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Abstract: Ordinary differential equations with n-valued impulses are examined via the associated
Poincaré translation operators from three perspectives: (i) the lower estimate of the number of periodic
solutions on the compact subsets of Euclidean spaces and, in particular, on tori; (ii) weakly locally
stable (i.e., non-ejective in the sense of Browder) invariant sets; (iii) fractal attractors determined
implicitly by the generating vector fields, jointly with Devaney’s chaos on these attractors of the
related shift dynamical systems. For (i), the multiplicity criteria can be effectively expressed in terms
of the Nielsen numbers of the impulsive maps. For (ii) and (iii), the invariant sets and attractors can
be obtained as the fixed points of topologically conjugated operators to induced impulsive maps in
the hyperspaces of the compact subsets of the original basic spaces, endowed with the Hausdorff
metric. Five illustrative examples of the main theorems are supplied about multiple periodic solutions
(Examples 1–3) and fractal attractors (Examples 4 and 5).

Keywords: impulsive differential equations; n-valued maps; Hutchinson-Barnsley operators;
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1. Introduction

The theory of impulsive differential equations and inclusions has been systematically developed
(see e.g., the monographs [1–4], and the references therein), among other things, especially because of
many practical applications (see e.g., References [1,4–11]). These applications concern fluctuations of
pendulum systems under impulsive effects, remittent oscillators, population dynamics, oxygen-driven
self-cycling fermentation process, nutrient-driven self-cycling fermentation process, various impulsive
drug effects, optimal impulsive vaccination for an SIR control model, an SEIRS epidemic model, malaria
vector model, impulsive insecticide spraying, HIV induction-maintenance therapy, and so forth.

The impulsive maps can be deterministic or stochastic (random), crisp or fuzzy, state dependent
or independent, time dependent or independent, single-valued or multivalued. Here, we will be
exclusively interested in multivalued, deterministic non-fuzzy state and time independent impulses
in subsets of Euclidean spaces. A particular attention will be paid to a subclass of n-valued maps
(see Definition 1 below), whence the title of our article. For other sorts of multivalued impulses,
see e.g., (Chapter 11 in Reference [12]), References [13–18].

As far as we know, the differential equations with n-valued impulses have been tendentiously
considered only in Reference [19] for multiple periodic solutions. On the other hand, the recent
research of n-valued maps is very active in the topological (i.e., mainly Nielsen) fixed point theory
(see e.g., References [20,21] and the earlier survey article of Brown in the handbook [22]). This research
is far from being trivial, because there is for instance nothing known about the lower estimates for
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the number of periodic points of such maps, especially because the number of points of their iterates
can be quite arbitrary in general. Moreover, it seems to be difficult to find conditions under which the
iterates have an exact given number of points.

Relaxing the strict requirement of exactly n-values in Definition 1 below, we can consider the union
operators of n single-valued maps, called the Hutchinson-Barnsley operators. These operators play a
crucial role in constructing the fractals as attractors of iterated function systems (see References [23,24]).
This relaxation makes the study in a certain sense more liberal, but the n-valued Hutchinson-Barnsley
operators then become nothing else but split n-valued maps, which might not be so interesting.
Nevertheless, the application of the deep results for the iterated function systems, including the chaotic
dynamics on the Hutchinson-Barnsley (fractal) attractors, to impulsive differential equations via the
Poincaré translation operators along the trajectories is quite original.

Besides these two novelty applications, our research in this field can be justified by a simple
argument that the n-valued impulses extend with no doubts the variability in practical applications.
For instance, the repeated vaccination need not be always the same, but they can differ each from
other just by finitely many possibilities (e.g., when the doctors have at the same time to their disposal
vaccines made by n different producers).

Our paper is organized as follows. After the useful definitions in Preliminaries, we will recall
the basic properties and results about n-valued maps (in Section 3) and the Hutchinson-Barnsley
operators (in Section 4). These results are neither new, but (in case of n-valued maps) nor so well
known. New and original are the applications of these results to impulsive differential equations
in Rn (in Section 5) and Rn/Zn (in Section 6), jointly with the obtained theorems about topological
fractals and deterministic chaos in the sense of Devaney (in Section 7). Several illustrative examples
are supplied in Sections 5 and 6, jointly with concluding remarks in Section 8.

2. Preliminaries

In the entire text all topological spaces will be metric. A space X is an absolute neighbourhood
retract (written X ∈ ANR) if, for every space Y and every closed subset A ⊂ Y, each continuous map
f : A→ X is extendable over some open neighbourhood U of A in Y. A space X is an absolute retract
(written X ∈ AR) if each f : A→ X is extendable over Y. Evidently, if X ∈ AR, then X ∈ ANR.

By a polyhedron, we understand as usually a triangulable space. It is well known that every
polyhedron is an ANR-space. An important example of a compact polyhedron will be for us a torus.
By the n-torus Tn, n ≥ 1, we will mean here either the factor space Rn/Zn = (R/Z)n or the Cartesian
product S1 × . . .× S1︸ ︷︷ ︸

n-times

, where R denotes the set of reals, Z denotes the set of integers, and

S1 := {x ∈ R2 | |x| = 1} = {z = e2πs i | s ∈ [0, 1]}.

In particular, for n = 1, T1 = S1 becomes a circle.
If not explicitly specified, we will not distinguish between the additive and multiplicative

notations, because the logarithm map e2πs i → s, s ∈ [0, 1], establishes an isomorphism between
these two representations.

Let us also note that the relation between the Euclidean space Rn and its factorization Rn/Zn

can be realized by means of the natural projection, sometimes also called a canonical mapping,
τ : Rn → Rn/Zn, x → [x], where the symbol [x] := {y ∈ Rn | (y− x) ∈ Zn} stands for the equivalent
class of elements with x in Rn/Zn, that is, Rn/Zn := {[x] | x ∈ Rn}, where [x] = x +Zn, x ∈ [0, 1)n.

By a multivalued map ϕ : X ( Y, we understand ϕ : X → 2Y \ {∅}. In the entire text, we will still
assume that ϕ has closed values.

A multivalued map ϕ : X ( Y is said to be continuous if, for every open U ⊂ Y, the set {x ∈ X |
ϕ(x) ⊂ U} is open in X and at the same time if, for every closed V ⊂ Y, the set {x ∈ X | ϕ(x) ⊂ V} is
closed in X.
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Obviously, in the single-valued case, if f : X → Y is continuous in a multivalued sense, then it
is continuous in the usual (single-valued) sense. Furthermore, every continuous map ϕ : X ( Y has
a closed graph Γϕ := {(x, y) ∈ X×Y | y ∈ ϕ(x)}, but not vice versa. If ϕ : X ( Y is continuous with
compact values and A ⊂ X is compact, then ϕ(A) is compact, too. The composition ψ ◦ ϕ : X ( Z
of two continuous maps with compact values, ϕ : X ( Y and ψ : Y ( Z, is again continuous with
compact values. For more details, see for example, References [25,26].

For the single-valued compact continuous maps f : X → X, where X ∈ ANR, we can define
the global topological invariants, namely the Lefschetz number L( f ) ∈ Z and the Nielsen number
N( f ) ∈ N∪ {0}. If, in particular, X ∈ AR, then L( f ) = 1 and N( f ) = 1.

For the single-valued continuous maps on tori, f : Tn → Tn, the Anosov-type equality N( f ) =
|L( f )| holds. For the single-valued continuous maps on the circle (n = 1), f : S1 → S1, we can also
define their degree deg( f ) := 1− L( f ). If S1 = R/Z, then deg( f ) = f̃ (1)− f̃ (0), where f̃ : R → R
denotes the lift of f .

Besides their existence property, when the existence of a fixed point x = f (x) of a compact
continuous f : X → X, X ∈ ANR, is implied by L( f ) 6= 0, resp. by N( f ) > 0, or in particular
for X = S1 by deg( f ) 6= 1 (i.e., f̃ (1)− f̃ (0) 6= 1), all these numbers are invariant under a compact
continuous homotopy, namely L( f0) = L( f1) = L( fµ), N( f0) = N( f1) = N( fµ), and (for X = S1)
deg( f0) = deg( f1) = deg( fµ) = f0(1)− f0(0) = f1(1)− f1(0) = fµ(1)− fµ(0), for all µ ∈ [0, 1].

The Nielsen number N( f ) of a continuous map f : X → X, where X ∈ ANR, gives still the lower
estimate of the number of fixed points, that is, N( f ) ≤ # {x ∈ X | x = f (x)}, where the symbol #
stands for the cardinality of the fixed point set {x ∈ X | x = f (x)}.

For the definitions and more details, see e.g., References [27,28].
Since in Sections 4 and 7 we will also consider hyperspaces endowed with the Hausdorff metric

dH , it will be convenient to recall finally their definitions. Hence, if (X, d) is a metric space endowed
with the metric d, then the induced hyperspace (K(X), dH) is defined as

K(X) := {Y ⊂ X | Y is a compact subset of X} ,

and the Hausdorff metric dH(·, ·) := K(X)× K(X)→ [0, ∞) is induced by d as follows:

dH(A, B) := max

{
sup
a∈A

d(a, B), sup
b∈B

d(A, b)

}
=max

{
sup
a∈A

( inf
b∈B

d(a, b)), sup
b∈B

( inf
a∈A

d(a, b))

}
,

where d(a, B) and d(A, b) stand for the distances between points a, b and sets A, B, respectively.
For more details, see for example, References [24,25,29,30].

3. N-Valued Maps

The topological fixed point theory for multivalued maps has been developed in two main
directions: (i) for admissible maps (in the sense of Górniewicz) and their particular cases like acyclic
maps, Rδ-maps, and so forth (see e.g., References [22,25,26], and the references therein), and (ii) for
n-valued maps (see e.g., References [20–22,31–48]) and their generalizations like n-acyclic maps
(see e.g., Reference [49]) and weighted maps (see e.g., Reference [50]). In the present paper, we will be
exclusively interested in the second class of n-valued maps whose research made a big progress in the
recent years.

Let us recall their definition and some basic properties.

Definition 1. An n-valued map ϕ : X ( Y is a continuous multivalued mapping that associates to each
x ∈ X an unordered subset of exactly n points of Y. We say that an n-valued map ϕ is split if there are
single-valued continuous maps f1, . . . , fn : X → Y such that ϕ(x) = { f1(x), . . . , fn(x)}, for all x ∈ X.
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One can readily check that unlike to admissible maps, where the sets of values are compact and
connected (i.e., continua), those of n-valued maps are disconnected. Moreover, unlike to the above
definition of general multivalued maps, for the continuity of n-valued maps is sufficient if, for every
closed V ⊂ Y, the set {x ∈ X | ϕ(x) ⊂ V} is closed in X.

Lemma 1 (splitting lemma; cf. References [44,47,51]). If X is simply connected and locally path-connected,
then every n-valued map ϕ : X ( Y is split.

Let us recall that X is simply connected if and only if it is path-connected and its fundamental
(first homotopy) group is trivial.

Lemma 2 (cf. Reference [33], Theorem 2.1). Any n-valued map ϕ1 : X ( Y which is homotopic in an
n-valued way (i.e., via a continuous mapping ϕt : X× [0, 1] ( Y such that ϕt(x) has exactly n-points, for all
(x, t) ∈ X× [0, 1]) to a split n-valued map ϕ0 : X ( Y (written ϕt ∼ ϕ0) is also split.

If X is a compact ANR- space and f : X → X is a single-valued continuous self-map, then the
Nielsen number N( f ) of f is well defined (see e.g., References [27,28]). Since a (compact) ANR-space
is (uniformly) locally contractible, and so locally path-connected, if X is still simply connected, then all
fixed points of f belong to a single (same) fixed point class, whose index is L( f ), where L( f ) stands for
the Lefschetz number of f . For its definition and more details, see for example, Reference [27]. Therefore,
if X is still simply connected, then N( f ) = 1 if L( f ) 6= 0, and N( f ) = 0 if L( f ) = 0.

Summing up, if X is a simply connected compact ANR-space, then the Nielsen relation of any
self-map gk : X → X homotopic to fk : X → X (written gk ∼ fk) is trivial, that is, N(gk) = N( fk) ≤ 1,
for k = 1, . . . , n. Subsequently, the Nielsen numbers N(ψ) and N(ϕ) of homotopic n-valued maps
ψ = {g1, . . . , gn} : X ( X and ϕ = { f1, . . . , fn} : X ( X can be simply defined and calculated by
the formula:

N(ψ) = N(ϕ) :=
n

∑
k=1

N( fk) = # {k = 1, . . . , n | L( fk) 6= 0} , (1)

where the symbol # denotes the cardinality of a given set.
If, in particular, X is a compact AR-space, then formula (1) takes the form

N(ψ) = N(ϕ) :=
n

∑
k=1

N( fk) = n, (2)

because L( fk) = 1, for all k = 1, . . . , n.

Remark 1. Let us note that (compact) simply connected ANR-spaces are not necessarily (compact) AR-spaces.
For example, every n-dimensional unit sphere Sn, where n ≥ 2, is a simply connected ANR-space, but not
contractible, and so an AR-space. Moreover, L(idS2) = 2 but, according to (1), N(idS2) = 1.

Remark 2. According to the example due to Jezierski [43], there exists a continuous map ϕ : K2 ( K2,
where K2 ⊂ C is a two-dimensional closed ball in the complex plane C, whose values consist of 1 or 2 or 3 points,
which is fixed point free.It justifies the assumption of exactly n-valued maps in Definition 1.

Of course, the assumption of a simple connectedness of X is not necessary for the splitting of
n-valued self maps ϕ : X ( X. For instance, if X = S1 = R/Z, then an n-valued map ϕ : S1 ( S1 of
degree Deg(ϕ) (for its definition, see for example, Theorem 2.1 in Reference [33]) is split if and only if
Deg(ϕ) is a multiple of n (see Corollary 5.1 in Reference [33]).

In the case of splitting, we have to our disposal the following lemma.
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Lemma 3 (cf. Theorems 2.2 and 2.3 in Reference [33]). If ϕ : S1 ( S1 is a split n-valued map, then its
degree Deg(ϕ) equals n-times the classical degree of the maps in the splitting. Furthermore, if ψ : S1 → S1 is
homotopic in an n-valued way to ϕ (ψ ∼ ϕ), then

Deg(ψ) = Deg(ϕ) = n deg( f1) = · · · = n deg( fn) = n
[

f̃1(1)− f̃1(0)
]

, (3)

where f̃1 : R→ R is the lift of f1 : R/Z→ R/Z.

In the non-split case, the situation becomes obviously more delicate. Nevertheless, for X = S1 =

R/Z, we have even the Wecken property.

Lemma 4 (cf. Theorem 5.1 in Reference [33]). If ϕ : S1 ( S1 is an n-valued map of degree Deg(ϕ),
then N(ϕ) := |n−Deg(ϕ)| holds for the Nielsen number N(ϕ) of ϕ, and there is an n-valued map,
say ψ, homotopic to ϕ (i.e., ψ ∼ ϕ), that has exactly |n−Deg(ϕ)| = |n−Deg(ψ)| fixed points
(i.e., the Wecken property).

Remark 3. Observe that the equalities (3) in Lemma 3 can be expressed in terms of the Nielsen numbers
as follows:

N(ψ) = N(ϕ) = |n−Deg(ϕ)| = n |1− deg( f1)| = n
∣∣∣1− [ f̃1(1)− f̃1(0)

]∣∣∣ , (4)

because N( f1) = |L( f1)| = |1− deg( f1)| =
∣∣∣1− [ f̃1(1)− f̃1(0)

]∣∣∣.
Now, we will briefly sketch the definition and basic properties of the Nielsen number for

n-valued maps on compact polyhedra, which is essentially due to Schirmer [46] (see also the recent
Reference [20]). The restriction to compact polyhedra is caused by the application of such a fixed point
index in Reference [46]. For more general indices, see for example, References [40,48,49]. On the other
hand, it will be quite sufficient for our needs in applications.

Using the fact that n-valued maps are locally (but not globally) equivalent to n single-valued
continuous functions, which is important for the choice of a suitable index of isolated fixed points,
Schirmer proceeded in Reference [46] analogously to a single-valued case (n = 1). Of course, all the
technicalities (especially those related to the fixed point index) must have been appropriately elaborated
there. For an alternative approach via the lifting classes, see Reference [20].

Hence, let X be a compact polyhedron and ϕ : X ( X be an n-valued self-map. To obtain the
Nielsen number N(ϕ) of ϕ, the fixed points of ϕ were at first divided into finitely many equivalent
classes (see Theorem 5.2 in Reference [46]), called fixed point classes or Nielsen classes. Then a suitable
fixed point index was associated with each fixed point class. The (Nielsen) classes with non-zero
index are called essential. The Nielsen number N(ϕ) of ϕ is the number of essential (Nielsen) fixed
point classes.

The Nielsen number N(ϕ) gives the lower estimate of the number of fixed points of ϕ, that is, that any
n-valued self-map ϕ : X ( X has at least N(ϕ) fixed points (cf. Theorem 5.4 in Reference [46]).
Furthermore, ϕ satisfies the homotopy invariance, that is, if ϕt : X× [0, 1] ( X is an n-valued homotopy,
then N(ϕ0) = N(ϕ1) (cf. Theorem 6.5 in Reference [46]).

Remark 4. Although the Anosov property, namely that N(ϕ) = |L(ϕ)|, holds for n-valued maps on S1,
because Deg(ϕ) = n− L(ϕ), it is no longer true for higher dimensional tori Tn, where n > 1, which complicates
the calculations. Nevertheless, if ϕ = { f1, . . . , fn} : X ( X is a split n-valued self-map on a compact
polyhedron X, then N(ϕ) = ∑n

k=1 N( fk) (cf. Corollary 7.2 in Reference [46]). If, in particular, ϕ is an n-valued
constant, then N(ϕ) = n (cf. Corollary 7.3 in Reference [46]).
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Remark 5. Observe that, unlike to equalities (1) and (2), compact polyhedra in Remark 4 need not be
simply connected. Let us note that every compact ANR-space is homotopically equivalent to some polyhedron
(see e.g., Reference [26]). On the other hand, since any two continuous maps f , g : X → X, where X is a compact
absolute retract, are homotopic and L( f ) = 1 (see again e.g., Reference [26]), we get that N( f ) = N(g) = 1,
and subsequently we can put N(ϕ) = ∑n

k=1 N( fk) = n, as in (2).

4. Hutchinson-Barnsley’s Operators

As far as we know, there are no nontrivial results about the periodic point theory, or more precisely
periodic orbit theory, for n-valued maps with n > 1. The reason consists in an almost uncontrollable
enormous variability of their iterates, by which the existence (and even worse multiplicity) problems
of nontrivial periodic orbits seem to be a difficult task.

On the other hand, the theory of iterated function systems (IFS), originated by Hutchinson [23]
and extended and popularized by Barnsley [24], allows us to construct compact invariant subsets
A ⊂ X of a complete metric space (X, d) of the Hutchinson-Barnsley operators

ϕ :=
n⋃

k=1

fk : X ( X, i.e., A = ϕ(A) =
n⋃

k=1

⋃
x∈A

fk(x),

provided fk : X → X, k = 1, . . . , n, are contractions, that is,

∃Lk ∈ [0, 1) : d( fk(x), fk(y)) ≤ Lkd(x, y) ∀x, y ∈ X, k = 1, . . . , n.

Since a unique A can be obtained as the limit limm→∞ ϕm(A0) = A, that is, lim dH(Am, A) = 0,
where A0 ⊂ X is an arbitrary compact subset, Am = ϕ(Am−1), m = 1, 2, . . . , and dH stands for the
Hausdorff metric (see Section 2), A is called the (global) attractor of the iterated function system (IFS)
{X; f1, . . . , fn}. Moreover, the inequality

dH(Am, A) ≤ Lm

1− L
dH(A0, ϕ(A0)), (5)

where L = maxk=1,...,n Lk, holds for the m-th iterate ϕm(A0) = Am of ϕ, for all m = 1, 2, . . .
The attractor A has usually a fractal structure, whose fractal dimension dim A can be estimated

from above (i.e., to get its upper bound dim A ≤ D) by means of the Moran-Hutchinson formula
(cf. References [23,24])

n

∑
k=1

LD
k = 1

(
for L = L1 = · · · = Ln : D =

log n
log 1

L

)
, (6)

provided the sets fk(A), k = 1, . . . , n, are either totally disconnected, that is,

f j(A) ∩ fk(A) = ∅, for all j, k = 1, . . . , n; j 6= k, (7)

or just touching (i.e., neither (7), nor with overlaps).
If, in particular, fk are similitudes, that is,

d( fk(x), fk(y)) = Lkd(x, y), for all x, y ∈ X, k = 1, . . . , n,

then we get dim A = D.
Observe that condition (7) is much stronger than the one required in Definition 1 for n-valued

maps, because ϕ
∣∣

A : A ( A is certainly continuous and every image set ϕ
∣∣

A(x) must contain exactly
n-points, for each x ∈ A. In other words, ϕ

∣∣
A is in particular a split n-valued map on a compact

invariant set A ⊂ X.
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Moreover, one can prove that every fk
∣∣

A, k = 1, . . . , n, must be injective, because otherwise if
there are two points, say a1, a2 ∈ A, such that fk(a1) = fk(a2) = a ∈ A, then a ∈ A would have
two addresses, which is impossible (see e.g., Reference [24]). Therefore, we can assume without any
loss of generality that fk

∣∣
A are under (7) invertible, for all k = 1, . . . , n. Furthermore, every inversion

f−1
k : fk(A)→ A is a continuous map, for every k = 1, . . . , n.

Hence, we can define the discrete dynamical system (A, S) by the mapping S : A→ A, where

S(a) :=
n⋃

k=1

f−1
k (a), (8)

which can be uniquely defined by S(a) := f−1
k (a), provided a ∈ fk(A). The system (A, S) is called the

shift dynamical system, associated with the iterated function system {A; f1, . . . , fn}. It can be proved
that it is chaotic in the sense of Devaney (see e.g., References [24,30]), that is,

(i) S is sensitive to initial conditions,
(ii) S is transitive (if U, V ⊂ A are open subsets, then there exists an integer n∗ such that

U ∩ Sn∗(V) 6= ∅),
(iii) the set of periodic points of S is dense in A.

We can extend the definition of S to the hyperspace K(A) := {B ⊂ A | B is a compact subset of A},
endowed with the Hausdorff metric dH . Hence, let us define the hypermap S∗ : K(A)→ K(A), where

S∗(B) :=
n⋃

k=1

f−1
k (B), B =

⋃
x∈B
∈ K(A). (9)

It is well known (see e.g., References [23,24]) that (K(A), dH) is also compact and S∗ is continuous
in the metric dH .

Haase Theorem 1 in Reference [52] has proved that the system (K(A), S∗) is also chaotic in the
sense of Devaney with respect to the Hausdorff metric dH , provided (5) holds.

Summing up, we can formulate the following two well known propositions.

Proposition 1 (cf. References [23,24]). The iterated function system {X; f1, . . . , fn}, where (X, d) is a
complete metric space and fk : X → X are contractions, for all k = 1, . . . , n, admits a unique global attractor
A ∈ K(X), which can be obtained as the limit limm→∞ ϕm(A0) = A, that is, limm→∞ dH(Am, A) = 0, where
A0 ⊂ X is an arbitrary compact subset and A = ϕ(A), Am = ϕm(A0), ϕ := ∪n

k=1 fk : X ( X.
Moreover, the inequality (5) holds for the successive approximations Am, m = 1, 2, . . . , of the attractor

A, whose fractal dimension dim A can be estimated from above (i.e., dim A ≤ D) by means of the
Moran-Hutchinson formula (6).

Proposition 2 (cf. References [24,52]). Let {X; f1, . . . , fn} be an iterated function system as in Proposition 1.
Assume, furthermore, that the sets fk(A) are totally disconnected, for all k = 1, . . . , n (see (7)). Then the shift
dynamical system (A, S), where S : A → A is defined in (8), which is associated with the iterated function
system {A; f1, . . . , fn}, is chaotic in the sense of Devaney. The same is true for the system (K(A), S∗), where the
hypermap S∗ : K(A)→ K(A) is defined in (9), with respect to the Hausdorff metric dH .

Remark 6. Since every contraction fk on a complete metric space X has, for every k = 1, . . . , n, exactly one fixed
point, the Hutchinson-Barnsley operator ϕ :=

⋃n
k=1 fk : X ( X must have at most n fixed points. Since the

attractor A ⊂ X is compact, and so complete, all the fixed points of the restricted contractions fk
∣∣

A : A→ A,
k = 1, . . . , n, as well as of ϕ

∣∣
A : A ( A must belong to A.

The existence of a compact invariant subset of the Hutchinson-Barnsley operator can be also
obtained in the frame of topological fixed point theory (unlike to “metric” Proposition 1) as follows.
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Let us recall here that a metric space X is locally continuum-connected if, for each neighbourhood U of
each point x ∈ X, there is a neighbourhood V ⊂ U of x such that each point of V can be connected
with x by a subcontinuum (i.e., a compact, connected subset) of U.

Proposition 3 (cf. References [29,53,54]). Let X be a connected, locally continuum-connected metric space
and fk : X → X be compact continuous maps, for all k = 1, 2, . . . , n. Then the Hutchinson-Barnsley operator

ϕ :=
n⋃

k=1

fk : X ( X

possesses at least one compact invariant set, say X0 ∈ K(X), such that X0 = ϕ(X0).
If, in particular, X is a Peano continuum (i.e., compact, connected and locally connected) and fk : X → X

are continuous maps, for all k = 1, 2, . . . , n, then ϕ possesses at least one compact invariant set ϕ(X0) = X0 ⊂
X which is non-ejective in the sense of Browder, that is,

∀ε > 0∃X1 ∈ K(X), X1 6= X0, and dH(X0, X1) < δ :
ϕm(X1) =

[⋃
x∈X0

⋃n
k=1 fk(x)

]m ⊂ {Y ∈ K(X) | dH(X0, Y) < ε} , ∀m ≥ 1.
(10)

Remark 7. The Hutchinson-Barnsley operator in Propositions 1 and 3 need not (but can) be exactly n-valued.
Furthermore, the contractions fk in Proposition 1 can be more generally replaced, for the existence of a unique
attractor A ∈ K(X), by multivalued contractions with compact values. In Proposition 3, compact continuous
maps fk can be also replaced, for the existence of a compact invariant set A ∈ K(X) of ϕ (without uniqueness,
but including (10)), by compact continuous multivalued maps with compact values. For more details and further
possibilities (see References [29,53–55]).

Remark 8. Let us emphasize that the maps fk as well as the Hutchinson-Barnsley operator ϕ can be, under the
assumptions of Proposition 3, fixed point free. For instance, rotations on the circle X = S1 can be so. On the
other hand, the non-ejectivity (10) can be regarded as a weak local stability of an invariant set A ∈ K(X) of ϕ.

5. Application to Impulsive Differential Equations in Rn

In this section, the presented results for n-valued maps will be applied to impulsive differential
equations in Rn.

Consider the vector differential equation

x′ = F(t, x), (11)

where F : R×Rn → Rn is the Carathéodory mapping such that F(t, x) ≡ F(t + ω, x), for some given
ω > 0, that is,

(i) F(·, x) : [0, ω]→ Rn is measurable, for every x ∈ Rn,
(ii) F(t, ·) : Rn → Rn is continuous, for almost all (a.a.) t ∈ [0, ω].

Let, furthermore (11) satisfy a uniqueness condition (e.g., a locally Lipschitz condition) and all
solutions of (11) entirely exist on the whole line (−∞, ∞).

By a (Carathéodory) solution x(·) of (11), we understand a locally absolutely continuous function,
that is, x ∈ ACloc(R,Rn), which satisfies (11) for a.a. t ∈ R.

We can associate to (11) the Poincaré translation operator Tω : Rn → Rn along its trajectories
as follows:

Tω(x0) := {x(ω) : x(·) is a solution of (11) such that x(0) = x0} . (12)

It is well known (see e.g., Chapter 1.1 in Reference [56]) that Tω is a homeomorphism such that
Tk

ω = Tkω, (i.e., the semi-group property), for every k ∈ N.
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One can easily detect the one-to-one correspondence between the kω-periodic solutions of (11),
that is, x(t) ≡ x(t + kω) but x(t) 6≡ x(t + jω) for j < k, and k-periodic points of Tω, i.e., x0 = Tk

ω(x0)

but x0 6= T j
ω(x0) for j < k, where x0 = x(0) and j, k are positive integers.

Consider also the vector impulsive differential equationx′ = F(t, x), t 6= tj := jω, for some given ω > 0,

x(t+j ) ∈ I(x(t−j )), j ∈ Z,
(13)

where F : R×Rn → Rn is the Carathéodory mapping such that F(t, x) ≡ F(t + ω, x), Equation (11)
satisfies a uniqueness condition and a global existence of all its solutions on (−∞, ∞). Let, furthermore,
I : Rn ( Rn be a continuous impulsive mapping.

The solutions of impulsive differential Equation (13) will be also understood in the Carathéodory
sense, that is, x ∈ AC

[
tj, tj+1

]
, j ∈ Z. For multivalued impulses I, there need not be any longer

one-to-one correspondence between the kω-periodic solutions of (13) and k-periodic orbits of the
composition I ◦ Tω. Nevertheless, every k-periodic orbit of I ◦ Tω implies the existence of a related
kω-periodic solution of (13), and vice versa.

The first application deals with compact m-valued impulses I in (13).

Theorem 1. Assume that I : Rn ( Rn is a compact m-valued map such that I(K0) = K0, where K0 := I(Rn)

is a simply connected ANR-space such that K0 ⊂ K1 := Tω(K0). Then I
∣∣
K0

is an m-valued split map of the
form I

∣∣
K0

= {i1, . . . , im}, and subsequently the number of ω-periodic solutions of (13) is at least equal to
# {k = 1, . . . , m | L(ik) 6= 0}, where L is the ordinary Lefschetz number.

Proof. Since I is compact and Tω is a homeomorphism, K0 := I(Rn) and K1 := Tω(K0) must be
compact sets. Since every ANR-space is locally path-connected, K0 is a compact simply connected and
locally path-connected ANR-space, and I

∣∣
K0

: K0 ( K0 is (according to Lemma 1) a split m-valued map.
Furthermore, since Tµω : Rn → Rn is also a homeomorphism, for every µ ∈ [0, 1], the composition

I ◦ Tµω
∣∣
K0

: K0 ( K0, µ ∈ [0, 1], is an m-valued homotopy between (µ = 0) I ◦ T0
∣∣
K0

= I ◦ id
∣∣
K0

=

I
∣∣
K0

: K0 → K0, and (µ = 1) I ◦ Tω
∣∣
K0

: K0 ( K0. According to Lemma 2, I ◦ Tω
∣∣
K0

: K0 ( K0 is a split
m-valued map, too.

Letting I
∣∣
K0

= {i1, . . . , Im} and applying formula (1), we get that N(I ◦ Tω
∣∣
K0
) = N(I

∣∣
K0
) =

∑m
k=1 N(ik) = # {k = 1, . . . , m | L(ik) 6= 0}. It means that the mapping I ◦ Tω

∣∣
K0

has at least such a
number of fixed points, which determine the same number of ω-periodic solutions of (13), as claimed.
This completes the proof.

Corollary 1. Let the assumptions of Theorem 1 be satisfied. Assume additionally that K0 is a (compact)
AR-space. Then Equation (13) admits at least m ω-periodic solutions.

Proof. The claim follows immediately from Theorem 1, when replacing in the proof formula (1) by
formula (2) (cf. Remark 1).

We will supply Corollary 1 by two simple illustrative examples. The first example concerns the
scalar case (n = 1).

Example 1. Consider the semi-linear impulsive equation x′ = p(t, x)x + q(t, x), t 6= tj := jω, for some given ω > 0,

x(t+j ) ∈ I(x(t−j )), j ∈ Z,
(14)
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where p, q : R2 → R are Carathéodory functions such that p(t, x) ≡ p(t + ω, x), q(t, x) ≡ q(t + ω, x),
and the compact m-valued function I : R ( R satisfies I(R) = [0, 1], and I([0, 1]) = [0, 1].

The solutions x0(·), x1(·) of x′ = p(t, x)x + q(t, x) such that x0(0) = 0, x1(0) = 1 can be implicitly
expressed as

x0(t) =
∫ t

0
e
∫ t

s p(r,x0(r))dr q(s, x0(s))ds,

x1(t) = e
∫ t

0 p(s,x1(s))ds +
∫ t

0
e
∫ t

s p(r,x1(r))dr q(s, x1(s))ds.

Hence, the required inclusion K0 := [0, 1] ⊂ K1 := [Tω(0), Tω(1)] in Corollary 1 (K0 := [0, 1] is
obviously a compact AR-space), takes the form

0 ≥
∫ ω

0
e
∫ ω

s p(r,x0(r))dr q(s, x0(s))ds,

1 ≤ e
∫ ω

0 p(t,x1(t))dt +
∫ ω

0
e
∫ ω

s p(r,x1(r))dr q(s, x1(s))ds.

In order to satisfy the first inequality, we can assume that q(t, x) ≤ 0, for a.a. t ∈ [0, ω] and all x ∈ R.
The second inequality can be then more restrictively rewritten into

e
∫ ω

0 p(t,x1(t))dt ≥ 1 +
∣∣∣∣∫ ω

0
e
∫ ω

s p(r,x1(r))dr q(s, x1(s))ds
∣∣∣∣ .

Assuming still the existence of real constants p0, p1, q1 such that

0 < p0 ≤ p(t, x) ≤ p1 and |q(t, x)| ≤ q1, for a.a. t ∈ [0, ω] and all x ∈ R,

we still require that

q1 ≤
ep0ω −1
ω ep1ω ,

that is, jointly with q(t, x) ≤ 0,

− ep0ω −1
ω ep1ω ≤ q(t, x) ≤ 0, for a.a. t ∈ [0, ω] and all x ∈ R, (15)

where 0 ≤ p0 ≤ p(t, x), for a.a. t ∈ [0, ω] and all x ∈ R.
Thus, the semi-linear impulsive Equation (14) admits, according to Corollary 1, at least m ω-periodic

solutions, provided (15) holds jointly with I : R ( R being a compact m-valued function such that I(R) = [0, 1]
and I([0, 1]) = [0, 1].

Now, we would like to apply Corollary 1 to the nonlinear vector impulsive differential Equation (13).

Example 2. Consider (13), where F is as above, and assume that the inequalities{
f j(t, . . . , xj, . . . ) > 0 holds for all xj ≥ bj, j = 1, . . . , n,

f j(t, . . . , xj, . . . ) < 0 holds for all xj ≤ aj, j = 1, . . . , n,
(16)

hold uniformly for a.a. t ∈ [0, ω] and all the remaining components of x = (x1, . . . , xn), where F(t, x) =

( f1(t, x), . . . , fn(t, x))T . Let I : Rn ( Rn be a compact m-valued map such that
(

I(Rn) =
)

K0 := [a1, b1]×
· · · × [an, bn], I(K0) = K0. One can readily check that K0 is a compact AR-space.

Since, in view of (16), the inequalities xj(ω, aj) ≤ aj and xj(ω, bj) ≥ bj, j = 1, . . . , n, hold for all the
components of the solutions x(·, a) and x(·, b) such that x(0, a) = a and x(0, b) = b, where a = (a1, . . . , an),
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b = (b1, . . . , bn), the particular inclusion K0 ⊂ K1 required in Corollary 1 is satisfied, where K0 := [a1, b1]×
· · · × [an, bn] and K1 := Tω(K0).

Therefore, the nonlinear impulsive Equation (13) admits, according to Corollary 1, at least m ω-periodic
solutions, provided (16) holds, jointly with I : Rn ( Rn being a compact m-valued map such that I(Rn) =

K0 := [a1, b1]× · · · × [an, bn] and I(K0) = K0.

In the non-splitting case (see Remark 5), we can state the following rather theoretical result.

Theorem 2. Assume that I : Rn ( Rn is a compact m-valued map such that I(K0) = K0, where K0 := I(Rn)

is a (compact) polyhedron such that K0 ⊂ K1 := Tω(K0). Then Equation (13) has at least N(I
∣∣
K0
) ω-periodic

solutions, where the Nielsen number N(I
∣∣
K0
) of the restriction I

∣∣
K0

: K0 ( K0 was defined in Reference [46] by
Schirmer (for the sketch, see Section 3).

Proof. We can proceed quite analogously as in the proof of Theorem 1, when avoiding the parts
guaranteeing the split arguments, and use the homotopy invariance to get N(I ◦ Tω

∣∣
K0
) = N(I

∣∣
K0
).

Remark 9. As already pointed out in Remark 4, to calculate the Nielsen number N(I
∣∣
K0
) is not an easy task in

general. That is why Theorem 2 is rather theoretical than practical. In the splitting case, its calculations can be
much easier (see again Remark 4). On the other hand, although compact polyhedra are only special ANR-spaces,
they need not be simply connected, as required in Lemma 1, Theorem 1 and Corollary 1 (cf. Remark 5).

6. Application to Impulsive Differential Equations on Rn/Zn

We will also apply the presented results for m-valued maps to impulsive differential equations
on tori.

Hence, consider the Equation (11) with the same assumptions as in Section 5.
Assuming still that

F(t, . . . , xj, . . . ) ≡ F(t, . . . , xj + 1, . . . ), j = 1, . . . , n, (17)

where x = (x1, . . . , xn), we can also consider (11) on the torus (factor space) Rn/Zn, which can be
endowed with the metric

d̂(x, y) := min {dEucl(a, b) : a ∈ [x], b ∈ [y]} ,

for all x, y ∈ Rn/Zn, where dEucl(a, b) :=
√

∑n
j=1(aj − bj)2, for all a, b ∈ Rn.

The solutions of (11), considered on Rn/Zn, will be also understood in the same Carathéodory sense.
The associated Poincaré translation operator T̂ω : Rn/Zn → Rn/Zn along the trajectories of (11),

considered on Rn/Zn, takes the form T̂ω := τ ◦ Tω, where Tω was defined in (12), and τ : Rn →
Rn/Zn, x → [x] := {y ∈ Rn : (y− x) ∈ Zn} is the natural (canonical) projection. It is well
known (see e.g., Chapter XVII in Reference [57]) that T̂ω is also a homeomorphism such that
T̂k

ω = T̂kω (i.e., the semi-group property), for every k ∈ N. In particular, for n = 1, T̂ω is an
orientation-preserving homeomorphism.

The same one-to-one correspondence holds between kω-periodic solutions x̂(·) := τ ◦ x(·) of (11),
considered on Rn/Zn, and k-periodic points x̂0 = τ ◦ x0 of T̂ω := τ ◦ Tω, where x̂0 = x̂(0).

We will still consider, under (17), the impulsive differential Equation (13), where this time

I(. . . , xj, . . . ) ≡ I(. . . , xj+1, . . . )(mod 1), j = 1, . . . , n, (18)

x = (x1, . . . , xn), by which Î := τ ◦ I : Rn/Zn ( Rn/Zn.
Every k-periodic orbit of the composition Î ◦ Tω := Î ◦ T̂ω : Rn/Zn ( Rn/Zn implies then again

the existence of a related kω-periodic solution of (13) on Rn/Zn on Rn/Zn, and vice versa.
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The following application is for n > 1, like in Theorem 2, rather theoretical than practical in the
non-splitting case.

Theorem 3. Assume that I : Rn ( Rn is an m-valued (mod 1) map, satisfying (18). Then Equation (13)
admits, under (17), at least N( Î) ω-periodic (mod 1) solutions, where the Nielsen number N( Î) of Î =

τ ◦ I : Rn/Zn ( Rn/Zn was defined in Reference [46] by Schirmer (for the sketch, see Section 3).

Proof. Since the torus Rn/Zn is a special compact polyhedron and Î = τ ◦ I : Rn/Zn ( Rn/Zn is
a (compact) m-valued map, it follows that the composition Î ◦ T̂µω : Rn/Zn ( Rn/Zn, µ ∈ [0, 1],
of a homeomorphism T̂µω with Î must be also a (compact) m-valued map on a compact polyhedron,
for every µ ∈ [0, 1], that is, an m-valued homotopy on Rn/Zn.

Thus, N( Î ◦ T̂ω) = N( Î) holds for the Nielsen numbers, because of the invariance under homotopy
Î ◦ T̂µω, for µ = 0, 1, that is, N( Î ◦ T̂ω) = N( Î ◦ T̂0) = N( Î ◦ id

∣∣
Rn/Zn) = N( Î).

The composition Î ◦ T̂ω has therefore at least N( Î) fixed points, and each of them determines
the existence of an ω-periodic solution on Rn/Zn, that is, an ω-periodic (mod 1) solution of (13),
as claimed.

Remark 10. In the splitting case, the Nielsen number N( Î) in Theorem 3 is much easier for calculation by
the formula

N( Î) =
m

∑
k=1

N(îk) =
m

∑
k=1

∣∣∣L(îk)
∣∣∣ = m

∑
k=1
|det(J − Ak)| =

m

∑
k=1

∣∣∣∣∣ n

∏
j=1

(1− λ
(k)
j )

∣∣∣∣∣ , (19)

where Î :=
{

î1, . . . , îm

}
, îk : Rn/Zn → Rn/Zn are endomorphisms defined by integer matrices Ak,

k = 1, . . . , m, with eigenvalues λ
(k)
j , j = 1, . . . , n; k = 1, . . . , m. If, in particular, I is an m-valued constant

(mod 1), that is, Î is an m-valued constant on Rn/Zn, then N( Î) = m (cf. Remark 4).

For n = 1, the difficult calculation of the Nielsen number N( Î) in Theorem 3 can be simplified
(even in the non-splitting case) by means of Lemmas 3 and 4 as follows.

Corollary 2. Assume that I : R ( R is an m-valued (mod 1) map such that I(x) ≡ I(x + 1) (mod 1).
Then the scalar (n = 1) Equation (13) admits, under (17) with n = 1, at least

∣∣∣m−Deg( Î)
∣∣∣ ω-periodic

(mod 1) solutions, where the degree Deg( Î) of Î = τ ◦ I : Rn/Zn ( Rn/Zn was defined in Reference [33] by
Brown (cf. Section 3). If Î is still split, that is, Î :=

{
î1, . . . , îm

}
, then (13) admits, under the same assumptions,

at least m |1− [i1(1)− i1(0)]| ω-periodic (mod 1) solutions, where I1 : R→ R is the lift of î1, that is, the first
component of I.

Proof. According to Theorem 3, (13) admits at least N( Î) ω-periodic (mod 1) solutions. In view of
Lemma 4, we get that N( Î) =

∣∣∣m−Deg( Î)
∣∣∣.

If Î is still split, then by means of (3) in Lemma 3 we have that Deg( Î) = m [i1(1)− i1(0)], and so
we arrive at N( Î) = m |1− [i1(1)− i1(0)]|, that is, (4) in Remark 3, which completes the proof.

Corollary 2 can be illustrated by the following simple example.

Example 3. Consider the scalar (n = 1) Equation (13), satisfying (17) with n = 1. Let I := {T1, T2} : R (
R, where T1 is the 1-periodically extended standard tent map, that is, T1(x) ≡ T1(x + 1), where

T1(x) :=

{
1x, for x ∈ [0, 1

2 ],

2(1− x), for x ∈ [ 1
2 , 1],
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and T2 = T1 +
1
2 .

Although Î : R/Z ( R/Z has evidently four fixed points 0, 1
2 , 2

3 , 5
6 , we get that N( Î) =

2 |1− [T1(1)− T1(0)]| = 2. It is not surprising, because the both tent maps T1, T2 can be easily homotopically
deformed to the maps having just one fixed point for each (i.e., that 0 and 1

2 are not essential).

Observe that, according to (19), we also get that (for m = 2, n = 1) N( Î) =
∣∣∣1− λ

(1)
1

∣∣∣+ ∣∣∣1− λ
(2)
1

∣∣∣ = 2,

because obviously λ
(1)
1 = λ

(2)
1 = 0.

In any way, since N( Î ◦ T̂ω) = N( Î) = 2, the scalar Equation (13) possesses, under (17) with n = 1,
at least two ω-periodic (mod 1) solutions.

7. Fractals and Chaos Determined by Impulsive Differential Equations

In this section, we would like to apply Propositions 1–3 to fractals and chaos, determined implicitly
by impulsive differential Equations (13).

Hence, consider (13) and assume the same as in Section 5. We will suppose that I takes the form
of the Hutchinson-Barnsley operator, namely

I :=
m⋃

k=1

ik : Rn ( Rn, (20)

where ik : Rn → Rn, k = 1, . . . , m, are at least continuous functions. The continuous impulsive mapping
I : Rn ( Rn need not (but can) be any longer m-valued (cf. Remark 7).

We start with the application of Proposition 3.

Theorem 4. Let I : Rn ( Rn be still a compact map and X ⊂ Rn be a connected and locally connected subset
containing I(Rn), that is, I(Rn) ⊂ X. Then the composition I ◦ Tω

∣∣
X : X ( X, where Tω is the Poincaré

translation operator along the trajectories of (11), defined in (12), possesses at least one compact invariant
set X0 ⊂ X, that is, I ◦ Tω

∣∣
X(X0) = X0. If X is still compact, then I ◦ Tω

∣∣
X possesses at least one compact

invariant set X0 ⊂ X which is non-ejective in the sense of Browder, that is,

∀ε > 0∃X1 ∈ K(X), X1 6= X0, and dH(X0, X1) < ε :
(I ◦ Tω

∣∣
X)

m(X1) ⊂ {Y ∈ K(X) | dH(X0, Y) < ε} , ∀m ≥ 1.
(21)

The same is true for the hypersystem (K(X), (I ◦ Tω
∣∣
X)
∗), where (I ◦ Tω

∣∣
X)
∗(A) :=

⋃
a∈A I ◦ Tω

∣∣
X(a).

Proof. Since I is by the hypothesis a compact map, I(Rn) must be compact, and there certainly exists
a connected and locally connected subset X ⊂ Rn such I(Rn) ⊂ X. Since Rn is locally compact, X is
also locally continuum-connected, that is, for each neighbourhood U of each point x ∈ X, there is a
neighbourhood V ⊂ U of x such that each point of V can be connected with x by a subcontinuum of U.
If X is still compact, then it is a Peano’s continuum, that is, compact connected and locally connected.

Then the composition I ◦ Tω
∣∣
X : X ( X is a compact continuous map, which possesses according

to Proposition 3 at least one compact invariant set X0 ∈ K(X).
If X is still compact, and so a Peano’s continuum, then I ◦ Tω

∣∣
X possesses, again according to

Proposition 3, at least one compact invariant set X0 ∈ K(X) which is non-ejective in the sense of
Browder, that is, (21), which completes the proof.

The proof for the hypersystem (K(X), (I ◦ Tω
∣∣
X)
∗) follows directly by the arguments in

References [29,54].

Remark 11. The set X0 can be called a topological fractal in the sense of References [29,53], because it was
obtained by means of the Lefschetz-type fixed point theorem as a fixed point in the hyperspace (K(X), dH),
that is, in the frame of the topological fixed point theory (cf. e.g., Reference [22]). Let us note that our terminology
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differs from the one in e.g., References [58–60] where the notion of a topological fractal is understood in a
different way.

Remark 12. The meaning of Theorem 4 can be also interpreted geometrically in terms of impulsive differential
Equation (13). Every solution x(·) of (13) such that x(0) ∈ X0 satisfies x(kω) ∈ X0, for all k = 1, 2, . . . If X
is still compact, then there moreover exist trajectories starting at any ε-neighbourhood Nε(X0) of X0 such that
x(kω) ∈ Nε(X0), for all k = 1, 2, . . .

Now, we will consider (13), where ik : Rn → Rn, k = 1, . . . , m, in (20) are contractions. Hence,
consider (13) with the same assumptions as above and suppose additionally that ik : Rn → Rn in (20)
are contractions with factors Lk ∈ [0, 1), for every k = 1, 2, . . . , m. Let A be a unique global compact
IFS-attractor of {Rn; i1, . . . , im}, guaranteed by Proposition 1. Let furthermore Tω : Rn → Rn be the
Poincaré translation operator along the trajectories of (11), defined in (12).

Letting I′ :=
⋃m

k=1 i′k : Rn ( Rn, where i′k := Tω ◦ ik ◦ Tω
−1, k = 1, . . . , m, and I′′ :=⋃m

k=1 i′′k : Rn ( Rn, where i′′k := Tω
−1 ◦ ik ◦ Tω, k = 1, . . . , m, we can formulate the following theorem.

Theorem 5. There exists a unique global compact attractor B := Tω(A) ∈ K(Rn) of the system{
Rn; i′1, . . . , i′m

}
, that is, B = I′(B) such that B = limj→∞ I′j(B0) holds for any B0 ∈ K(Rn).

There also exists a unique global compact attractor C = Tω
−1(A) ∈ K(Rn) of the system

{
Rn; i′′1 , . . . , i′′m

}
,

that is, C = I′′(C) such that C = limj→∞ I′′j(C0) holds for any C0 ∈ K(Rn).
The fractal (Hausdorff) dimensions dim B and dim C of both B and C can be estimated in the same way

from above, that is, dim B ≤ D and dim C ≤ D, by means of a unique solution D of the equation ∑m
k=1 LD

k = 1.
If ik are similitudes, for all k = 1, . . . , m, then dim B = dim C = D.

Proof. The iterated function system {Rn; i1, . . . , im} has, according to Proposition 1 a unique global
compact attractor A ∈ K(Rn) such that A = I(A) (cf. (20)). It can be obtained as the limit
limj→∞ I j(A0), for A0 ∈ K(Rn). The inequality (cf. (5))

dH(I j(A0), A) ≤ Lj

1− L
dH(A0, I(A0)),

L = maxk=1,...,m Lk, holds for the upper estimate of the Hausdorff distance between A and its successive
approximations I j(A0). The fractal (Hausdorff) dimension dim A of A can be estimated from above,
that is, dim A < D, by means of a unique solution D of the Moran-Hutchinson equation ∑m

k=1 LD
k = 1.

In case of similitudes ik, for all k = 1, . . . , m, we have the precise value dim A = D.
Now, consider the associated (via the Poincaré operator Tω) systems

{
Rn; i′1, . . . , i′m

}
and{

Rn; i′′1 , . . . , i′′m
}

. It is known (see e.g., Lemma 2.8 in Reference [61]) that these associated systems
have unique global compact attractor B := Tω(A) and C := Tω

−1(A), respectively, that is, B = I′(B)
and C = I′′(C), where B = limj→∞ I′j(B0) holds for any B0 ∈ K(Rn) and C = limj→∞ I′′j(C0) holds
for any C0 ∈ K(Rn).

Furthermore, the global attractivity of B, C is preserved from the global attractivity of A,
jointly with their fractal (Hausdorff) dimension.

Since A = I(A), the existence of unique compact invariant sets B under I′ and C under I′′ follows
easily from the commutative diagrams:

A I ◦

Tω

��

A

Tω

��
B I′ ◦B

A I ◦A

C

Tω

OO

I′′ ◦C

Tω

OO
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because

I′(B) = Tω ◦ I ◦ Tω
−1(Tω(A)) = Tω ◦ I(A) = Tω(A) = B,

I′′(C) = Tω
−1 ◦ I ◦ Tω(Tω

−1(A)) = Tω
−1 ◦ I(A) = Tω

−1(A) = C.

Since being an IFS-attractor is known (see e.g., Reference [59]) to be a bi-Lipschitz invariant and
even an equi-Hölder invariant, we can simplify the proof of the attractivity of B and C by showing
that the associated Poincaré operator Tω is bi-Lipschitz. Since Tω and Tω

−1 are homeomorphisms, it is
enough to show that the restrictions Tω

∣∣
K1

as well as Tω
−1∣∣

K2
are Lipschitz on any compact subsets

K1, K2 ⊂ Rn. It is true, provided the right-hand side F in (11) is locally Lipschitz, which is the most
common uniqueness condition. The same is then true for Tω (see e.g., Reference [56]).

Since the Hausdorff dimension is also a bi-Lipschitz invariant (see e.g., Corollary 2.4 on p. 32
in Reference [62], Chapter 8.3 in Reference [63]), the proof is complete.

Remark 13. The IFS-attractors B, C in Theorem 5 can be called topological fractals in the sense of References [58–60]
and, jointly with a metric fractal A in the sense of References [29,53], they can be called more precisely Banach
fractals in the sense of References [58,59].

Remark 14. Although the fixed points x̄ ∈ A of I, described in Remark 6, correspond to the fixed points
Tω(x̄) ∈ B of I′ and Tω

−1(x̄) ∈ C of I′′, they need not be anyhow related to ω-periodic solutions of (13), as in
Sections 5 and 6. Nevertheless, if ik in (20) are constants, then they determine ω-periodic solutions of (13)
(cf. Remark 4) and their images under Tω and Tω

−1 are the fixed points of I′ and I′′.

The application of Theorem 5 can be illustrated by the following example.

Example 4. Consider the impulsive pendulum system under a 1-periodic (ω = 1) forcing:x′ = y, y′ = − sin x + cos 2πt, t 6= tj := j,

(x(t+j ), y(t+j )) ∈ I(x(t−j ), y(t−j )), j ∈ Z,
(22)

where I : R2 ( R2 is the affine system of disconnected similitudes such that

I(x, y) := i1(x, y) ∪ i2(x, y) ∪ i3(x, y),

i1(x, y) = (0.45x, 0.45y),

i2(x, y) = (0.45x, 0.45y + 0.55),

i3(x, y) = (0.45x + 0.55, 0.45y).

The associated Poincaré translation operator T1 : R2 → R2 takes the form

T1(x0, y0) :=
{
(x(1), y(1)) | (x(·), y(·)) is a solution of the system x′ = y, y′ = − sin x + cos 2πt

such that (x(0), y(0)) = (x0, y0)
}

.

Its inversion T−1
1 : R2 → R2 can be defined as

T−1
1 (x1, y1) :=

{
(x(0), y(0)) | (x(·), y(·)) is a solution of the system x′ = y, y′ = − sin x + cos 2πt

such that (x(1), y(1)) = (x1, y1)
}

.
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The Sierpiński-like attractor A = I(A) of the system
{
R2; i1, i2, i3

}
, the attractor B = T1(A) of the

system
{
R2; i′1, i′2, i′3

}
, and the attractor C = T−1

1 (A) of the system
{
R2; i′′1 , i′′2 , i′′3

}
are depicted in Figure 1.

The fractal (Hausdorff) dimension D of the attractors A, B, C can be easily calculated as

D = dim A = dim B = dim C =
log 3

log 1
0.45

.
= 1.376.

A

B

C

Figure 1. Attractor A = I(A), attractor B = T1(A) and attractor C = T−1
1 (A).

Remark 15. The meaning of the illustrative Example 4 can be better understood by means of the following
commutative diagrams (m = 3, ω = 1):

-

-

-

-
-

-

-

- -

-

-

-

where x+, x+1 , . . . , x+m are the solutions of (22) such that x+(0), x+1 (0), . . . , x+m(0) ∈ A
and x+(ω), x+1 (ω), . . . , x+m(ω) ∈ B, while x−, x−1 , . . . , x−m are the solutions of (22) such that
x−(0), x−1 (0), . . . , x−m(0) ∈ C and x−(ω), x−1 (ω), . . . , x−m(ω) ∈ A. The attractors A, B = Tω(A),
C = Tω

−1(A) such that A = I(A), B = I′(B), C = I′′(C) are depicted in Figure 1.

Now, consider (13) with the same assumptions as above and suppose additionally that ik : Rn →
Rn in (20) are contractions such that the sets ik(A) are totally disconnected, for all k = 1, . . . , m (see (7)),
where A ∈ K(Rn) is a unique global attractor of the iterated function system {Rn; i1, . . . , im} guaranteed
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by Proposition 1. Let Tω : Rn → Rn be the Poincaré translation operator along the trajectories of (11),
defined in (12). Then we can define the shift dynamical systems (B, S1) and (C, S2), associated with
the systems

{
B; i′1

∣∣
B, . . . , i′m

∣∣
B

}
and

{
C; i′′1

∣∣
C, . . . , i′′m

∣∣
C

}
, defined in Theorem 5, where B := Tω(A) and

C := Tω
−1(A).

Concretely, S1 : B→ B is a single-valued continuous mapping such that

S1(b) :=
m⋃

k=1

i′−1
k (b)

and S1(b) := i′−1
k (b) = Tω ◦ i−1

k ◦ Tω
−1(b), provided b ∈ i′k(B), k = 1, . . . , m. Respectively, S2 : C → C

is a single-valued continuous mapping such that

S2(c) :=
m⋃

k=1

i′′−1
k (c)

and S2(c) := i′′−1
k (c) = Tω

−1 ◦ i−1
k ◦ Tω(c), provided c ∈ i′′k (C), k = 1, . . . , m.

Theorem 6. The shift dynamical systems (B, S1) and (C, S2) are chaotic in the sense of Devaney (cf. Section 4).
The same is true for the induced hypersystems (K(B), S∗1) and (K(C), S∗2) in the hyperspaces (K(B), dH) and
(K(C), dH), where S∗1(B) :=

⋃
b∈B S1(b) and S∗2(C) :=

⋃
c∈C S2(c).

Proof. According to Theorem 5, B and C are unique global compact attractors of the respective
systems

{
Rn; i′1, . . . , i′m

}
and

{
Rn; i′′1 , . . . , i′′m

}
. Thus, I′

∣∣
B : B ( B and I′′

∣∣
C : C ( C, and we can restrict

ourselves to the systems
{

B; i′1
∣∣
B, . . . , i′m

∣∣
B

}
and

{
C; i′′1

∣∣
C, . . . , i′′m

∣∣
C

}
.

Since i−1
k : A → A were shown in Section 4 to be injective and invertible, and so single-valued

and continuous, the latter must be true for i′−1
k = Tω ◦ i−1

k ◦ Tω
−1 as well as i′′−1

k = Tω
−1 ◦ i−1

k ◦ Tω,
for all k = 1, . . . , m.

Furthermore, since the sets i′k(B) and i′′k (C) must be also totally disconnected, the single-valued
continuous Hutchinson-Barnsley operators S1 : B→ B and S2 : C → C can be uniquely defined by

S1(b) := i′−1
k (b) = Tω ◦ i−1

k ◦ Tω
−1(b), provided b ∈ i′k(B),

and
S2(c) := i′′−1

k (c) = Tω
−1 ◦ i−1

k ◦ Tω(c), provided c ∈ i′′k (C),

for all k = 1, . . . , m.
Since Devaney’s chaos is well known to be a topological invariant (i.e., an invariant under a

topological conjugacy) on a compact metric space (see e.g., Reference [64]), the both systems (B, S1)

and (C, S2) must be chaotic in the sense of Devaney, because the same was recalled to be true for the
system (A, i−1

1 , . . . , i−1
m ) in Section 4.

Since the induced maps S∗1 : K(B)→ K(B) and S∗2 : K(C)→ K(C) in the hyperspaces (K(B), dH)

and (K(C), dH), where

S∗1(B) :=
⋃

b∈B
S1(b),B ∈ K(B), and S∗2(C) :=

⋃
c∈C

S2(c), C ∈ K(C),

are single-valued continuous, because so are the maps S1 : B→ B and S2 : C → C (see Reference [53]),
we can also consider the shift dynamical hypersystems (K(B), S∗1) and (K(C), S∗2).

Since the induced Poincaré operators Tω
∗ : K(Rn) → K(Rn) remain homeomorphisms and

S∗1 = Tω
∗ ◦ (i−1

k )∗ ◦ (Tω
−1)∗, S∗2 = (Tω

−1)∗ ◦ (i−1
k )∗ ◦ Tω

∗, the hypersystems (K(B), S∗1) and (K(C), S∗2)
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must be by the same arguments in Reference [64], in view of the last part of Proposition 2, chaotic in
the sense of Devaney, too.

Remark 16. It is well known that the density of periodic points in the basic space implies the one for induced
maps in hyperspaces (see e.g., Reference [30]). Therefore, since the transitivity together with density of periodic
points imply a sensitive dependence on initial conditions (i.e., (ii), (iii)⇒ (i), for the conditions in the definition of
Devaney’s chaos in Section 4), provided the basic space is infinite (see again e.g., Reference [30]), we would have
to restrict ourselves to transitivity in the alternative proof of Devaney’s chaos for the hypersystems (K(B), S∗1)
and (K(C), S∗2). The transitivity in hyperspaces is however not implied in general by the one in the original
basic space (see Reference [30]).

Example 5 (continued Example 4). Consider again systems (22). In order to apply Theorem 6, let us define
the shift dynamical system (B, S1) and (C, S2), where B = T1(A), C = T−1

1 (A), A = I(A),

S1(b) :=


T1 ◦

( x
0.45 , y

0.45
)
◦ T−1

1 (b), for b ∈ i′1(B),

T1 ◦
(

x
0.45 , y−0.55

0.45

)
◦ T−1

1 (b), for b ∈ i′2(B),

T1 ◦
( x−0.55

0.45 , y
0.45
)
◦ T−1

1 (b), for b ∈ i′3(B),

and

S2(c) :=


T−1

1 ◦
( x

0.45 , y
0.45
)
◦ T1(c), for c ∈ i′′1 (B),

T−1
1 ◦

(
x

0.45 , y−0.55
0.45

)
◦ T1(c), for c ∈ i′′2 (B),

T−1
1 ◦

( x−0.55
0.45 , y

0.45
)
◦ T1(c), for c ∈ i′′3 (B).

The shift dynamical systems (B, S1) and (C, S2) are, according to Theorem 6, chaotic in the sense
of Devaney.

The same is true, according to Theorem 6, for the induced hypersystems (K(B), S∗1) and (K(C), S∗2),
where S∗1(B) :=

⋃
b∈B S1(b) and S∗1(C) :=

⋃
c∈C S2(c).

8. Concluding Remarks

As already pointed out in the Introduction, no Nielsen periodic point theory so far exists for
n-valued maps. In case of any progress for at least n = 2, we could think about multiple subharmonic
(i.e., kω-periodic with k > 1) solutions of impulsive differential equations.

If a uniqueness condition is omitted at given (impulsive) differential equations or, more generally,
at (impulsive) differential inclusions, then the associated Poincaré translation operators become
multivalued and, in particular, admissible in the sense of Górniewicz (see Reference [26]). Then,
however, the needed information about their compositions with n-valued impulsive maps would
be lost or, even worse, useless. On the other hand, in the splitting case, their compositions with
single-valued selections might be useful for at least partial answers. As a starting point, one can
therefore study the same problems as above for differential inclusions with single-valued impulses,
as indicated e.g., in Reference [19].

Another problem is to randomize at least some obtained results or to extend some random results
like those in References [15,65] along the lines discussed above. Unfortunately, the randomization
technique which we have to our disposal (see e.g., Reference [15], and the references therein) is based
on the existence of measurable selections whose multiplicity can be lost. In other words, no Nielsen
theory so far exists for random fixed points.

A more promissible situation concerning a possible extension and application of the obtained
results seems to be for the Hutchinson-Barnsley operators (see Remark 7). The appropriate application
can be possible, for instance, for a fractal image compression of pictures. The results might be
also randomized.
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