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Abstract: Shape analysis of curves in Rn is an active research topic in computer vision. While shape
itself is important in many applications, there is also a need to study shape in conjunction with other
features, such as scale and orientation. The combination of these features, shape, orientation and
scale (size), gives different geometrical spaces. In this work, we define a new metric in the shape and
size space, S2, which allows us to decompose S2 into a product space consisting of two components:
S4 ×R, where S4 is the shape space. This new metric will be associated with a distance function,
which will clearly distinguish the contribution that the difference in shape and the difference in size of
the elements considered makes to the distance in S2, unlike the previous proposals. The performance
of this metric is checked on a simulated data set, where our proposal performs better than other
alternatives and shows its advantages, such as its invariance to changes of scale. Finally, we propose
a procedure to detect outlier contours in S2 considering the square-root velocity function (SRVF)
representation. For the first time, this problem has been addressed with nearest-neighbor techniques.
Our proposal is applied to a novel data set of foot contours. Foot outliers can help shoe designers
improve their designs.

Keywords: shape space; square-root velocity function (SRVF); outliers

1. Introduction

Shape analysis of curves in Rn, where n ≥ 2, is an important branch in many applications,
including computer vision and medical imaging. Using the landmark representation of objects,
Dryden et al. [1] studied the joint shape and size features of objects. However, an over-abundance
of digital data, especially image data, is prompting the need for a different kind of shape analysis.
In particular, the representation of shapes as elements of infinite-dimensional Riemannian manifolds
with a given metric is of interest at this time and has important applications [2,3]. More recently,
Srivastava et al. [4] presented a special representation of curves, called the square-root velocity function,
or SRVF, under which a specific elastic metric becomes an L2 metric and simplifies the shape analysis.
This approach was analyzed by Kurtek et al. [5] on different scenarios, corresponding to different
combinations of physical properties of the curves: shape, size, location and orientation. When the
metric used in these infinite-dimensional spaces is invariant with respect to scaling, translation, rotation
and reparameterization, the Riemannian manifold that represents the space of curves is known as
the shape space, and following the notation of [5] will be denoted as S4. However, in many of the
applications, other features such as orientation or size (scale) also play important roles and need to be
incorporated into the underlying framework. A prime example is medical imaging, where the size of
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the anatomical structure of interest can provide important diagnostic information. In the case where
the curve length (size) is considered, the feature space is called the shape and size (or shape and scale)
space and will be denoted as S2 [5]. Other spaces denoted as S1 and S3 consider also changes in the
orientations of the curves [5]. In this work, we will focus on the shape space S4 and the shape and
size space S2, which are in general, completely different infinite-dimensional Riemannian manifolds.
Curves in S2 are different elements of the space if their shape or scale are different. Curves in S4 are
different elements of the space if their shape is different.

It seems natural, however, that the distance between two curves in space S2 should be related to
the distance of these same curves in space S4. We can thereby discern whether the distance between the
curves in space S2 is due, to a greater extent, to their difference in size or to their difference in shape.

In this sense, in [6], the Sobolev-type metric given in [3] for the shape space of planar closed
curves is extended to the space of all planar closed curves where the metric considered exhibits a
decomposition of the space of closed planar curves into a product space consisting of three components;
that is, centroid translations, scale changes and curves in the shape space.

In this approach, we will consider representations of curves in Rn from square-root velocity
functions (SRVF). Using these representations, we will consider two feature spaces studied in [5]:
the shape space S4 and the shape and size space S2. The metric in S4 will be the same as in [5];
however, we propose a new metric in S2, which is completely different to the metric considered in [5].
This metric enjoys the property that S2 can be decomposed into a product space consisting of two
components: S4 ×R, where the second space is related to the length (size) of the curve.

The outline of the paper is as follows: In Section 2, we review the SRVF representation of curves
and the standard elastic metrics. In Section 3, we introduce the new metric in S2. The mean shape and
geodesics with this new metric are introduced in Sections 4 and 5, respectively. A comparison of the
proposed metric and the standard elastic metric is carried out in Section 6 in a controlled setting with
simulated curves, where we show the advantages of our proposal. We propose a procedure to detect
outlier contours in S2 considering the SRVF representation. To the best of our knowledge, this is the
first time this problem has been addressed with nearest-neighbor (NN) techniques. This is introduced
in Section 7. Not only that, but so far outlier detection (in the multivariate context) in Anthropometry
has only been used as a cleaning technique, for correcting or removing the outliers before analyzing
data in the multivariate context [7,8]. However, outliers report very valuable information in the
footwear design process: outliers can indicate which kinds of feet are more different from the rest
and could therefore cause fitting problems in footwear if the design is not appropriate. In Section 8,
our proposal is applied to a novel data set of foot contours. Finally, Section 9 contains the conclusions.

The code and data for reproducing the results are available at http://www3.uji.es/~epifanio/
RESEARCH/metric.zip.

2. Classical Spaces of Curves in Rn for the SRVF Representation

In this section, we review some results from [9]. In particular, we consider the SRVF representation
of curves in Rn and we summarize the main results for the shape space, S4, and for the shape and size
space, S2, with the standard elastic metrics.

Let β : [0, 1] −→ Rn be a parameterized curve that is absolutely continuous on [0, 1].
The square-root velocity (SRVF) of β is defined as the function q : [0, 1] −→ Rn given by:

q(t) =
β′(t)√
|β′(t)|

. (1)

As it can be seen in [9], this representation exists even where |β′(t)| = 0.

http://www3.uji.es/~epifanio/RESEARCH/metric.zip
http://www3.uji.es/~epifanio/RESEARCH/metric.zip
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For every q ∈ L2([0, 1],Rn), there is a curve β (unique up to translation) such that the given q is
the SRVF function of that β. In fact,

β(t) =
∫ t

0
q(s)|q(s)| ds. (2)

If a curve β is of length one, then
∫ 1

0 |q(t)|
2dt = 1. Furthermore, the hypersphere

C0 =

{
q : [0, 1] −→ Rn |

∫ 1

0
|q(t)|2dt = 1

}
, (3)

is a Hilbert manifold.
One way to study the shape and size (scale) space of open curves is to consider as a pre-shape space

L2 = L2([0, 1],Rn) with the usual inner product. To take care of the rotation and reparameterization of
the curve β, we remember that a rotation is an element of SO(n), the special orthogonal group of n× n
matrices; and a reparameterization is an element of Γ = {γ : [0, 1]→ [0, 1]| : γ(0) = 0, γ(1) = 1, γ is a
diffeomorphism}.

The action of a reparameterization γ ∈ Γ transforms the curve β : [0, 1] → Rn to the curve
t 7→ β(γ(t)). Hence, by the definition of the SRVF of a curve, we define the action of γ ∈ Γ in C0 by

γ(q(t)) := q(γ(t))
√

γ′(t).

Likewise, the action of O ∈ SO(n) on q ∈ C0 is just O(q)(t) = O(q(t)). We shall denote the
combined action

(O, γ)q(t) := O(q(γ(t)))
√

γ′(t), O ∈ SO(n), γ ∈ Γ.

The orbit of a function q ∈ L2 is

[q] = {(O, γ)(q) | (O, γ) ∈ SO(n)× Γ} . (4)

If we consider the metric in L2 given by the usual inner product

〈v1, v2〉L2 =
∫ 1

0
〈v1(t), v2(t)〉 dt, (5)

the feature space of interest is:
S2 =

{
[q] / q ∈ L2

}
, (6)

and the distance in S2 is:

d2([q1], [q2]) = inf
O∈SO(n),γ∈Γ

|q1 − (O, γ)(q2)|L2 . (7)

Then, the geodesic between q1 and the optimal reparameterization of q2, which is denoted as
q∗2 = (O, γ∗)(q2), is

Ψτ = (1− τ)q1 + τq∗2 , τ ∈ R. (8)

On the other hand, the shape space (without considering the size (scale) of the curves) is

S4 = {[q] | q ∈ C0}. (9)

The distance in S4 is given by

d4([q1], [q2]) = inf
O∈SO(n),γ∈Γ

cos−1(〈q1, (O, γ)(q2)〉L2), (10)
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and the geodesic between q1 and q∗2 is

α(τ) =
1

sin θ
(sin(θ(1− τ))q1 + sin(θτ)q∗2) , (11)

where θ = cos−1〈q1, q∗2〉L2 .

3. A New Metric in the Shape and Size Space of Curves in Rn

When S2 is considered as shape and size space, it is difficult to distinguish whether the distance
between two shapes [q1] and [q2] is due to the difference in shape or to the difference in size between
the corresponding curves β1 and β2. We are therefore going to consider another shape-size space for
curves that will be isometric to S2 with another appropriate product metric.

Instead of considering in L2 the usual L2-metric given in Equation (5), if q ∈ L2([0, 1],Rn), for any
two vectors v1, v2 in TqL2([0, 1]) ≡ L2([0, 1],Rn), we will consider the following metric to endow
L2([0, 1]) with a Riemannian structure,

ĝ(v1, v2) :=
1

R2(q)
〈v1, v2〉L2 . (12)

where

R(q) :=
(∫ 1

0
|q(t)|2dt

) 1
2

.

The case R(q) = 0 will be excluded, which will mean that curves of length 0 are not considered in
our space.

From this metric, we will endow (Theorem 1) C0 × R with a Riemannian structure in such a
way that C0 ×R will be isometric to

(
L2([0, 1]), ĝ

)
. This isometry will be exported (Theorem 2) to an

isometry between S2 and S4 ×R.
Therefore, we obtain a new metric which enjoys the property that S2 can be decomposed into a

product space consisting of two components: S4×R, where the second space is related with the length
(size) of the curve. This new metric is associated with a distance function, see Corollary 3, given by

dnew([p] , [q]) =

√
d2

4

([
p

R(p)

]
,
[

q
R(q)

])
+ ln2

(
R(p)
R(q)

)
. (13)

This distance is invariant under rotations and under rescaling in the sense that
dnew(O([p]), O([q])) = dnew([p] , [q]) and dnew(λ [p] , λ [q]) = dnew([p] , [q]) for any O in SO(n) and
any λ > 0.

3.1. An Isometry between L2([0, 1],Rn) \ {~0} and C0 ×R

We will begin this section defining a function F which will provide an isometry between
L2([0, 1],Rn) \ {~0} and C0 ×R. We consider the smooth map

F : L2([0, 1],Rn) \ {~0} → C0 ×R,

q 7→ F(q) :=
(

q
R(q)

, ln R(q)
)

.

Observe that F is well defined for any L2([0, 1],Rn)) \ {~0} where

{~0} :=
{

q ∈ L2([0, 1],Rn) /
∫ 1

0
|q(t)|2dt = 0

}
= R−1(0).
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The function F has immediate smooth inverse given by

F−1 : C0 ×R→ L2([0, 1],Rn) \ {~0},
(q, t) 7→ F−1(q, t) = etq.

The Functions R, π and F and Their Properties

Now we state some properties of the function R, some properties of π(q) := 1
R(q) q from L2 to

C0, that is the natural projection given by the normalization of an SRVF using its norm, and some
properties of the function F:

Proposition 1. Properties of the functions R, π and F:

1. Given a curve β(t) and q(t) = β′(t)√
|β′(t)|

. Then, R(q) =
√

L(β) is the square root of the length of the

curve β.
2. For any γ ∈ Γ,

R
(

q(γ(t))
√

γ′(t))
)
= R(q(t)).

3. For any O ∈ SO(n),
R(O(q(t)) = R(q(t)).

4. For any O ∈ SO(n),
π(Oq) = Oπ(q).

Namely, the rotation group commutes with the projection π.
5. For any λ > 0

π(λq) = π(q)

6. Given (O, γ) ∈ SO(n)× Γ, and q ∈ L2([0, 1],Rn) \ {~0} then

F(O(q(γ(t)))
√

γ′(t)) = (O(π(q(γ(t))), ln R(q)) .

7. F is smooth and admits smooth inverse with never vanishing differential map.

From the properties of π, R and F, we can conclude the following diffeomorphisms.

Corollary 1. From the function F we have that

1. L2([0, 1],Rn) \ {~0} diff∼ C0 ×R.
2. Since S2 = L2/Γ× SO(n), then

S2 \ {~0}
diff∼
(
C0/Γ× SO(n)

)
×R

diff∼ S4 ×R.

As already mentioned at the beginning of the section, if q ∈ L2([0, 1],Rn) \ {0}, the tangent space
at q can be identified with L2([0, 1],Rn) itself,

TqL2([0, 1],Rn) \ {0} ≡ L2([0, 1],Rn)

and for any two vectors v1, v2 in TqL2([0, 1],Rn) \ {0} we will use the following metric to endow
L2([0, 1],Rn) \ {0} with a Riemannian structure,

ĝ(v1, v2) :=
1

R2(q)
〈v1, v2〉L2 . (14)
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Therefore, using F−1 : C0 ×R→ L2([0, 1],Rn) \ {~0}, we can pullback the metric ĝ to ĝ∗ in C0 ×R
by the differential map dF−1 : T(q,t)C0 ×R→ Tet pL2([0, 1], ,Rn) \ {0} in order to endow C0 ×R with a
Riemannian structure in such a way that

(
C0 ×R, ĝ∗

)
will be isometric to

(
L2([0, 1],Rn) \ {0}, ĝ

)
.

Theorem 1. There is an isometry F : (L2([0, 1],Rn) \ {~0}, ĝ) −→ C0 ×R given by

F(p) =
(

p
R(p)

, ln R(p)
)

, (15)

where the usual product metric is considered in C0 ×R.

Proof. We have shown in Corollary 1 that F is a diffeomorphism; therefore, we only have to prove
that the pullback ĝ∗ of the metric ĝ is the usual product metric in C0 ×R.

T(q,t)C0 ×R = TqC0 ⊕ TtR

Given two vectors in v1, v2 ∈ T(q,t)C0 ×R the pullback ĝ∗(v1, v2) is given by

ĝ∗(v1, v2) = ĝ(dF−1(v1), dF−1(v2)) =

=
1

R2(etq)
〈dF−1(v1), dF−1(v2)〉L2 .

But

R2(etq) =
∫ 1

0
|etq(s)|2ds = e2t

∫ 1

0
|q|2ds = e2t,

because q ∈ C0. Therefore, for any two vectors v1, v2 ∈ T(q,t)C0 ×R

ĝ∗(v1, v2) = e−2t〈dF−1(v1), dF−1(v2)〉L2 .

Now, first of all, we need to prove that in the tangent space to C0 × R at (q, t), TqC0 is orthogonal
to TtR. In order to do that, consider two vectors v1 ∈ TqC0 and v2 ∈ TtR and two curves
γ1, γ2 : (−ε, ε)→ C0 ×R, such that

γ1(s) = (γ1
1(s), t), γ1(0) = (q, t),

d
ds

γ1(s)|s=0 = v1

γ2(s) = (q, γ2
2(s)), γ1(0) = (q, t),

d
ds

γ2(s)|s=0 = v2

Then,
dF−1(v1) =

d
ds

F−1(γ1(s))|s=0 =
d
ds

(
etγ1

1(s)
)
|s=0 = etv1

with v1 ∈ TqC0. Likewise,

dF−1(v2) =
d
ds

F−1(γ2(s))|s=0 =
d
ds

(
eγ2

2(s)q
)
|s=0

=v2etq

where v2 ∈ R, q ∈ C0. Hence,

g∗(v1, v2) = e−2t〈etv1, v2etq〉L2 = v2〈v1, q〉L2 = 0

because 〈v1, q〉L2 = 0 for any v1 ∈ TqC0.
Similarly if v1, v2 ∈ TqC0,

ĝ∗(v1, v2) = e−2t〈etv1, etv2〉L2 = 〈v1, v2〉L2
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and if v1, v2 ∈ TtR

ĝ∗(v1, v2) = e−2t〈v1etq, v2etq〉L2 = v1v2〈q, q〉L2 = v1v2.

Since we are using the usual product metric in C0 ×R, we conclude the following result:

Corollary 2. Let dĝ denote the distance function in (L2([0, 1],Rn) \ {~0}, ĝ), then

dĝ(p, q) =
√

d2
C0(π(p), π(q)) + d2

R(ln R(p), ln R(q))

=

√
d2
C0

(
p

R(p)
,

q
R(q)

)
+ ln2

(
R(p)
R(q)

)
(16)

where dC0 is the usual distance in C0.

From this explicit expression of the distance, it is easy to see that the metric ĝ is invariant under
the action of reparameterizations and rotations.

Proposition 2. The group SO(n)× Γ acts isometrically on (L2([0, 1],Rn) \ {~0}, ĝ).

Proof. We need to prove that

dĝ ((O, γ)(p), (O, γ)(q)) =

√
d2
C0

(
(O, γ)(p)

R((O, γ)(p))
,

(O, γ)(q)
R((O, γ)(q))

)
+ ln2

(
R((O, γ)(p))
R((O, γ)(q))

)
=dĝ(p, q), ∀(O, γ) ∈ SO(n)× Γ.

By Proposition 1 we know that R((O, γ)(p)) = R(p) (and R((O, γ)(q)) = R(q)). Hence,
the proposition follows because

d2
C0

(
(O, γ)(p)

R((O, γ)(p))
,

(O, γ)(q)
R((O, γ)(q))

)
=d2
C0

(
(O, γ)(p)

R(p)
,
(O, γ)(q)

R(q)

)
=
∫ 1

0

∥∥∥∥ (O, γ)(p)(t)
R(p)

− (O, γ)(q)(t)
R(q)

∥∥∥∥2

dt

=
∫ 1

0

∥∥∥∥O
((

p(γ(t))
R(p)

− q(γ(t))
R(q)

)√
γ′(t)

)∥∥∥∥2

dt

=
∫ 1

0

∥∥∥∥ p(γ(t))
R(p)

− q(γ(t))
R(q)

∥∥∥∥2

γ′(t)dt =
∫ 1

0

∥∥∥∥ p(τ)
R(p)

− q(τ)
R(q)

∥∥∥∥2

dτ

=d2
C0

(
p

R(p)
,

q
R(q)

)

3.2. The Isometry between S2 and S4 ×R

Using the isometry given by Theorem 1, an isometry between S2 and S4 ×R can be constructed
as stated in the following theorem:
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Theorem 2. The isometry F can be exported to an isometry [F] by using the following commutative diagram

L2([0, 1],Rn) \ {~0} F−−−−→ C0 ×RyΠ1

yΠ2

S2 \ {0}
[F]−−−−→ S4 ×R

where Π1(q) = [q] and Π2(q, t) = ([q], t). Namely ,

[F][q] = Π2(F(q))

for any q ∈ Π−1
1 ([q]).

Proof. From Proposition 2 we know that SO(n)× Γ acts by isometries on (L2 \ {~0}, ĝ). Therefore,
since the action of the group Γ× SO(n) on (L2 \ {~0}, ĝ) and on C0 is by isometries, and bearing in
mind the diffeomorphisms in Corollary 1, we obtain the result.

The isometry [F] of the above theorem can be used to obtain the expression of the new
distance function.

Corollary 3. Let dnew denote the distance function in S2 \ {~0} when the isometry [F] of Theorem 2
is considered, then

dnew([p] , [q]) =
√

d2
4([π(p)], [π(q)]) + d2

R(ln R(p), ln R(q))

=

√
d2

4

([
p

R(p)

]
,
[

q
R(q)

])
+ ln2

(
R(p)
R(q)

)
. (17)

In the following proposition we are proving that dnew is a well defined distance function.

Proposition 3. Let dnew denote the distance function in S2 \ {~0} when the isometry [F] of Theorem 2 is
considered, then

1. dnew([p] , [q]) = dnew([q] , [p]) for all [p] , [q] ∈ S2 \~0.

2. dnew([p] , [q]) = 0, if and only if, d4

([
p

R(p)

]
,
[

q
R(q)

])
= 0 and R(p) = R(q).

3. For any [p] , [q] , [r] ∈ S2 \~0

dnew([p] , [r]) ≤ dnew([p] , [q]) + dnew([q] , [r]).

4. dnew(λ [p] , λ [q]) = dnew([q] , [p]) for all [p] , [q] ∈ S2 \~0, λ ∈ R, λ 6= 0.

Proof. Most of the statements of the proposition follows directly from the definition and the properties
of d4 and R. We shall prove the triangle inequality for the sake of completeness. Let us denote by
~v, ~w ∈ R2 the vectors given by

~v :=
(

d4

([
p

R(p)

]
,
[

q
R(q)

])
, ln
(

R(p)
R(q)

))
, ~w :=

(
d4

([
q

R(q)

]
,
[

r
R(r)

])
, ln
(

R(q)
R(r)

))
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Then, by applying the triangle inequality for d4,

(dnew([p] , [r]))2 =d2
4

([
p

R(p)

]
,
[

r
R(r)

])
+

(
ln
(

R(p)
R(r)

))2

≤
(

d4

([
p

R(p)

]
,
[

q
R(q)

])
+ d4

([
q

R(q)

]
,
[

r
R(r)

]))2
+

(
ln
(

R(p)
R(q)

)
+ ln

(
R(q)
R(r)

))2

=‖~v + ~w‖2 = ‖~v‖2 + ‖~w‖2 + 2‖~v‖ ‖~w‖ cos(θ) ≤ ‖~v‖2 + ‖~w‖2 + 2‖~v‖ ‖~w‖ = (‖~v‖+ ‖~w‖)2

= (dnew([p] , [q]) + dnew([q] , [r]))2 .

4. The Mean Shape

Given {β1, · · · , βn}, a sample of parameterized curves, and their corresponding SRVF,
{q1, · · · , qn}, the Karcher mean shape regarding the new metric dnew is defined as

[µ̂new] = arg minq

n

∑
i=1

dnew([q] , [qi])
2 = arg minq

n

∑
i=1

(
d2

4

([
q

R(q)

]
,
[

qi
R(qi)

])
+ ln2

(
R(q)
R(qi)

))
.

The value of R(q) that minimizes ∑n
i=1 ln2

(
R(q)
R(qi)

)
is the geometric mean of the

{R(q1), · · · , R(qn)}, i.e., n
√

∏n
i=1 R(qi), and a gradient-based approach for finding the value of q/R(q)

that minimizes
n

∑
i=1

d2
4

([
q

R(q)

]
,
[

qi
R(qi)

])
can be found in [10,11]. The detailed algorithm to find the Karcher mean in the shape space S2 can be
found in [12].

Given µ̂C0 the Karcher mean of {qi/R(qi)}i=1,··· ,n in the shape space, the Karcher mean in the
shape and size space with the new metric is obtained as

µ̂new = µ̂C0
n

√
n

∏
i=1

R(qi) .

Hence, applying Equation (2), the mean curve is

β̂new(t) =

(
n

∏
i=1

L(βi)

) 1
n ∫ t

0
µ̂C0(s)|µ̂C0(s)|ds (18)

where L(βi) is the length of the curve βi.

5. Geodesics

Moreover, we can use the isometry given by the Theorem 2 to provide an explicit expression for
the geodesics in (L2([0, 1]) \ {~0}, ĝ).

Corollary 4. Any geodesic in C0 ×R is obtained as

t 7→ (α(t), a + b t)

where α is a geodesic in C0 and a, b ∈ R. Therefore any geodesic in (L2([0, 1]) \ {~0}, ĝ) can be written as

C(t) = Aebtα(t)

with A, b ∈ R and α a geodesic in C0.
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For any p and q in L2([0, 1]) \ {~0}, the above corollary allows us to obtain the geodesic
segment (with respect to ĝ) joining p and q. Namely, we want a geodesic curve (in the new metric)
γ : [0, 1]→ L2([0, 1]) \ {~0} such that γ(0) = p and γ(1) = q. By using the corollary, we only have to
consider the geodesic segment in C0 with α(0) = p

R(p) and α(1) = q
R(q) and the geodesic segment in R

joining ln R(p) and ln R(p), i.e.,

τ 7→ ln R(p) + τ (ln R(q)− ln R(p))

Therefore, the geodesic segment joining p and q is

γ(τ) = eln R(p)+τ(ln R(q)−ln R(p))α(τ) = R(p)1−τ R(q)τα(τ), τ ∈ [0, 1]

This geodesic segment in L2([0, 1]) \ {~0} can be understood as a family of deformations of curves in
the following sense: if we have two curves β1 : [0, 1]→ Rn and β2 : [0, 1]→ Rn, we obtain two points
in L2([0, 1]) \ {~0}

p(t) =
β′1(t)√
|β′1(t)|

and q(t) =
β′2(t)√
|β′2(t)|

with R(p(t)) =
√

L(β1) and R(q(t)) =
√

L(β2). The geodesic segment α in C0 joining p(t)
R(p(t)) and

q(t)
R(q(t)) is a family of length-one curves which can be labeled with τ ∈ [0, 1],

ατ : [0, 1]→ Rn, α0(t) =
p(t)

R(p(t))
, α1(t) =

q(t)
R(q(t))

Finally, we obtain the family of curves

γ̃τ(t) = L1−τ(β1)Lτ(β1)
∫ t

0
ατ(s)|ατ(s)|ds, τ ∈ [0, 1]

with
γ̃0(t) = β1(t), γ̃1(t) = β2(t).

6. Application to a Simulated Data Set

In order to check the performance of the new metric (Equation (13)), we have simulated
several curves with different shapes and sizes. In particular, we have simulated ten 3D cylindric
spirals, β1i(t) i = 1, · · · , 10, t ∈ [0, 1], and ten circumferences, β2i(t) i = 1, · · · , 10, t ∈ [0, 1], from:

x1i = ai cos(8πt); y1i = ai sin(8πt); z1i = bit;

x2i = ri cos(2πt); y2i = ri sin(2πt); z2i = 0;

where t ∈ [0, 1] and ∀i ∈ {1, · · · , 10}, bi = 10 + e1i, e1i ∼ N(0, 1), ai =

√
L2−b2

i
64π2 ,

L = 270 , ri = 15 + e2i, e2i ∼ N(0, 2.5) (so all these spirals will have different shape and the same
length, and all the circumferences will have the same shape but different lengths). Figure 1a,b shows
the simulations obtained.

The Karcher means of the ten spirals and of the ten circumferences are computed with the new
metric (β̂new, Equation (18)) and by using the distance proposed by [5] in the shape and size space
S2. These means are shown in Figure 2, where the original curves are plotted in light blue; β̂new is
plotted in black color and β̂2, the Karcher-mean using the distance d2, is plotted in red color. As can be
seen, in Figure 2a,b, there is a very slight difference between the means µ̂new and µ̂2 of the ten spirals.
Figure 2c,d show that the means coincide in the case of the circumferences.
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(a) (b)

Figure 1. Simulated curves. (a) Ten spirals with different shapes and common length. (b) Ten
circumferences with common shape and different lengths.

(a) (b)

(c) (d)

Figure 2. (a,c) Simulated curves and their corresponding means. (b,d) Comparison of the Karcher
means obtained with the two different distances.

An example comparing the geodesics obtained with dnew and d2, can be seen in Figure 3,
without great differences among them.

Finally, the distance matrices Dnew and D2 between the twenty curves are computed using both
metrics, and in order to compare the performance of d2 and dnew, a multidimensional scaling (MDS)
analysis [13] has been carried out. The MDS algorithm is a descriptive data reduction procedure to
display the information contained in a (m×m)-distance matrix, D, in a low-dimensional space such
that the between-object distances are preserved as well as possible. Then, for each distance matrix
D, the method looks for a set of orthogonal variables {y1, · · · , yp}, p < m such that the Euclidean
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distances of the elements with respect to these variables are as close as possible to the distances given
in the original matrix D. In Figure 4, MDS has been applied to the distance matrices computed with
both metrics. In both graphics (Figure 4a,b), the black points represent the twenty spirals α1i shown in
Figure 1a, and the green points represent the twenty circumferences α2i shown in Figure 1b.

dnew d2

Figure 3. Comparison of the geodesic obtained using the two different distances.

(a) (b)

Figure 4. Multidimensional scaling (MDS) applied to the distance matrices: (a) using dnew, (b) using d2.
The ten spirals are marked in green and the ten circumferences are represented with black asterisks.

As can be seen, there are slights differences among the MDS representations of both metrics. If we
perform a k-means cluster with k = 2 from Dnew and D2, in both cases the two groups are perfectly
recovered. We also recover the two groups if we apply DBSCAN [14,15].

If we re-scale the twenty figures, multiplying them by 50, and we consider the twenty resulting
curves jointly to the twenty original ones, we can compute again the distance matrices Dnew and D2

between the 40 curves. The MDS scaling representation of these distance matrices can be found in
Figure 5. In both graphics, the initial spirals {βi1}i=1,··· ,10 are plotted in green; the circumferences
{βi2}i=1,··· ,10 are plotted in black, and their scaled versions, {50βi1}i=1,··· ,10 and {50βi2}i=1,··· ,10 are
plotted in red and blue color, respectively.
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Figure 5 shows one important difference between the performance of both metrics. By definition,
dnew is invariant to changes of scale i.e., dnew(βil , β jm) = dnew(kβil , kβ jm), ∀k ∈ R and this equality
does not hold for d2, where the distance among curves increases with the scaling factor.

(a) (b)

Figure 5. MDS applied to the distance matrices: (a) using dnew, (b) using d2. The ten initial spirals
are marked in green and the ten initial circumferences are represented with black asterisk, the spirals
re-scaled by 50 are the red asterisks and the circumferences are plotted in blue.

If we perform a k-means cluster analysis with k = 4 from the distance matrices, the four groups
are recovered from Dnew, but for D2, the distance among the scaled circumferences increases regarding
to the distance among the initial circumferences, so the group of large circumferences is splitted into
two clusters while the initial (short) curves (spirals and circumferences) are joined in a unique cluster
(Figure 6). However, the algorithm DBSCAN applied on both distance matrices, allow us in both cases
recover again the four initial groups.

(a) (b)

Figure 6. MDS applied to the distance matrices: (a) using dnew, (b) using d2. The ten initial spirals are
marked with green asterisks and the ten initial circumferences are represented with black asterisks,
the enlarged spirals are plotted in red and the enlarged circumferences are plotted in blue.

As a third step of the simulation study, let us consider a broader data set with the initial
spirals {βi1}i=1,··· ,10 , the circumferences {βi2}i=1,··· ,10 , their scaled versions {50βi1}i=1,··· ,10 and
{50βi2}i=1,··· ,10, jointly with two new re-scaled sets {250βi1}i=1,··· ,10 and {250βi2}i=1,··· ,10. The distance
matrices Dnew and D2 between the 60 curves are computed and the MDS scaling representation of
these distance matrices can be found in Figure 7.

A k-means cluster analysis with k = 6 so as the DBSCAN algorithm applied on Dnew recovers the
6 simulated groups. However, the DBSCAN algorithm applied on D2 provides 5 clusters on this data
set joining in a single cluster the initial (short) curves (spirals and circumferences) and distinguishing
the other groups (Figure 7d). The k-means algorithm with k = 5 provides the same result, but if the



Mathematics 2020, 8, 1691 14 of 19

k-means algorithm is applied with k = 6 clusters, the set of the largest circumferences is split into two
groups (Figure 7c). Once again, it can be clearly seen that the distance d2 among shapes increases with
the scaling factor.

(a) (b)

(c) (d)

Figure 7. MDS applied to the distance matrices: (a) using dnew, (b) using d2. The ten initial spirals are
marked in green and the ten initial circumferences are represented with black asterisks. The enlarged
spirals are plotted in red (factor 50) and magenta (factor 250) and the enlarged circumferences are
plotted in blue (factor 50) and cyan (factor 250). The clusters obtained on d2 are plotted: (c) using
k-means algorithm with k = 6, (d) using DBSCAN and k-means, k = 5.

7. Detection of Outliers

Although there are a variety of techniques for outlier detection for different types of data in any
metric space based on nearest-neighbor techniques (see [16] for a detailed explanation), they have
not been fully exploited in the shape and size space of curves. Some of the main references are based
on box-plots of the distances to the median to detect outliers, such as [12,17], and more recently the
method based on elastic depths proposed by [18].

We propose a technique for outlier detection based on the proposed distance. Nearest-neighbor
techniques are very popular due to their good results, conceptual simplicity and interpretability
in the classic multivariate case [19]. We consider this idea for the shape and size space of curves.
The k-NN Anomaly Detection algorithm searches for the nearest k-neighbors, i.e., the k closest curves,
for every element in the database, and calculates the average distance of the k-neighbors. In the
multivariate case, the Euclidean distance is used, but here we use the proposed distance to find the
neighbors. This procedure returns outlier scores; as usual, the highest score denotes the highest degree
of outlierness. A way to establish a binary decision about whether or not to label a point as an outlier is
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to use a box-plot with the outlier scores and to consider the points detected as outliers by the box-plot
as anomalies.

We compare our procedure with that introduced in [12,17,18] using the data sets of open curves
used in [12,17], which are available from [20]. For the Example 1 considered in [17] formed by 70 spirals,
Ref. [12] found 6 outliers, Ref. [17] also found 6 outliers (2 scale outliers and 4 mild shape outliers)
and [18] found 4 outliers (3 due to amplitude and 1 due to phase) with the recommended value of
k = 2, which is the boxplot multiplier, while 9 outliers are found with the classical k = 1.5. However,
with our methodology, we detect 8 outliers (the results are stable, we obtain the same outliers with
k = 5, 10 or 15). We have also computed the square of the distance in Equation (17) (d(p, q)2) and
we have computed the contribution in percentage due to shape d2

C0(π(p), π(q))/d(p, q)2 and due
to size d2

R(ln R(p), ln R(q))/d(p, q)2, for each outlier. The percentages of contribution due to shape
for the 8 outliers are: 21%, 29%, 34%, 35%, 41%, 50%, 50% and 74%. For the Example 3 in [17]
formed by 176 fiber tracts in the human brain extracted from a diffusion tensor magnetic resonance
image (DT-MRI), we detect the same 11 outliers also detected by [12,17], and all are due to shape,
with percentages of contribution due to shape of 90%. However, [18] with k = 2 returned 62 outliers
(62 due to amplitude, 23 of them are also outliers due to phase), i.e., 35% of points of the sample are
considered outliers.

8. Application to a Real Data Set

Footwear design relies greatly on knowledge of foot size and shape. Proper fit is an essential
condition for potential shoe buyers, besides the fact that poorly fitting footwear can cause foot pain
and deformity, especially in women. Although people with extreme feet (very different from the
rest) may be the most likely customers with poor fit, in anthropometric studies they are not usually
searched. However, outliers report very valuable information for the footwear design process, since
they can help shoe designers adjust their designs to a larger part of the population and can increase
their awareness of customers characteristics that will make them uncomfortable to wear, whether
when considering a range of special sizes or modifying any shoe feature to fit more users.

The aim of this section was to detect the outliers in an anthropometric foot database. We carry out
a separate analysis for men and women, since gender foot shape differences are well-known [21,22].
Furthermore, footwear designers usually propose different types of shoes for women and men.

8.1. Foot Database

A total of 770 3D right foot scans were carried out. A total of 389 men and 381 women representing
the Spanish adult female and male population were measured. The data were collected in different
regions across Spain at shoe shops and workplaces using an INFOOT laser scanner [23]. The scanning
process is carried out while the participant stands upright placing equal weight on each foot, in a
specific position and orientation (see Figure 8). The result is a 3D point cloud representing the complete
outer surface of the foot, including the sole of the foot.

3D foot shapes were registered using the method described by [24] with a template made up
of 5000 vertices, with five foot landmarks (i.e., 1st and 2nd toe tips; 1st and 5th metatarsal heads;
and pternion; see Figure 9). This set of landmarks is automatically located on 3D foot scans and allows
the extraction of foot measurements and contours, according to the definitions used by the Human
Shape Lab of the Biomechanics Institute of Valencia (IBV), which comply with standards and are
compatible with the accepted definitions found in the literature [25–28]. In particular, we consider the
longitudinal contour passing through the Ball Position. The mean shapes for men and women in S2

are displayed in Figure 10.
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Figure 8. Infoot R© scanner.

Figure 9. Foot landmarks used for registration in the database and foot template topology (the
last image).

Figure 10. Mean shapes of contours for men (left) and women (right).

8.2. Detection of Foot Outliers

We have applied our outlier procedure to the curves of men and women with k = 10. A total
of 24 and 18 outliers are detected for men and women, respectively. In order to briefly describe the
outlier curves detected, we show the percentiles of each outlier for the four variables that could most
influence shoe fit according to shoe design experts. Specifically, these variables are: Foot Length,
FL (distance between the rear and foremost point the foot axis); Ball Girth, BG (perimeter of the ball
section); Ball Width, BW (maximal distance between the extreme points of the ball section projected
onto the ground plane); and Instep Height, IH (maximal height of the instep section, located at 50%
of the foot length). Tables 1 and 2 show the percentile profiles of the outliers found for women and
men, respectively. Note that for some of the outliers some of the variables show extreme percentiles,
i.e., very high or very low percentiles. However, in many other cases, outliers do not show extreme
values in these variables. Therefore, outliers can be due to the particular combination of the variables
or due to the particular configuration of the curve that cannot be summarized by these four variables.
In summary, with the proposed procedure, we can detect feet that are “not normal”, which may not
be detected with a classic multivariate analysis. Figure 11 shows the most outlier feet for men and
women. For men, the outlier feet are the 14th and 9th, while for the women the outliers are the 7th and
17th. Note that those feet do not have really extreme percentiles.

We have also computed the contributions of shape and size. The main contribution is due to
shape for both men and women. The mean is 96% for men and 97% for women.
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Table 1. Percentile profiles of outliers of foot shape variables for women.

FL BG BW IH

64 44 70 84
36 90 61 65
25 39 17 24
61 95 100 100
66 57 83 70
28 35 73 53
70 58 100 99
66 49 76 46
63 47 79 88
69 88 67 94
48 50 84 64
79 66 23 22
42 54 45 11
73 40 68 35

100 99 68 98
43 4 41 23
30 31 32 13
57 17 35 77

Table 2. Percentile profiles of outliers of foot shape variables for men.

FL BG BW IH

69 51 45 53
65 49 38 77
25 39 17 24
75 17 24 14
37 25 60 37
86 74 2 13
47 85 15 21
58 32 3 11
43 59 11 1
72 39 31 48
10 2 8 4
99 78 43 43
7 30 30 82

56 30 12 2
82 39 40 28
20 7 11 54
96 58 53 28
42 54 44 11
53 80 91 100
53 58 28 49
88 72 38 84
3 3 86 79

19 54 84 97
13 37 99 91
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Figure 11. The most outlier feet for men (first row) and women (second row).

9. Conclusions

We have proposed a new metric in the shape and size space S2 that, unlike the previous proposals,
allows us to distinguish whether the distance between two shapes [q1] and [q2] is due to the difference
in shape or to the difference in size between the corresponding curves β1 and β2. It has been compared
with the metric proposed by [5] in a simulation study, where our proposal is shown to perform better.
Furthermore, we also show the advantages of the new metric, such as its invariance to changes of scale.

For the first time, we have also proposed a procedure based on the distances and NN techniques
in S2 for finding outlier curves in S2. We have applied it to a novel industrial data set. The foot outliers
found by considering their contour can help shoe designers improve their designs in order to provide
customers with a better fit.

In future work, in regards to the theory, closed curves could be considered and an the appropriate
metric defined. Furthermore, the new metric could be used in other types of statistical problems
besides outlier detection, such as classification, clustering, or new ones, where curves in S2 have never
been used before, such as archetype analysis [29] or archetypoid analysis [30]. Finally, in regards to the
footwear application, the outlier procedure with the new metric could be applied to other kinds of foot
contours, such as the Ball Girth, and of course, scopes for other fields of application.
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