗ x(A) for each A, An ∈ B(Rn).

If n = 1 we simply say that x is an IF-observable.

Similarly as in the classical case the following theorem can be proved (see [6,17]).

Theorem 2. Let x : B(R) −→ F be an IF-observable, m : F −→ [0, 1] be an IF-state. Define the mapping
mx : B(R) −→ [0, 1] by the formula

mx(C) = m(x(C)).

Then mx : B(R) −→ [0, 1] is a probability measure.

Proof. In [17] Proposition 3.1.

In [3] we introduced the notion of product operation on the family of IF-events F as follows:

Definition 5. We say that a binary operation · on F is a product if it satisfies the following conditions:

(i) (1Ω, 0Ω) · (a1, a2) = (a1, a2) for each (a1, a2) ∈ F ;
(ii) the operation · is commutative and associative;
(iii) if (a1, a2) � (b1, b2) = (0Ω, 1Ω) and (a1, a2), (b1, b2) ∈ F , then (c1, c2) ·

(
(a1, a2) ⊕ (b1, b2)

)
=(

(c1, c2) · (a1, a2)
)
⊕
(
(c1, c2) · (b1, b2)

)
and

(
(c1, c2) · (a1, a2)

)
�
(
(c1, c2) · (b1, b2)

)
= (0Ω, 1Ω) for

each (c1, c2) ∈ F ;
(iv) if (a1n, a2n) ↘ (0Ω, 1Ω), (b1n, b2n) ↘ (0Ω, 1Ω) and (a1n, a2n), (b1n, b2n) ∈ F , then (a1n, a2n) ·

(b1n, b2n)↘ (0Ω, 1Ω).

In the following theorem is the example of product operation for IF-events.

Theorem 3. The operation · defined by

(x1, y1) · (x2, y2) = (x1 · x2, y1 + y2 − y1 · y2)

for each (x1, y1), (x2, y2) ∈ F is a product operation on F .

Proof. In [3] Theorem 1.

In [15] B. Riečan defined the notion of a joint IF-observable as follows:

Definition 6. Let x, y : B(R)→ F be two IF-observables. The joint IF-observable of the IF-observables x, y is
a mapping h : B(R2)→ F satisfying the following conditions:

(i) h(R2) = (1Ω, 0Ω), h(∅) = (0Ω, 1Ω);
(ii) if A, B ∈ B(R2) and A ∩ B = ∅, then h(A ∪ B) = h(A)⊕ h(B) and h(A)� h(B) = (0Ω, 1Ω);
(iii) if A, A1, . . . ∈ B(R2) and An ↗ A, then h(An)↗ h(A);
(iv) h(C× D) = x(C) · y(D) for each C, D ∈ B(R).

Theorem 4. For each two IF-observables x, y : B(R)→ F there exists their joint IF-observable.

Proof. In [15] Theorem 3.3.

Remark 2. The joint IF-observable of IF-observables x, y from Definition 6 are two-dimensional IF-observables.

If we have several IF-observables and a Borel measurable function, we can define the
IF-observable, which is the function of several IF-observables, as follows:
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Definition 7. Let x1, . . . , xn : B(R)→ F be IF-observables, hn be their joint IF-observable and let gn : Rn →
R be a Borel measurable function. Then the IF-observable gn(x1, . . . , xn) : B(R)→ F is given by the formula

gn(x1, . . . , xn)(A) = hn
(

g−1
n (A)

)
.

for each A ∈ B(R).

3. Conditional Intuitionistic Fuzzy Probability

In [6] B. Riečan defined the conditional probability for IF-case. He was inspired by classical case,
in which a conditional probability (of A with respect to B) is the real number P(A | B) such that

P(A ∩ B) = P(B) · P(A | B).

An alternative way of defining the conditional probability is

P(A ∩ B) =
∫

B
P(A | B) dP.

The number P(A | B) can be regarded as a constant function. The constant functions are
measurable with respect to the σ-algebra S0 = {∅, Ω}.

Generally, P(A | S0) can be defined for any σ-algebra S0 ⊂ S as an S0-measurable function
such that

P(A ∩ C) =
∫

C
P(A | S0) dP, C ∈ S0.

If S0 = S , then we can put P(A | S0) = χA, since χA is S0-measurable and∫
C

χA dP = P(A ∩ C).

An important example of S0 is the family of all pre-images of a random variable ξ : Ω→ R:

S0 = {ξ−1(B); B ∈ σ(J )}.

In this case we write P(A | S0) = P(A | ξ), hence∫
C

P(A | ξ) dP = P(A ∩ C), C = ξ−1(B), B ∈ σ(J ).

By the transformation formula,

P
(

A ∩ ξ−1(B)
)
=
∫

ξ−1(B)
g ◦ ξ dP =

∫
B

g dPξ , B ∈ σ(J ).

B. Riečan in [6] used this formulation for the IF-case to define the conditional IF-probability:

Definition 8. Let y : B(R) → F be an IF-observable, A ∈ F . Then the conditional IF-probability p(A |
y) = f is a Borel measurable function (i.e., B ∈ B(R) =⇒ f−1(B) ∈ B(R)) such that∫

B
p(A | y) dmy = m

(
A · y(B)

)
for each B ∈ B(R).

Now we prove the properties of the conditional IF-probability.
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Theorem 5. Let F be family of IF-events, A ∈ F , and y : B(R)→ F be an IF-observable. Then p
(
A|y

)
has

the following properties:

(i) p
(
(0Ω, 1Ω)|y

)
= 0, p

(
(1Ω, 0Ω)|y

)
= 1 hold my-almost everywhere;

(ii) 0 ≤ p
(
A|y) ≤ 1 holds my-almost everywhere;

(iii) if
∞⊙

i=1
Ai = (0Ω, 1Ω), then p

( ∞⊕
i=1

Ai

∣∣∣y) =
∞
∑

i=1
p(Ai|y) holds my-almost everywhere;

(iv) if An ↗ A, then the convergence p
(
An|y

)
↗ p

(
A|y

)
holds my-almost everywhere.

Proof. By Definition 8 we have m
(
A · y(B)

)
=
∫
B

p(A|y) dmy.

(i) If A = (0Ω, 1Ω), then m
(
(0Ω, 1Ω) · y(B)

)
= m((0Ω, 1Ω)) = 0 =

∫
B

0 dmy. If A = (1Ω, 0Ω), then

m
(
(1Ω, 0Ω) · y(B)

)
= m(y(B)) =

∫
B

1 dmy.

(ii) If B ∈ B(R), A ∈ F , then

0 = m(A · y(∅)) ≤ m(A · y(B)) =
∫
B

p(A|y) dmy ≤ m(A · y(R)) ≤ 1

and
my
(
{t ∈ R ; p(A|y) < 0}

)
= my(B0) = 0,

my
(
{t ∈ R ; p(A|y) > 1}

)
= my(B1) = 0.

We note that the cases my(B0) > 0, my(B1) > 0 lead to contradictions∫
B0

p(A|y) dmy < 0 ,
∫
B1

p(A|y) dmy > 1,

respectively.

(iii) Let
∞⊙

i=1
Ai = (0Ω, 1Ω). Then using Definition 5 and the properties of IF-state m we obtain

∫
B

p
( ∞⊕

i=1

Ai

∣∣∣ y
)

dmy = m
(( ∞⊕

i=1

Ai

)
· y(B)

)
= m

( ∞⊕
i=1

(Ai · y(B))
)
=

∞

∑
i=1

m(Ai · y(B))

=
∞

∑
i=1

∫
B

p(Ai|y) dmy =
∫
B

∞

∑
i=1

p(Ai|y) dmy.

(iv) Let An ↗ A, An, A ∈ F . Then m
(
An · y(B)

)
↗ m

(
A · y(B)

)
holds for each B ∈ B(R).

Therefore∫
B

lim
n→∞

p(An | y) dmy = lim
n→∞

∫
B

p(An | y) dmy = lim
n→∞

m
(
An · y(B)

)
= m

(
A · y(B)

)
=

∫
B

p(A | y) dmy.
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4. Martingale Convergence Theorem

Let us consider the probability space (Ω,S , P), A ∈ S , a random variable ξ : Ω → R and the
Borel measurable functions gn : R → R (n = 1, 2, . . .) such that lim

n→∞
gn(t) = g(t) for each t ∈ R and

g−1
n
(
B(R)

)
↗ g−1(B(R)

)
. Then by the martingale convergence theorem we have

p(A | gn ◦ ξ)→ p(A | g ◦ ξ),

where p(A | gn ◦ ξ), p(A | g ◦ ξ) are the conditional probabilities (see [18]).
We show a version of the martingale convergence theorem for the conditional intuitionistic fuzzy

probabilities p(A | y ◦ g−1
n ), p(A | y ◦ g−1), i.e.,

p(A | y ◦ g−1
n )→ p(A | y ◦ g−1)

for A ∈ F and an IF-observable y : B(R)→ F .

Proposition 1. Let A ∈ F , y : B(R) → F be an IF-observable and let an IF-observable x : B(R) → F be
defined by

x(B) =



(0Ω, 1Ω), if B = ∅

A, if B = {1}

x(B ∩ {1}), if B 6= ∅, B 6= R, B ∈ B(R)

(1Ω, 0Ω), if B = R.

Let h : B(R2) → F be the joint IF-observable of x and y, let m : F → [0, 1] be an IF-state, Ω = R2,
S = B(R2), P = m ◦ h, ξ : R2 → R be such that ξ(u, v) = v and A = {1} × R. Then (Ω,S , P) is a
probability space, A ∈ S , ξ is a random variable,

Pξ = my

and
p(A | y) = p(A | ξ)

holds my-almost everywhere.

Proof. By definitions we obtain

Pξ(B) = P
(
ξ−1(B)

)
= m ◦ h

(
ξ−1(B)

)
= m

(
h(R× B)

)
= m

(
x(R) · y(B)

)
= m

(
(1Ω, 0Ω) · y(B)

)
= m

(
y(B)

)
= my(B)

for each B ∈ B(R) and∫
B

p(A | ξ) dPξ = P
(

A ∩ ξ−1(B)
)
= m

(
h({1} × B)

)
= m

(
x({1}) · y(B)

)
= m

(
A · y(B)

)
=

∫
B

p(A | y) dmy.

Hence p(A | y) = p(A | ξ) holds my-almost everywhere.
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Theorem 6. (Martingale Convergence Theorem). Let F be a family of IF-events with product ·, A ∈ F ,
y : B(R) → F be an IF-observable, m : F → [0, 1] be an IF-state and g, gn : R → R (n = 1, 2, . . .) be the
Borel measurable functions such that g−1

n
(
B(R)

)
↗ g−1(B(R)

)
. Then the convergence

p(A | y ◦ g−1
n )→ p(A | y ◦ g−1)

holds my◦g−1 -almost everywhere.

Proof. By Proposition 1 we have the probability space (Ω,S , P), A ∈ S , a random variable ξ such that
Pξ = my and p(A | y) = p(A | ξ) holds my - almost everywhere.

Put ηn = gn ◦ ξ (n = 1, 2, . . .) and η = g ◦ ξ. Then ηn, η are the random variables such that
ηn ↗ η and

Sn = η−1
n
(
B(R)

)
= ξ−1(g−1

n
(
B(R)

))
↗ ξ−1(g−1(B(R)

))
= η−1(B(R)

)
= S0.

Put
fn = P(A | Sn) = E(χA | Sn) (n = 1, 2, . . .),

where E(χA | Sn) are the conditional expectations. Then the sequence ( fn,Sn)n is a martingale and
the convergence fn → f∞ holds S∞-almost everywhere, where

f∞ = E(χA | S∞),S∞ = σ

( ∞⋃
n=1

Sn

)
= σ(S0) = S0.

By a special type of martingale theorem we have that the convergence P(A | Sn)→ P(A | S0) holds
S0 - almost everywhere, and hence the convergence

p(A | ηn)→ p(A | η)

holds Pη-almost everywhere.
Now we prove that

p(A | y ◦ g−1
n ) = p(A | ηn) holds my◦g−1

n
− almost everywhere,

p(A | y ◦ g−1) = p(A | η) holds my◦g−1 − almost everywhere,

and
my◦g−1

n
= Pηn , my◦g−1 = Pη .

For each B ∈ B(R) we get

Pηn(B) = Pgn◦ξ = P
(
ξ−1(g−1

n (B)
))

= m ◦ h
(
ξ−1(g−1

n (B)
))

= m
(
h
(

R× g−1
n (B)

))
= m

(
x(R) · y

(
g−1

n (B)
))

= m
(
(1Ω, 0Ω) · y

(
g−1

n (B)
))

= m
(
y
(

g−1
n (B)

))
= my◦g−1

n
(B)

and∫
B

p(A | ηn) dPηn = P
(

A ∩ η−1
n (B)

)
= P

(
({1} × R) ∩

(
ξ−1(g−1

n (B)
)))

= P
(
({1} × R) ∩ (R× g−1

n (B))
)
= P

(
{1} × g−1

n (B)
)
= m

(
h({1} × g−1

n (B))
)

= m
(

x({1}) · y(g−1
n (B))

)
= m

(
A · y(g−1

n (B))
)
=
∫

B
p(A | y ◦ g−1

n ) dmy◦g−1
n

.

Hence p(A | ηn) = p(A | y ◦ g−1
n ) holds my◦g−1

n
− almost everywhere because Pηn = my◦g−1

n
.
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The assertion that p(A | η) = p(A | y ◦ g−1) holds my◦g−1 − almost everywhere can be
proved analogously.

Finally, we obtain that the convergence

p(A | y ◦ g−1
n ) = p(A | ηn)→ p(A | η) = p(A | y ◦ g−1)

holds my◦g−1 − almost everywhere.

5. Conclusions

The paper deals with the probability theory on intuitionistic fuzzy sets. We proved the
properties of the conditional intuitionistic fuzzy probability induced by an intuitionistic fuzzy state.
We formulated and proved the martingale convergence theorem for the conditional intuitionistic fuzzy
probability, too. The next very interesting notion is the notion of a conditional expectation. In [19] V.
Valenčaková defined a conditional expectation of intuitionistic fuzzy observables E(x | y) using Gödel
connectives ∨,∧ given by A ∨ B = (µA ∨ µB, νA ∧ νB), A ∧ B = (µA ∧ µB, νA ∨ νB). She proved the
martingale convergence theorem for this conditional expectation. In future research directions one
can try to formulate the definition of conditional intuitionistic fuzzy expectation using Lukasiewicz
connectives ⊕,� and to prove the version of the martingale convergence theorem in this context.
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4. Valenčáková, V. A note on the conditional probability of IF-events. Math. Slovaca 2009, 2, 251–260. [CrossRef]
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