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Abstract: We study the strategic behavior of firms competing in the exploitation of a common-access
productive asset, in the presence of pollution externalities. We consider a differential game with
two state variables (asset stock and pollution stock), and by using a piecewise-linear approximation
of the nonlinear asset growth function, we provide a tractable characterization of the symmetric
feedback–Nash equilibrium with asymptotically stable steady state(s). The results show that the
firm’s strategy takes three forms depending on the pair of state variables and that different options
for the model parameters lead to contrasting outcomes in both the short- and long-run equilibria.
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1. Introduction

There is an extensive literature in economics, operations research, game theory, and dynamic
optimization dealing with the exploitation of renewable resources (e.g., a fishery or a forest). One main
question shared by all parties, namely firms, governments (regulators), and citizens, is how to exploit
these resources in a sustainable way. In the vast dynamic games literature, where players (firms and
regulators) interact strategically over time, the models have very often focused on the resource itself,
without any other considerations. Typically, these models start with a dynamic system describing
the evolution of the stock, and next, they characterize the equilibrium strategies under different
assumptions related (i) to the information structure (e.g., open-loop, feedback, or closed-loop with or
without memory) and (ii) to the players’ behavior (cooperative or noncooperative).

There is ample evidence showing that the evolution of renewable resources depends not only
on natural variations and on human intervention (harvesting, deforestation, etc.) but also on the
accumulated pollution. An illustrative example is the recent discovery—devastating for biomass—of
over 5 trillion pieces of plastic, weighing a total of 250,000 tons, afloat on the Pacific Ocean. More than
half of this island of plastic is made of fishing gear, i.e., is the result of resource exploitation [1].
In addition to the adverse effects of accumulated pollution on the resources , the literature documented
various direct economic costs borne by firms operating in these industries. For instance, the fishing
industry faces costs arising from the need to repair or replace gear that has been damaged or lost
because of encounters with abandoned, lost, or otherwise discarded fishing gear (ALDFG) [2,3].
The impacts of ALDFG on fisheries also include hazards to navigation and safety at sea, which increase
fuel costs and reduce fishing time, and loss of earnings due to reduced or contaminated catches
including ghost fishing [4,5]. It is estimated that the cost of marine debris damage on the fishing
industry in 2008 was US$364 million for the 21 Pacific Rim economies [6], and the derelict pot removal
program between 2008–2014 in the largest estuary of the United States, the Chesapeake Bay, led to an
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additional harvest valued at US$21.3 million—a 27% increase above that which would have occurred
without removals [7].

Scientists from various disciplines have proposed models to integrate the influence of other
(state) variables—e.g., pollution stock, marine environmental quality, and habitat quality—in their
analysis (e.g., [8]), omitting, however, the strategic interactions between the various parties involved.
In this paper, we consider an oligopoly exploiting a renewable resource (a productive asset) and
contribute to the literature by having a more realistic model where strategic behavior and pollution
externalities are present. Indeed, strategic thinking has often been ignored in large-scale ecosystem
models and in representative-agent frameworks and pollution has been disregarded in games of
renewable-resource exploitation.

To represent the habitat’s limited carrying capacity, the rate of growth of the productive asset
is typically modeled as a nonlinear, inverted U-shaped function of the asset stock (see, e.g., [9]).
The author of [10,11] approximated this nonlinear rate of growth by an inverted-V function,
which allowed for tractable characterization of the equilibrium strategies and payoffs. In this
work, which is a revised version of [12], we adopt a differential game framework that extends
the productive-asset model in [11] by introducing a second state variable, namely pollution stock,
while retaining his approximation approach. The game is played by n identical firms competing à la
Cournot over an infinite planning horizon. Each player aims to maximize their stream of discounted
payoff, taking into account the market structure, the initial size of each stock, and their dynamics.
For the present work, we abstract from the effects of pollution on the reproductive capacity of the asset
and consider only the direct economic costs of pollution incurred by the firms as negative externality.
The problem is technically an infinite horizon linear-quadratic n-player differential game with two
state variables and one control variable for each player, which influences the two dynamic processes.

We characterize fully analytically the symmetric feedback–Nash equilibrium, where the firm’s
strategy is a piecewise-linear function in the two state variables, for which the shape depends on
the position of the game in the state space. Thus, the contribution of this work includes obtaining
a closed-form solution in a model with two state variables and a piecewise-linear resource growth
function. We show that the state space is divided into three regions, namely scarcity, abundance, and
no exploitation. Three equilibrium cases are identified and are shown to depend on the relationship
between the asset growth rate, the discount rate, and the pollution decay rate. This equilibrium is
sustainable; that is, for any given pair of initial asset–pollution stocks, it converges to a stable steady
state with positive exploitation and positive values of state variables. When there are at least two
players, the equilibrium includes either one stable or two locally stable steady states; however, when
the industry is monopolistic, the optimal solution includes only one stable steady state.

Our work belongs quite naturally to the literature on the exploitation of productive assets and
the management of resources under pollution control. Early contributions in this area include [13,14],
both of which explored the set of equilibria in a dynamic game framework. The characterization of the
equilibrium in [10,11] showed that the firm’s strategy and the value function take piecewise forms,
which depends on the asset stock level. There can be a unique or multiple steady states depending
on the asset growth rate, and the decision of a single firm to unilaterally decrease its exploitation
may result in a decrease in the asset stock. These contributions led to extensive research on various
topics related to the strategic exploitation of common access resources that also took into account the
nonlinearity of the growth rule. The literature has examined issues such as optimal taxation [15], losses
from competition [16], the role of property rights, and convergence to the Cournot equilibrium [17,18].
More recently, [19] showed results on pre-emption, voracity, and exhaustion. The authors of [20]
showed that nonlinear feedback strategies are unstable in a dynamic duopoly game with renewable
resource exploitation. The effects of mergers were analyzed in [21], the impact of social status concern
in these industries were studied in [22], and [23] investigated the incentives in a duopoly by considering
a finite planning horizon.
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In parallel to this dynamic-games literature on resources, a significant literature has dealt with the
strategic behavior of agents under pollution externalities (see the surveys in [24,25]). The pioneering
contributions are [26,27], where both noncooperative and cooperative solutions were characterized and
contrasted. Many papers have ensued, focusing on issues such as taxation (e.g., [28,29]), sustainability
and uncertainty (e.g., [30,31]), international environmental agreements (e.g., [32,33]), and technical
change and R&D (e.g., [34]).

Some studies have integrated pollution accumulation in the exploitation of a renewable resource
(see, e.g., [35–37]). However, these contributions have not accounted for strategic behavior or, when
they have, they omitted the feature that the resource growth rate is not linear. In a closely related work
to ours, [38] considered a similar model with two state variables, namely biomass stock and pollution
stock. They studied a sustainable cooperative agreement in an open-access fishery and characterized
the symmetric noncooperative and cooperative solutions. They focused only on an interior solution
that includes one part of the solution (which we name the scarcity region). Moreover, they considered
the damage of pollution on the resource dynamics together with the damage on welfare, and in the
present paper, we study the effect of taking into account the direct economic damage on the firms’
profits. In addition, we characterize the equilibrium for the whole state space and study in detail the
boundary cases and the values of parameters that allow for a feedback–Nash equilibrium.

In a nutshell, our paper attempts to integrate within the same framework the exploitation of a
productive asset in the presence of pollution externalities and strategic behavior. We approximate
the nonlinear growth function by a piecewise linear function, which allows us to have a tractable
linear-quadratic dynamic game, for which the equilibria can be characterized analytically.

The rest of the paper is organized as follows: Section 2 introduces the model, Section 3
characterizes the equilibrium and shows its properties, and Section 4 concludes.

2. The Model

We consider an n-player infinite-horizon differential game, with the asset stock S and the pollution
stock Z being the two state variables. The model extends the framework in [11] by introducing pollution
externalities in the firms’ decision-making problem. At each date t ∈ [0,+∞) , n-firms exploit the
common-access asset in quantities qi(t), i = 1, . . . , n, and compete à la Cournot. We assume that the
exploitation strategy qi(t) is nonnegative and bounded above, that is, 0 ≤ qi(t) ≤ MS(t) with the
positive constant M sufficiently large (see [14,39] that considered similar constraints). We consider the
transformation rate of the asset to the final product to be one-to-one and the unit cost of exploitation
to be zero for simplicity. The price p is determined by the linear inverse-demand function given by
p(Q) = a− bQ, where Q = ∑n

i=1 qi is the total quantity of supply and where a > 0 and b > 0.
The growth rate of the productive asset (e.g., a fishery, a forest, etc.) is assumed to be

nonlinear in an inverted U–shape in the asset stock. Following the literature, we adopt the following
piecewise-linear approximation:

f (S) =

{
δS if S ≤ Sy,
δ(Smax − S) if S > Sy,

(1)

where δ > 0 denotes the intrinsic growth rate of the asset and Sy is the level of asset that leads to
the so-called maximum sustainable yield (Sy = Smax

2 ) with Smax > 0 being the carrying capacity of
the habitat. Note that f (S) = 0 if S = {0, Smax}, f (S) > 0 if S ∈ (0, Smax), and f (S) < 0 if S > Smax.
Taking into account an asset growth function that includes pollution (i.e., f (S, Z)) would allow to
capture the negative impacts of pollution on the asset stock. This is considered in [38], where they
present the closed-form solutions for noncooperative and cooperative cases for a part of the interior
solution. In this work, we refrain from adding pollution and use function f (S) to keep the presentation
of results simpler.
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Taking into account the firms’ exploitation, the change in the asset stock at date t is governed by
the following differential equation:

dS(t)
dt

= Ṡ (t) = f (S(t))−
n

∑
i=1

qi(t). (2)

The firms’ activities generate emissions as a by-product and add up to the pollution stock, which
evolves over time as follows:

dZ(t)
dt

= Ż (t) = α
n

∑
i=1

qi(t)− kZ(t), (3)

where α > 0 denotes the amount of emissions resulting from exploiting a unit of asset, and k > 0 is the
pollution decay rate.

Denote by d (Z) the (symmetric) damage cost of player i. We suppose that this environmental
cost is convex increasing in the pollution stock Z and satisfies the property d (0) = 0. For tractability,
we adopt the quadratic functional form d(Z) = φ

2 Z2, where φ > 0.
Assuming that each player maximizes their discounted stream of profit, the optimization problem

of player i is then as follows:

max
qi(t)

∫ +∞

t=0
e−rt

(
p

(
n

∑
i=1

qi(t)

)
qi(t)− d(Z(t))

)
dt, (4)

subject to (2), (3), and 0 ≤ qi(t) ≤ MS(t),

with S(0) = S0 > 0, Z(0) = Z0 ≥ 0 given.

where r > 0 denotes the common discount rate.

3. The Equilibrium

We consider the equilibrium where firms use feedback information in their decision-making.
This is a subgame-perfect equilibrium (also called a Markovian Perfect Nash Equilibrium (MPNE)),
in which the firm’s strategy is state dependent and strongly time consistent [40,41]. Denote by
Vi(S(t), Z(t)) the value function of firm i, which is the discounted sum of profits that the firm obtains
in the game starting in state (S(t), Z(t)). Unless an ambiguity arises, we shall from now on omit
the time argument. Introduce the Hamilton–Jacobi–Bellman (HJB) equation associated to firm i’s
maximization problem, that is,

rVi(S, Z) = max
qi

{
p

(
n

∑
i=1

qi

)
qi − d(Z) +

∂Vi(S, Z)
∂S

(
f (S)−

n

∑
i=1

qi

)
+

∂Vi(S, Z)
∂Z

(
α

n

∑
i=1

qi − kZ

)}
, (5)

for i = {1, .., n}, where the partial derivative ∂Vi(S, Z)/∂S represents the shadow price (or value) of the
asset stock (also called scarcity rent) and ∂V(S, Z)/∂Z denotes the shadow value of the pollution stock.
Taking into account the nonnegativity restriction on qi in problem (4), maximizing the right-hand side
of (5) yields the following condition:

qi ≥ 0; a− b
n

∑
i=1

qi − bqi ≤
∂Vi(S, Z)

∂S
− α

∂Vi(S, Z)
∂Z

, (6)

with at least one of the inequalities being equality. The condition (6) must hold together with the
terminal condition limt→+∞ e−rtV(S(t), Z(t)) = 0 for every admissible trajectory. The left-hand
side of the second inequality in (6) is the marginal revenue of firm i for given quantities of
competitors. The right-hand side represents the marginal (opportunity) cost of a unit of exploitation,
which comprises the shadow prices of the asset stock and pollution stock. Since we are considering
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costless exploitation, the opportunity cost consists only of the shadow prices of the state variables.
We focus on a symmetric equilibrium in which all firms have the same value function, and they exploit
the same quantities (Vi(S, Z) = V(S, Z) and qi = q for all i = {1, .., n}). Consequently, (6) becomes

q∗(S, Z) = max
{

0,
1

b(n + 1)

(
a− ∂V(S, Z)

∂S
+ α

∂V(S, Z)
∂Z

)}
, (7)

for i = {1, .., n}. Condition (7) results in two possibilities for the equilibrium strategy, that is, q∗(S, Z) >
0 or q∗(S, Z) = 0. There may exist different cases where q∗(S, Z) > 0 depending on the signs of the
partial derivatives of the function V(S, Z). We consider the cases in which the asset has a scarcity
rent (∂V(S, Z)/∂S > 0) or not (∂V(S, Z)/∂S = 0), and we consider all possible cases for the effect of
pollution on the value of the firm; thus, sign(∂V(S, Z)/∂Z) is free. By using (7), we write these cases
in the following definition:

Definition 1. The three regions are as follows:

Scarcity region (RS): q∗(S, Z) > 0 with ∂V(S, Z)/∂S > 0:

RS =

{
(S, Z) |

(
a >

∂V(S, Z)
∂S

− α
∂V(S, Z)

∂Z

)
and

(
∂V(S, Z)

∂S
> 0

)}
.

Abundance region (RA): q∗(S, Z) > 0 with ∂V(S, Z)/∂S = 0:

RA =

{
(S, Z) |

(
a > −α

∂V(S, Z)
∂Z

)
and

(
∂V(S, Z)

∂S
= 0

)}
.

No-exploitation region (R0): q∗(S, Z) = 0:

R0 =

{
(S, Z) | a ≤ ∂V(S, Z)

∂S
− α

∂V(S, Z)
∂Z

}
.

In region RS, the pair of state variables is such that it is profitable to exploit the asset, and the
asset has a scarcity rent. The firms view the level of the asset stock as scarce, and they consider their
impact on the asset stock in their strategy. In region RA, the asset stock is too high, so having an
additional unit in the stock brings no value to firms. Players consider only the pollution externality
as an intertemporal effect of exploitation, and the asset stock does not play a role in their decision.
In region R0, the marginal revenue of an initial asset supply (given by the price P(0) = a) is lower
than its marginal cost, which depends on the shadow prices of the asset stock and pollution stock.
Hence, exploitation is not dynamically profitable and the equilibrium strategy is to wait for the asset
to replenish and for pollution to decline.

Since the function V is not known, it is not clear beforehand whether any of these three cases exist.
To proceed with an analytically tractable characterization, we focus on the strategies that are linear
functions of the state variables. Furthermore, we introduce the following assumptions:

Assumption 1.

(a)
r
(
1 + n2)

2
< δ ≤ r + k and φ < φ1, (b) r + k < δ <

k
(
1 + n2)

n2 − 1
and φ < φ2,
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where the terms φ1 and φ2 are given by

φ1 =
b(k + r)

(
2δ−

(
n2 + 1

)
r
) (

δ
(
2kn2 +

(
n2 + 1

)
r
)
−
(
n2 + 1

)
r(k + r)

)
2(δαn(n− 1))2 , (8)

φ2 =
bk(k + r)

(
k
(
n2 + 1

)
− δ

(
n2 − 1

)) ((
n2 + 1

)
(k + r) + δ

(
n2 − 1

))
2(δαn(n− 1))2 , (9)

where we have φ2 < φ1 for n > 1 and r + k < δ <
k(1+n2)

n2−1 .

Assumption 2.
4ab

(
1 + n2) (k + r)(k + δ)

δ(λ + b(1 + n)r)(λ + b(1 + n)(2δ− r))
< Sy, (10)

where λ =
√
(b(n + 1)(2k + r))2 + 8n2α2bφ.

The assumptions above require the intrinsic growth rate of the asset (δ) to be sufficiently high
(which is the same condition required in [11]) but also bounded from above with a threshold that
depends on the pollution decay rate (k) and the number of firms (n). Another restriction is imposed
on the marginal damage parameter φ, which is required to be sufficiently low. For too high values
of δ, the condition is revised to be more strict for the parameter φ. We will discuss the roles of these
restrictions in more detail in Section 3.1, where we study the properties of the equilibrium. In the
following theorem, we characterize the symmetric equilibrium:

Theorem 1. Suppose that Assumptions 1 and 2 are satisfied.

(a) Equilibrium strategies:

The strategy profile {q1(t), .., qn(t)} = {q∗(S(t), Z(t)), .., q∗(S(t), Z(t))} for t ∈ [0,+∞) where

q∗(S, Z) =


(a + c0 + cSS + cZZ)/b(n + 1) if (S, Z) ∈ RS,
(a + c̄0 + c̄ZZ)/b(n + 1) if (S, Z) ∈ RA,
0 if (S, Z) ∈ R0,

(11)

constitutes a symmetric feedback–Nash equilibrium.

The terms {cS, cZ, c0} and {c̄S, c̄Z, c̄0}, which depend on the exogenous model parameters, are written
as follows:

cS =
(n + 1)

4n2
(2δ− r)
(δ + k)

(λ + b(n + 1)(2δ− r)) , (12)

cZ =
(n + 1)

4n2α

(δ− r− k)
(δ + k)

(λ− b(n + 1)(2k + r)) , (13)

c0 =
a
(
n2 + 1

)
(cS(k + r) + αcZ(δ− r))

b(n + 1)2(k + r)(δ− r)− 2n2(cS(k + r) + αcZ(δ− r))
, (14)

and

c̄S = 0, (15)

c̄Z = − (n + 1)
4n2α

(λ− b(n + 1)(2k + r)) , (16)

c̄0 =
a
(
n2 + 1

)
αc̄Z

b(n + 1)2(k + r)− 2n2αc̄Z
, (17)
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where the term λ is given by

λ =

√
(b(n + 1)(2k + r))2 + 8n2α2bφ. (18)

The regions {RS, RA, R0} are written as follows:

RS =

{
(S, Z) |

(
S > − a + c0

cS
− cZ

cS
Z
)

and

(
S <

(2δ− r)
(k + r− δ)

cZ
cS

Z− (2δ− r)
(δ− r)

(
a
(
1 + n2)+ 2n2c0

)
2n2cS

)}
, (19)

RA =

{
(S, Z) |

(
Z < − a + c̄0

c̄Z

)
and

(
S ≥ (2δ− r)

(k + r− δ)

cZ
cS

Z− (2δ− r)
cS

(
a
(
1 + n2)+ 2n2c0

)
2n2(δ− r)

)}
, (20)

R0 =

{
(S, Z) |

(
S ≤ − a + c0

cS
− cZ

cS
Z
)

or
(

Z ≥ − a + c̄0

c̄Z

)}
. (21)

(b) Value functions:

The discounted sum of profits obtained by each firm is given by the following value function:

Vi(S, Z) = V(S, Z) =


W(S, Z) if (S, Z) ∈ RS,
V̄(Z) if (S, Z) ∈ RA,
V0(S, Z) if (S, Z) ∈ R0,

(22)

for i = {1, .., n}, which is continuously differentiable ∀(S, Z) ∈ R2
+.

The function W(S, Z) is written as follows:

W(S, Z) = A +
B
2

S2 + CS +
D
2

Z2 + EZ + FSZ, (23)

where

A =
(a + c0)

(
a + n2c0

)
b(n + 1)2r

, B =
2n2c2

S
b(n + 1)2(r− 2δ)

, (24)

C =
cS
(
a(n2 + 1) + 2n2c0

)
b(n + 1)2(r− δ)

, D =
2n2c2

Z − b(n + 1)2φ

b(n + 1)2(2k + r)
, (25)

E =
cZ
(
a(n2 + 1) + 2n2c0

)
b(n + 1)2(k + r)

, F =
2n2cZcS

b(n + 1)2(k + r− δ)
. (26)

The function V̄(Z) is written as follows:

V̄(Z) = Ā +
D̄
2

Z2 + ĒZ, (27)

where

Ā =
(a + c̄0)

(
a + n2 c̄0

)
b(n + 1)2r

, D̄ =
c̄Z
α

, Ē =
c̄0

α
. (28)

The function V0(S, Z) is written as follows:

V0(S, Z) =
(

Z
Ẑ(S, Z)

)− r
k

Θ

(
S
(

Z
Ẑ(S, Z)

) δ
k

, Ẑ(S, Z)

)
− φZ2

2(2k + r)

(
1−

(
Z

Ẑ(S, Z)

)− 2k+r
k
)

, (29)



Mathematics 2020, 8, 1682 8 of 28

with

Θ(S, Z) =

{
W(S, Z) if (S, Z) ∈ RW

0 ,
V̄(Z) if (S, Z) ∈ RV̄

0 ,
(30)

and the function Ẑ(S, Z) is defined implicitly by the following system of equations:

Ŝ(S, Z) = S
(

Z
Ẑ(S, Z)

) δ
k

, Ẑ(S, Z) = − cS
cZ

Ŝ(S, Z)− a + c0

cZ
. (31)

The partitions of region R0, denoted by RW
0 and RV̄

0 are written as follows:

RW
0 = {(S, Z) ∈ R0 | Z < Z3 or Z3 ≤ Z < Ψ(S)} , (32)

RV̄
0 = {(S, Z) ∈ R0 | Z ≥ Z3 and Z ≥ Ψ(S)} , (33)

where the curve Z = Ψ(S) denotes the boundary between RW
0 and RV̄

0 given by

Ψ(S) = Z3

(
S3

S

) k
δ

, (34)

with the constants S3 and Z3 given as follows:

S3 =
2a
(
2bk

(
n2 + 1

)
(k + r)− bδ

(
n2 − 1

)
r− δλ(n− 1)

)
δ(b(n + 1)r + λ)(λ + b(n + 1)(2δ− r))

, (35)

Z3 =
2aα

(
b
(
2k
(
n2 + 1

)
+ r

(
3n2 + 1

))
+ λ(n− 1)

)
(λ + b(n + 1)r)(λ− b(n + 1)(2k + r))

. (36)

Proof. The long proof is built throughout the paper, and the details are provided in Appendix A,
which has several subsections. The road map to complete the proof of the theorem is as follows:

1. In Section A.1, we state some preliminaries and introduce the methodological approach.
2. In Section A.2, we study the case q∗(S, Z) > 0. By guessing a piecewise-quadratic form for the

value function and by applying the undetermined coefficient method, we obtain the functions
W(S, Z) and V̄(Z) and the solutions associated with their coefficients. Then, we analyze the
boundary cases and their positions in (S, Z).

3. Lemma A1 in Section A.2.1 shows that, under Assumptions 1 and 2, the function W(S, Z) satisfies
the HJB equation ∀(S, Z) ∈ RS and that strategy profile qi = q∗ ∀i satisfies (7) with q∗(S, Z) > 0
and ∂V(S, Z)/∂S > 0.

4. Lemma A2 in Section A.2.2 shows that, under Assumptions 1 and 2, the function
V(S, Z) = {W(S, Z) if (S, Z) ∈ RS, V̄(Z) if (S, Z) ∈ RA} is continuously differentiable in S and
Z and satisfies the HJB equation ∀(S, Z) ∈ RS ∪ RA. The strategy profile qi = q∗, ∀i satisfies (7)
with q∗(S, Z) > 0 and ∂V(S, Z)/∂S ≥ 0.

5. Section A.3 looks at the case q∗ = 0. Lemma A3 obtains the function V0(S, Z) and shows that it is
continuously differentiable in S and Z, ∀(S, Z) ∈ R0, and on the boundary cases of R0.

6. Combining these results, we conclude that the piecewise function V(S, Z) given in (22) satisfies
HJB Equation (5) and that the strategy profile qi = q∗, ∀i satisfies the condition in (7) ∀(S, Z) ∈ R2

+

and constitutes a feedback–Nash equilibrium.

Theorem 1 characterizes the symmetric equilibrium strategy of firms for any given pair (S, Z).
The strategy q∗(S, Z) is a piecewise-linear function in S and Z with coefficients (c0, cS, cZ) and (c̄0, c̄Z)
that correspond to the coefficients of the marginal cost function given in (6) (see (A7) in Section A.2 in
the Appendix A).
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For further analysis, we define the boundary lines between the regions as follows:

Definition 2. Let Z = Zj
i (S) denote the boundary line in the (S, Z) plane between the regions Ri and Rj as

function of S. We have

(i) The boundary line between RS and R0:

Z = ZS
0 (S) = −

cS
cZ

S− a + c0

cZ
. (37)

(ii) The boundary line between RS and RA:

Z = ZA
S (S) =

(k + r− δ)

(2δ− r)
cS
cZ

S +
(k + r− δ)

(
a
(
1 + n2)+ 2n2c0

)
2n2(δ− r)cZ

. (38)

(iii) The boundary line between RA and R0:

Z = ZA
0 = − a + c̄0

c̄Z
. (39)

We now proceed with studying the general properties of the equilibrium in the next subsection.

3.1. The Properties of the Equilibrium

We briefly explain the methods used for obtaining the equilibrium strategies and then investigate
their properties. Using a linear-quadratic model with the piecewise-linear approximation of the
asset growth function enables us to guess the form of the value function as a polynomial of degree
2 in S and Z within an interior solution. We obtain the six-dimensional equation system associated
with the coefficients of W(S, Z) and then reduce it into a system of two equations in (cS, cZ) given
in (A5) and (A6). This system yields four solutions: two include ∂W(S, Z)/∂S 6= 0 and the other two
include ∂W(S, Z)/∂S = 0. Among all solutions, only one pair makes it possible to characterize a
feedback–Nash equilibrium with a stable steady state.

We use the solutions for the strategies and the value function to derive the analytical formulation
of the case RS, which is given in (19). We obtain the linear functions associated with its boundary
cases, where q∗(S, Z) = 0 and ∂W(S, Z)/∂S = 0, and then study their positions in (S, Z) by analyzing
the signs of (cS, cZ) given in Equations (12) and (13), which result in three cases that differ in the
relationship among the dynamic model parameters, i.e., sign(δ− r− k). In all cases, cS > 0 and c̄Z < 0,
but the sign of cZ differs, i.e., sign(cZ) = sign(δ− r− k). Using these results, for δ > r/2, we write the
following cases:

Case 1: δ < r + k : cS > 0, cZ < 0, c̄Z < 0,

Case 2: δ = r + k : cS > 0, cZ = 0, c̄Z < 0,

Case 3: δ > r + k : cS > 0, cZ > 0, c̄Z < 0.

Since cZ is the coefficient associated with the level of pollution in the equilibrium strategy in
region RS, this difference leads to contrasting results in the equilibrium responses to pollution in RS,
which will be discussed in detail below.

We analyze the properties of the equilibrium by using the diagram in Figure 1, which shows the
shapes and positions of the regions given in Definition 1 in the (S, Z) plane.
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Figure 1. Illustration of the regions and their boundaries in (S, Z).

(i) There are four regions: the value function takes a different form in each region.
(ii) q∗ > 0 in RS ∪ RA, and q∗ = 0 in RW

0 ∪ RV̄
0 .

(iii) ∂V/∂S > 0 in RS ∪ RW
0 , and ∂V/∂S = 0 in RA ∪ RV̄

0 .
(iv) The boundary case Z = ZS

0 (S) given in (37) denotes the threshold where q∗ = 0 and ∂W/∂S > 0,
beyond which the firms voluntarily cease exploitation and wait for the asset to replenish and
pollution to decline. The sign of its slope depends on sign(r + k− δ).

(v) The boundary case Z = ZA
S (S) given in (38) denotes the threshold where q∗ > 0 and ∂W/∂S = 0.

It decreases in S in all cases.
(vi) The boundary Z = ZA

0 given in (39), which is a positive constant, denotes the threshold level of
pollution, where q∗ = 0 and ∂V/∂S = 0. The firms refrain from any exploitation if the level of
pollution is above this threshold.

(vii) The boundary cases of RS intersect with the Z = 0 axis at points (S1, 0) and (S2, 0), and their
intersection point is denoted by (S3, Z3), where the closed-form solutions of S1, S2, and (S3, Z3)

are given in (A9), (A10), (35), and (36). When Assumptions 1 and 2 are satisfied, the ordering of
these points is given as follows: 0 < S1 < S2 < Sy and S3 > 0, Z3 > 0.

The qualitative properties of equilibrium in region RA remain the same for all values of parameters
that satisfy Assumptions 1 and 2. This is because the firm’s strategy and the value function in this
region do not depend on the intrinsic growth rate (δ). Within this region, the equilibrium behavior is
that of the dynamic oligopoly with pollution externalities, where higher pollution induces the firms to
exploit less of the asset (∂q∗/∂Z < 0). Since the slope of the boundary dZA

S (S)/dS < 0 in all cases, for
a fixed point on this boundary, ∂V/∂S > 0 for lower levels of pollution and ∂V/∂S = 0 if pollution
is high.

By contrast, the behavior in region RS differs depending on sign(δ− r − k). In the following,
we show the properties of the equilibrium strategies in each case:

Case 1: δ < r + k, cS > 0 and cZ < 0 (Figures 1 and 2a): The equilibrium level of exploitation is
faster if the asset stock is larger (∂q∗/∂S > 0), and it is slower if the level of pollution is higher
(∂q∗/∂Z < 0). Since dZS

0 (S)/dS > 0, for a fixed pair of state variables on this threshold,
firms will exploit the resource if pollution is sufficiently low but will not exploit if pollution is
too high.
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Case 2: δ = r + k, cS > 0 and cZ = 0: The firm’s strategy includes only the asset stock and is
independent of the level of pollution. The boundary case where q∗ = 0 and ∂W/∂S > 0
becomes a constant S = S1.

Case 3: δ > r + k, cS > 0 and cZ > 0 (Figure 2b): In this case, the slope of the threshold Z = ZS
0 (S)

becomes negative. Firms exploit the asset faster if the level of pollution is higher (∂q∗/∂Z > 0).
Since dZS

0 (S)/dS < 0, for a fixed a point on this threshold, firms exploit the asset if the level of
pollution is high and do not exploit it if pollution is low. The opportunity cost of exploitation
given in (6) decreases in pollution.

(a) � < r + k (b) � > r + k

Figure 2. Two cases of region positioning under Assumptions 1 and 2.

The results presented above highlight the differences in equilibrium behavior among the
three cases. For a relatively slow growing asset, the response to pollution is to decrease
exploitation; however, if the asset growth rate is sufficiently large, the equilibrium response to pollution
is reversed, i.e., to exploit more under higher pollution.

Since we make an extension of [11], it will be useful to compare and contrast our results.
Naturally, our solutions share many similarities with [11]. The three regions and the piecewise-linear
strategies we obtain are also found in [11], where they depend only on the level of asset stock. This is
indeed the consequence of considering a piecewise-linear growth function. Moreover, the solution we
present is equivalent to the one given in [11] in the limit case, where the damage function parameter
φ→ 0 (see Remark A1 in Section A.2 in the Appendix A). Furthermore, as the damage cost parameter
φ increases, the equilibrium behavior is more affected by the level of pollution. Our results show that,
if the pollution level is too high, the firms do not exploit the asset for any given level of asset stock.
Also, for a given set of other parameters, above a level of φ given in Assumption 1 (φ > φ1 or φ > φ2

depending on δ, k, and r), we cannot characterize a feedback–Nash equilibrium for the whole state
space. Last but not least, the different types of equilibrium responses in cases 1 to 3 appear due to the
presence of pollution in the problem.

As mentioned above, when firms do not have information on the pollution externality or when
they do not take it into account in their decision-making (φ→ 0), the equilibrium behavior is as given
in [11]. One question is whether the firms benefit from taking into account the damage cost (d(Z)) in
their profits. When there are direct economic costs due to pollution but the firm disregards it, then the
discounted sum of profits the firm obtains will be lower. We elaborate on this by discussing the two
following cases: one firm chooses another strategy while all other firms stick with the feedback–Nash
strategy with d(Z) in their profit function, and all firms disregard the damage in their profit. For the first
case, in which all other firms choose the feedback–Nash strategy (q∗ given in Equation (11)), one firm
deviating and choosing another strategy (denote by q̃ with q̃ 6= q∗) would yield a lower value, which is
immediate because the equilibrium we characterize is subgame-perfect (i.e., Vi(q∗i , q∗−i) ≥ Vi(q̃i, q∗−i),
where q∗−i denotes all other firms’ strategy except firm i). For the second case, let q′ denote the
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symmetric equilibrium strategy in the game without pollution, which is given in [11]. When all firms
disregard the damage in their profit and all choose the strategy q′, one firm can deviate and make
larger profits by taking into account d(Z) since q′ is not maximizer of the problem with d(Z), thus it
would not be an equilibrium. For these reasons, it is beneficial for firms to take into account the costs
arising from accumulated pollution in their decision-making process.

We can now discuss the roles that Assumptions 1 and 2 play on the characterization of the
equilibrium. The first part of Assumption 1, which refers to the case δ < r + k, ensures that the asset
quantity S1 > 0. In addition, having the slope of no-exploitation boundary increasing (see Figure 2a)
leads to the result that the equilibrium behavior is not to exploit the asset for too small values of asset
stock. In the second part of Assumption 1 (δ > r + k), ensuring S1 > 0 is not sufficient to characterize
a feedback–Nash equilibrium. The reason is that the slope of no-exploitation boundary decreases (see
Figure 2b), and if S3 < 0, then there may exist equilibrium trajectories leading to asset exhaustion.
Hence, we modify the condition to ensure S3 > 0. Then, in both cases, Assumption 1 guarantees that
the equilibrium behavior around the asset level S = 0 is not to exploit the asset, which renders the
asset growth to be positive (Ṡ > 0) in the neighborhood of the S = 0 axis for all levels of pollution, and
thus, the asset exhaustion never occurs in the equilibrium. Furthermore, Assumption 2 is to ensure
that the value function is continuously differentiable for all (S, Z), particularly for S = Sy = Smax/2,
where the asset growth function in (2) is not continuously differentiable. Also note that, for a given
parameter calibration that satisfies Assumption 1, the carrying capacity (Smax) can be set such that
Assumption 2 is satisfied as well.

Lastly, we turn to the case where the equilibrium strategy is to not exploit the asset. To characterize
the value function in region R0 given in (21), we use the fact that, in this region, qi = 0 for all
i ∈ {1, .., n}; thus, the asset stock grows at rate δ and the pollution stock declines at rate k without
an intervention. At a certain date t̂, depending on the initial state (S(0), Z(0)), the pair (S(t), Z(t))
reaches either one of the boundary cases where firms begin exploitation. The value of the game
starting at a point in R0 depends on this boundary point associated with itself, which can be computed.
The following steps are taken in Appendix A.3:

(i) We define an implicit function denoted by (Ŝ(S, Z), Ẑ(S, Z)) written in the system of equations
in (31), which yields the point (and the date) at which the firms launch their exploitation for
(S, Z) ∈ R0.

(ii) Using this function, we obtain the curve denoted by Z = Ψ(S) given in (34) associated with the
intersection point of the three regions (S3, Z3) where W(S3, Z3) = V̄(Z3).

(iii) This curve enables us to partition region R0 into two parts, denoted by RW
0 and RV̄

0 given in (32)
and (33), such that the boundary for launching exploitation is known for a given (S, Z) ∈ R0.

Having obtained the boundary point associated with all points in (S, Z) ∈ R0, in Lemma A3, we
find V0(S, Z) that satisfies the HJB equation with q∗i = 0, ∀i and show its continuity. The function
(Ŝ(.), Ẑ(.)) does not have an analytical solution for (S, Z) ∈ RW

0 , except in special cases (δ = k) and
(δ = r + k) (see Remark A2 in Section A.3 in the Appendix A); nevertheless the characterization
of V0(S, Z) remains tractable. For any other parameter setting, this function has to be computed
numerically in order to obtain the value of a point in RW

0 . In the other partition, RV̄
0 , the value function

has an analytical form.

3.2. The Equilibrium Dynamics, Steady States, and Stability

In order to analyze the stable steady states of the equilibrium, we derive the set of points such
that Ṡ(t) = 0 and Ż(t) = 0, respectively. Then, we obtain the steady states and study their stability by
using the methods provided in [42]. The results are shown in the following theorem:
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Theorem 2. Under Assumptions 1 and 2, the steady state(s) may be single or multiple depending on
the parameters.

(i) The steady state in region RS is denoted by ξS = (s∞
S , z∞

S ) and written as follows:

s∞
S =

kn (a + c0)

bδk(n + 1)− n (αδcZ + kcS)
,

=
2ak

(
−bδ

(
2k
(
n2 + 1

)
+
(
n2 + 3

)
r
)
+ 2b

(
n2 + 1

)
r(k + r) + δλ(n− 1)

)
δ(b(n + 1)r + λ) (bδ(2k(n− 1) + r(n + 1))− b(n + 1)r2 − λ(δ− r))

, (40)

z∞
S = − αδn (a + c0)

n (αδcZ + kcS)− bδk(n + 1)
,

=
2aα

(
bδ
(
2k
(
n2 + 1

)
+
(
n2 + 3

)
r
)
− 2b

(
n2 + 1

)
r(k + r)− δλ(n− 1)

)
(b(n + 1)r + λ) (−bδ(2k(n− 1) + r(n + 1)) + b(n + 1)r2 + λ(δ− r))

. (41)

The steady state ξS always exists, and it is asymptotically stable for n ≥ 2.
(ii) The steady states in region RA are denoted by ξA1 = (s∞

A1, z∞
A1) and ξA2 = (s∞

A2, z∞
A2) and written

as follows:

s∞
A1 =

kn(a + c̄0)

δ(bk(n + 1)− nαc̄Z)
,

=
2ak

(
b
(
2k
(
n2 + 1

)
+ 3n2r + r

)
+ λ(n− 1)

)
δ(b(n + 1)r + λ)(2bk(n− 1)− b(n + 1)r + λ)

, (42)

s∞
A2 = Smax −

kn(a + c̄0)

δ(bk(n + 1)− nαc̄Z)
,

= Smax −
2ak

(
b
(
2k
(
n2 + 1

)
+ 3n2r + r

)
+ λ(n− 1)

)
δ(b(n + 1)r + λ)(2bk(n− 1)− b(n + 1)r + λ)

, (43)

z∞
A1 = z∞

A2 =
0
ZA =

αn (a + c̄0)

bk(n + 1)− αnc̄Z
,

=
2aα

(
b
(
2k
(
n2 + 1

)
+
(
3n2 + 1

)
r
)
+ λ(n− 1)

)
(b(n + 1)r + λ)(b(2k(n− 1)− (n + 1)r) + λ)

, (44)

The existence of steady states ξA1 and ξA2 depends on the following condition:

Smax

2
bδ(n + 1)

nc̄Z
− a + c̄0

c̄Z
<

αn (a + c̄0)

bk(n + 1)− αnc̄Z
. (45)

• If (45) is true, then the point ξA1 is unstable, whereas ξA2 is stable. In that case, there are two locally
asymptotically stable steady states (ξS, ξA2), and the equilibrium to which a game converges depends on
its initial state (S(0), Z(0)).

• If (45) is not true, then ξS is the unique steady state which is asymptotically stable.

Proof. See Appendix B.

Figure 3 illustrates these results for a case in which multiple steady states exist, which also shows
the positions of the loci Ṡ = 0 and Ż = 0.
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Figure 3. Sample of the case with multiple steady states.

The cases of unique and multiple steady states are illustrated in the diagrams in Figure 4,
which also show the equilibrium trajectories in the (S, Z) plane. These trajectories are obtained
by using the differential equation system resulting from replacing q∗(S, Z) in (11) into (2) and (3). For a
given initial state, the equilibrium strategy may shift from one to another as the values of the state
variables cross the thresholds between the regions.

The continuity of V(S, Z) on the boundary cases ensures a smooth transition between the regions
with continuous q∗(S, Z); consequently, the strategies qi(t) = q∗(S(t), Z(t)), ∀i converge to a steady
state with lim

t→+∞
q∗(t) > 0 for all initial states and constitute a symmetric feedback–Nash equilibrium.

We now investigate how the equilibrium responses to marginal increases in asset and pollution
stocks vary with the changes in the parameter values. In the following proposition, we analyze these
comparative statics for the number of players (n), the marginal damage coefficient (φ), and the intrinsic
growth rate of the asset (δ).

Proposition 1. The partial derivatives of coefficients of the equilibrium strategy given in (11) with respect to
the selected parameters have the following signs:

sign
(

∂cS
∂n

)
< 0; sign

(
∂cZ
∂n

)
= sign(k + r− δ); sign

(
∂c̄Z
∂n

)
> 0;

sign
(

∂cS
∂φ

)
> 0; sign

(
∂cZ
∂φ

)
= sign(δ− k− r); sign

(
∂c̄Z
∂φ

)
< 0;

sign
(

∂cS
∂δ

)
> 0; sign

(
∂cZ
∂δ

)
> 0; sign

(
∂c̄Z
∂δ

)
= 0.

Proof. See Appendix C.

The results of Proposition 1 can be summarized as follows: the equilibrium response to an increase
in asset stock is lower if the number of players is higher, and the response to an increase in pollution
stock depends on sign(k + r− δ). Recall that sign(cZ) = sign(δ− k− r); then, with a higher number
of players, the equilibrium response to higher pollution is to decrease exploitation less for δ < k + r
and increase exploitation less for δ > k+ r. The results are reversed for the marginal damage parameter.
When the growth rate of the asset is higher, the response to an increase in asset stock is higher and the
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response to an increase in pollution stock is also higher, which is in contrast with the effects of the
other parameters.

(a) � < r + k (b) � > r + k

Figure 4. Sample equilibria with unique and multiple steady states.

Another example in which the qualitative properties differ is the case of a monopoly. The following
proposition presents the result in this case:

Proposition 2. Under Assumptions 1 and 2, for a monopoly (n = 1), the optimal solution includes only one
stable steady state, which is in region RA.

Proof. See Appendix D.

Proposition 2 shows that, in the monopoly case, the steady state ξS lies on the boundary Z = ZA
S (S)

and coincides with the unstable steady state in RA, i.e., ξS = ξA1. Hence, for a monopoly, this point
is unstable but it is sustainable. Analysis regarding the stability of the other steady state in RA (ξA2)
remains valid, and thus, ξA2 is the only steady state that is asymptotically stable. Therefore, for a
monopoly, the optimal solution includes two steady states with one of them stable and the other one
unstable but sustainable.

4. Concluding Remarks

We characterized the symmetric feedback–Nash equilibrium and showed its existence within a
certain range of model parameters given in Assumptions 1 and 2. The equilibrium path always reaches
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a steady state that is sustainable. For a set of parameters outside this range, there may still exist local
equilibria for some levels of asset–pollution stock pairs.

The framework we present includes various simplifications and abstractions, which made
the characterization of the equilibrium more conveniently tractable. We introduced the pollution
externalities in a simple way in order to guarantee that variations in the equilibrium results
between the outcomes with and without pollution externalities could be studied through a single
exogenous parameter.

The methodology used to characterize the equilibrium can be applied in problems involving
similar features by considering different objective functions and state dynamics. Some examples are
the issues relating to the open-access fisheries shared by multiple countries, analysis of cooperation and
stability of coalitions, welfare analysis, spillover effects, and the interactions between other possible
state variables and the asset stock.
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Appendix A. Proof of Theorem 1

Appendix A.1. Some Preliminaries

A symmetric equilibrium exists if there exists a function Vi(S, Z) = V(S, Z) ∀i that is continuous
and continuously differentiable in S and Z, which satisfies the HJB equation in (5), the first-order
condition in (7), and the terminal condition limt→+∞ e−rtV(S(t), Z(t)) = 0 for every admissible
trajectory (see [40,41]). Due to the nonnegativity restriction on qi in problem (4), we consider the two
following cases:

q∗(S, Z) > 0 and q∗(S, Z) = 0.

Moreover, the constraint qi(t) ≤ MS(t) in (4) guarantees that the asset stock S cannot be negative.
In order to characterize an equilibrium strategy q∗(S, Z) that is defined for the whole state space

(S, Z) ∈ R2
+ which converges to a stable steady state with lim

t→+∞
(q∗(S(t), Z(t)) > 0), we look for the

parameter constellations under which the following two conditions are satisfied:

1. q∗(0, Z) = 0, ∀Z ≥ 0, which is to ensure that asset exhaustion never occurs and there exist steady
state(s) with positive asset level.

2. ∂V(S, Z)/∂S = 0, ∀S ≥ Sy, which is to ensure the continuity of V(S, Z) on S = Sy where the
asset growth function f (Sy) is not continuously differentiable.

More specifically,

• if q∗(0, Z) = 0, ∀Z ≥ 0 is not satisfied, then ∃Z ≥ 0 | q∗(0, Z) > 0 and then there may exist
an initial state (S(0), Z(0)) such that lim

t→+∞
(S(t), Z(t)) = (0, 0) and lim

t→+∞
(q∗(S(t), Z(t)) = 0;

then, q∗(S, Z) would not be a feedback–Nash equilibrium that includes stable steady state(s) with
positive asset levels.

• if (∂V(S, Z)/∂S = 0 ∀S ≥ Sy) is not satisfied, then the discontinuity point f (Sy) given in (2) is
included in the case q∗(S, Z) > 0 and ∂V(S, Z)/∂S > 0. For this reason, we cannot find a function
that is continuously differentiable in S, and q∗(S, Z) does not satisfy the HJB equation for S ≥ Sy;
thus, in that case, V(S, Z) together with q∗(S, Z) do not fulfill any currently known sufficient
condition.
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In the following subsections, we use the methods developed in the literature to study the cases
given in Definition 1. We focus on linear strategies, obtain the function V(S, Z), and analyze a
number of closed-form formulas to identify the restrictions on the model parameters under which the
conditions discussed above are satisfied, which allows us to characterize the equilibrium.

Appendix A.2. Case with Positive Exploitation (Q∗(S, Z) > 0)

Since the model is linear-quadratic, we make the informed guess that, within an interior solution
(q∗(S, Z) > 0), the value function is a polynomial of degree 2 in S and Z. We consider the function
W(S, Z) given in Equation (23).

The maximized HJB equation is obtained by replacing q∗(S, Z) in (7) into (5). Using W(S, Z)
results in an equation that is a polynomial of degree 2 in S and Z. We then apply the method of
undetermined coefficients (see [41]) by identification, and after simplifications, the system of equations
in (A, B, C, D, E, F) is written as follows:

A =
(a + αE− C)

(
a + n2(αE− C)

)
b(n + 1)2r

, B =
2n2(αF− B)2

b(n + 1)2(r− 2δ)
, (A1)

C =
(αF− B)

(
a(n2 + 1) + 2n2(αE− C)

)
b(n + 1)2(r− δ)

, D =
2n2(αD− F)2 − b(n + 1)2φ

b(n + 1)2(2k + r)
, (A2)

E =
(αD− F)

(
a(n2 + 1) + 2n2(αE− C)

)
b(n + 1)2(k + r)

, F =
2n2(αD− F)(αF− B)
b(n + 1)2(k + r− δ)

. (A3)

Introduce the following changes of variables:

c0 = αE− C, cS = αF− B, cZ = αD− F. (A4)

Replacing (A4) into the equations for C and E, the term c0 is written as a function of cS and cZ,
and is given in (14). Furthermore, using the equations for B, D, and F in (A1)–(A3) with (A4) enables
us to write the system of equations for cS and cZ as follows:

cS = α
2n2cZcS

b(n + 1)2(k + r− δ)
−

2n2c2
S

b(n + 1)2(r− 2δ)
, (A5)

cZ = α
2n2c2

Z − b(n + 1)2φ

b(n + 1)2(2k + r)
− 2n2cZcS

b(n + 1)2(k + r− δ)
. (A6)

Hence, we reduced the six-dimensional equation system in (A1)–(A3) into a system of two
equations in cS and cZ, which contain polynomials of degree 2. Equation (A5) has two solutions for cS,

i.e.,
{

cS = 1
2 (2δ− r)

(
b(n+1)2

n2 + 2αcZ
δ−k−r

)
, cS = 0

}
. Inserting these values into (A6) yields four solutions

to the system in (A5) and (A6):

• Solution A is written in Equations (12) and (13).
• Solution B is written in Equations (15) and (16).
• Solution A′ and Solution B′, which are denoted by (c′S, c′Z) and (c̄′S, c̄′Z), are written exactly as in

(12), (13), (15), and (16) by inverting the sign of λ, i.e.,

λA′ = λB′ = −
√
(b(n + 1)(2k + r))2 + 8n2α2bφ.

The solutions given above consist only of the exogenously given model
parameters. Therefore, all solutions for W(S, Z) can be obtained by replacing (A4) in (A1)–(A3) and by
inserting the solutions given in (12)–(16).

In solutions A and A′, ∂W(S, Z)/∂S 6= 0 ∀δ 6= r/2; thus, they are candidates for the case q∗ > 0
and ∂V(S, Z)/∂S > 0. In solutions B and B′, we have ∂W(S, Z)/∂S = 0, and they are candidates for
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the case q∗ > 0 and ∂V(S, Z)/∂S = 0. Therefore, we consider solutions A and A′ for the function
W(S, Z) given in (23), and for solutions B and B′, where c̄S = c̄′S = 0,we define the function denoted
by V̄(Z), which is a polynomial of degree 2 in Z, written in (27). It can be verified that both functions
W(S, Z) and V̄(Z) satisfy the HJB equation in (5) for all choices of solutions.

Remark A1. In the limit case where φ → 0, the problem reduces to a game with one state variable (S).

Solution A reduces to cZ = 0, cS = (2δ− r) b(1+n)2

2n2 , and c0 =
a(1+n2)

2n2δ
(r− 2δ), which results in D = E =

F = 0, and B = −cS = (r− 2δ) b(1+n)2

2n2 , C = −c0 =
a(1+n2)

2n2δ
(2δ− r), A =

a2(r(1+n2)−2δ)(r(1+n2)−2n2δ)
4brn2(1+n)2δ2 .

Solution B vanishes with c̄S = c̄Z = c̄0 = 0, which leads to the equilibrium outcome of the static Cournot
oligopoly, i.e., V̄(Z) = a2

b(1+n)2r and q∗ = a
b(1+n) . These outcomes are identical to their corresponding terms in

the solution provided in [11].

The equilibrium strategy is written by using (7) and (A4) with V(S, Z) = W(S, Z):

q∗(S, Z) = (a + c0 + cSS + cZZ)/b(n + 1), (A7)

which is linear in S and Z. Note that, by using (A4), the RHS of (6) can be written as
MC(S, Z) = −(c0 + cSS + cZZ); hence, these terms correspond to the coefficients of the marginal
cost function.

In the following sections, we use the functions W(S, Z) and V̄(Z) to study the two cases where
∂V/∂S > 0 and ∂V/∂S ≥ 0.

Appendix A.2.1. Case with Q∗(S, Z) > 0 and ∂V(S, Z)/∂S > 0

We first obtain the analytical formulation of RS. For q∗(S, Z) > 0, from (A7), we obtain a >

−c0 − cSS− cZZ, and for ∂W(S, Z)/∂S > 0, we use (A1) to (A4). Since cS > 0 in all cases for δ > r/2,
writing both inequalities in S enables us to obtain the following region and its boundary cases:

(i) q∗(S, Z) > 0 and ∂V(S, Z)/∂S > 0 for all (S, Z) ∈ RS where RS is given in (19); the boundary line
associated with the first inequality, which is denoted by Z = ZS

0 (S), is written in (37); and the sign

of its slope is given by sign( dZS
0 (S)
dS ) = sign(− cS

cZ
).

• if r/2 < δ < r + k, then dZS
0 (S)
dS > 0;

• if δ = r + k, Equation (37) reduces to S = − a+c0
cS

; and

• if δ > r + k, then dZS
0 (S)
dS < 0.

(ii) The set of points such that q∗(S, Z) = 0 is defined as follows:

q∗(S, Z) = 0 if
{
(S, Z) | S ≤ − a + c0

cS
− cZ

cS
Z
}

, (A8)

which is obtained by using a ≤ ∂W(S,Z)
∂S − α

∂W(S,Z)
∂Z .

(iii) The set of points such that ∂W(S, Z)/∂S = 0 is given by the linear function in S written in

Equation (38), and the sign of its slope is given by sign( dZA
S (S)
dS ) = sign(− (δ−r−k)

(2δ−r)
cS
cZ
). Since sign(cZ)

= sign(δ− r− k) and cS > 0, we have dZA
S (S)
dS < 0 in all cases where δ > r/2.

We now calculate the points at which the linear functions obtained for the boundary cases
intersect with the Z = 0 axis and each other, i.e., ZS

0 (S) = 0, ZA
S (S) = 0, and Z = ZS

0 (S) = ZA
S (S).

These formulas are first written in terms of (c0, cS, cZ), and then, after inserting the solutions in
(12)–(16), they are written in closed form, using λ in (18) to study their signs.
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(i) (S1, 0): ZS
0 (S1) = 0 and q∗(S, 0) = 0 ∀S ≤ S1 where

S1 =− a + c0

cS
,

=
2a(k + δ)

(
2brδ +

(
1 + n2) b (δ(2k + r)− 2r(k + r))− (n− 1)δλ

)
δ(2δ− r)(λ + b(1 + n)(2δ− r))(λ + b(1 + n)r)

. (A9)

(ii) (S2, 0): ZA
S (S2) = 0 where

S2 = −
(2δ− r)

(
a
(
1 + n2)+ 2n2c0

)
2n2(δ− r)cS

,

=
4ab

(
1 + n2) (k + r)(k + δ)

δ(λ + b(1 + n)r)(λ + b(1 + n)(2δ− r))
> 0 if δ > r/2. (A10)

(iii) (S3, Z3): ZS
0 (S3) = ZA

S (S3) = Z3 is written in Equations (35) and (36) and note that Z3 > 0.

By using (A9) and (A10), the difference S2 − S1 is given by

S2 − S1 =
2a
(
b
(
2k
(
1 + n2)+ r

(
1 + 3n2))+ (n− 1)λ

)
(k + δ)

(2δ− r)(λ + b(1 + n)r)(λ + b(1 + n)(2δ− r))
> 0 if δ > r/2. (A11)

Thus, for δ > r/2, Z = ZA
S (S) intersects with the Z = 0 axis at S2 > 0 and S2 > S1. By using (A9),

we obtain the conditions under which S1 > 0:

δ >
r
(
1 + n2)

2
, (A12)

φ < φ1. (A13)

where φ1 is given in (8).
For δ ≤ r + k, S3 > 0 if (A12) and (A13) are satisfied, and for δ > r + k, S3 > 0 if

δ <
k
(
n2 + 1

)
n2 − 1

, (A14)

φ < φ2, (A15)

where φ2 is given in (9), and note that this condition is more strict than the one in (8) (i.e., φ2 < φ1).

Lemma A1. Suppose that Assumptions 1 and 2 are satisfied. For all (S, Z) ∈ RS, the function
V(S, Z) = W(S, Z) satisfies the HJB Equation (5) and the strategies qi = q∗(S, Z), ∀i given in (11) satisfy (7)
with q∗(S, Z) > 0 and ∂V(S, Z)/∂S > 0.

Proof. The sign analysis conducted in (A9) to (A15) shows that, if the conditions given in
Assumptions 1 and 2 are satisfied, then we have 0 < S1 < S2 < Sy and S3 > 0, Z3 > 0. We study the
slopes of the two boundary lines of RS for each case. The slope of Z = ZS

0 (S) depends on sign(− cS
cZ
),

and the slope dZA
S (S)/dS < 0 if δ > r/2; then, the three cases are written as follows:

Case 1: δ < r + k: In this case dZS
0 (S)/dS > 0 and dZA

S (S)/dS < 0. If S1 > 0 ((A12) and (A13)), then
q∗(S, Z) = 0 ∀(S, Z) | S ≤ S1. In addition, if S2 < Sy, then (S, Z) /∈ RS ∀(S, Z) | S ≥ S2

(see Figure 1 and Figure 2a). The function W(S, Z) satisfies the HJB Equation (5) and condition
(7) with q∗(S, Z) > 0 ∀(S, Z) ∈ RS.

Case 2: δ = r + k: In this case cZ = 0 and the boundary case q∗(S, Z) = 0 reduces to (S1, Z) ∀Z ≤ Z3.
We have the same result as the previous case. If S1 > 0 and S2 < Sy, then the function W(S, Z)
satisfies the HJB Equation (5) and condition (7) with q∗(S, Z) > 0 ∀(S, Z) ∈ RS.
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Case 3: δ > r + k: In this case dZS
0 (S)/dS < 0 and dZA

S (S)/dS < 0, and hence, both boundary lines

decrease in S. The difference in their slopes is given by dZS
0 (S)/dS− dZA

S (S)/dS = − cS
cZ

(δ+k)
(2δ−r) .

Since for δ > r + k we have cS > 0 and cZ > 0, the slopes compare as follows:

dZS
0 (S)
dS

<
dZA

S (S)
dS

< 0 if δ > r/2, (A16)

thus, ZS
0 (S) is steeper than ZA

S (S), and Z3 > 0, which can also be seen in (36). If S3 > 0
((A14) and (A15)) and S2 < Sy are satisfied, then q∗(S, Z) = 0 ∀S ≤ S3 and ∀Z ≥ 0
(see Figure 2b), and the function W(S, Z) satisfies the HJB Equation (5) and condition (7)
with q∗(S, Z) > 0 ∀(S, Z) ∈ RS.

Note that, when using (19), we eliminate the possibility of choosing solution A for δ < r/2
(where cS < 0) and solution A′ for r/2 < δ < r + k (where c′S < 0 and c′Z > 0). In these cases,
the inequalities in (19) and (A8) change their directions. In step (A16), we eliminate the possibility of

choosing solution A′ for δ < r/2 (where c′S > 0 and c′Z > 0), as it leads to dZA
S (S)
dS <

dZS
0 (S)
dS < 0, which

does not allow to characterize a feedback–Nash equilibrium.

Appendix A.2.2. Case with Q∗(S, Z) > 0 and ∂V(S, Z)/∂S ≥ 0

We now consider the function V(S, Z) = V̄(Z) given in (27), and by using a > −α
∂V̄(Z)

∂Z , which is
given by a > −α(D̄Z + Ē) with (19), (28), and (38), we have

(i) q∗(S, Z) > 0 and ∂V(S, Z)/∂S = 0 for all (S, Z) ∈ RA, where RA is given in (20).
(ii) The set of points such that q∗(S, Z) = 0 and ∂V(S, Z)/∂S = 0 is written in Equation (39), which is

obtained by using a = −α
∂V̄(Z)

∂Z and (28). The explicit form of ZA
0 equals the constant Z3 given

in (36).

Lemma A2. Suppose that Assumptions 1 and 2 are satisfied. For (S, Z) ∈ RS ∪ RA where
V(S, Z) = {W(S, Z) if (S, Z) ∈ RS, V̄(Z) if (S, Z) ∈ RA}, the strategies qi = q∗ ∀i given in (11) satisfy the
HJB Equation (5) and condition (7) with q∗(S, Z) > 0 and the function V(S, Z) is continuously differentiable
∀(S, Z) ∈ RS ∪ RA.

Proof. The functions W(S, Z) and V̄(Z) are polynomials of degree 2 and thus continuously
differentiable in S and Z ∀(S, Z) ∈ RS and ∀(S, Z) ∈ RA, respectively. For continuity of V(S, Z)
on the boundary, as (S, Z)→ (ŝ, ẑ) | ẑ = ZA

S (ŝ):

lim
(S,Z)→(ŝ,ẑ)

W(S, Z) =
(

A− C2

2B

)
+

(
D
2
− F2

2B

)
ẑ2 +

(
E− CF

B

)
ẑ, (A17)

lim
(S,Z)→(ŝ,ẑ)

V̄(Z) = Ā +
D̄
2

ẑ2 + Ēẑ. (A18)

where (A17) is obtained by using S = −C/B− ZF/B (where ∂W(S, Z)/∂S = 0). By using (24) to (28),
it can be verified that

Ā = A− C2

2B
;

D̄
2

=

(
D
2
− F2

2B

)
; Ē =

(
E− CF

B

)
, (A19)

Therefore, lim(S,Z)→(ŝ,ẑ) W(S, Z) = lim(S,Z)→(ŝ,ẑ) V̄(Z) for ẑ = ZA
S (ŝ), and thus, V(S, Z) is

continuous on
{
(S, Z) | Z = ZA

S (S)
}

.
Note that the four solutions to the system in (A5) and (A6) are paired such that (A19) is true

for solutions (A and B) and (A′ and B′) while (A19) is not true for (A′ and B) and (A and B′);
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therefore, in order to have a function that is continuously differentiable on the boundary where
lim(S,Z)→(ŝ,ẑ) ∂W(S, Z)/∂S = 0, either one of the pair of solutions must be selected.

By the definition of Z = ZA
S (S) given in (38), lim(S,Z)→(ŝ,ẑ)

∂W(S,Z)
∂S = 0, and ∂V̄(Z)

∂S = 0;

hence ∂V(S, Z)/∂S is continuous on
{
(S, Z) | Z = ZA

S (S)
}

. Further, lim(S,Z)→(ŝ,ẑ)
∂W(S,Z)

∂Z =

lim(S,Z)→(ŝ,ẑ)
∂V̄(Z)

∂Z since (D − F2/B) = D̄ by (A19), and thus, ∂V(S, Z)/∂Z is continuous on
Z = ZA

S (S) and q∗(S, Z) is continuous on Z = ZA
S (S), which can also be shown by using the solutions

given in (12)–(16).
By using Lemma A1, dZA

S (S)/dS < 0 in all cases with S2 > 0. If S2 < Sy, then (Sy, Z) ∈ RA
∀Z ∈

[
0, ZA

0
)
. For (S, Z) ∈ RA, we have V(S, Z) = V̄(Z), which does not depend on S; hence, the

point S = Sy where f ′(S) is not continuous does not affect the continuity of V(S, Z). Therefore, the
function V(S, Z) is continuously differentiable in S and Z and satisfies the HJB Equation (5) and
condition (7) with q∗(S, Z) > 0 ∀(S, Z) ∈ RS ∪ RA.

To constitute a Nash equilibrium, the strategies are required to be defined for the whole state
space; hence, we study the case q∗(S, Z) = 0 in the next subsection.

Appendix A.3. Case with No Exploitation (Q∗(S, Z) = 0)

By combining the results in (39) and (A8), we obtain the set of points such that q∗(S, Z) = 0 (R0)
given in (21). The value function for this region, denoted by V0(S, Z), must satisfy the HJB equation
in (5) with qi = 0 for i ∈ {1, .., n}, i.e.,

rV0(S, Z) = −φ

2
Z2 + δS

∂V0(S, Z)
∂S

− kZ
∂V0(S, Z)

∂Z
. (A20)

The above equation is a first-order linear partial differential equation (PDE), and V0(S, Z) must be
continuously differentiable in R0 and on its boundary cases. In order to obtain this function, we begin
by deriving the boundary case associated to a given point in R0.

Under Assumptions 1 and 2, for (S(0), Z(0)) ∈ R0, ∃t̂ ≥ 0 such that Z(t̂) = Z0(S(t̂)), where
Z0(S) denotes either the boundary between RS and R0 (i.e., ZS

0 (S)) or the boundary between RA and
R0 (i.e., ZA

0 ). This point is denoted by (ŝ, ẑ) = (S(t̂), Z(t̂)) and found by solving the following system
of equations:

ẑ = Z(t̂) = Ze−kt̂, ŝ = S(t̂) = Seδt̂, (A21)

such that Z(t̂) = Z0(S(t̂)) and t̂ ≥ 0, (A22)

where (A21) is found by using qi = 0 ∀i, which implies Ṡ(t) = δS(t) and Ż(t) = −kZ(t). By using
(21), there are three cases in which Equation (A22) holds true:

(i) ẑ = ZS
0 (ŝ); then, the point (ŝ, ẑ) is given by the system of equations written in Equation (31).

(ii) ẑ = ZA
0 with S ≥ S3; then, the point (ŝ, ẑ) is given by

Ŝ(S, Z) = S

(
Z

ZA
0

) δ
k

≥ S3, Ẑ(S, Z) = ZA
0 . (A23)

(iii) Z(0) = 0; then, the point (ŝ, ẑ) is given by

Ŝ(S, 0) = − a + c0

cS
, Ẑ(S, 0) = 0 for S ≤ − a + c0

cS
. (A24)

The system in (31) does not have an analytical solution, and the pair of equations are written as
implicit functions denoted by Ŝ(S, Z) and Ẑ(S, Z). For a fixed point on the boundary z0 = ZS

0 (s0),
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lim(S,Z)→(s0,z0)
(Ŝ(S, Z), Ẑ(S, Z)) = (s0, z0), which will be used later. The functions Ŝ(S, Z) and Ẑ(S, Z)

have to be computed numerically except some special cases given below:

Remark A2. There are special cases where (31) has an analytical solution:

if δ = k then

 Ŝ(S, Z) =
(√

(a + c0) 2 − 4SZcZcS − (a + c0)
)

/(2cS),

Ẑ(S, Z) = −
(√

(a + c0) 2 − 4SZcZcS + (a + c0)
)

/(2cZ),
(A25)

if δ = r + k then

{
Ŝ(S, Z) = − a+c0

cS
,

Ẑ(S, Z) = Z
(
− ScS

a+c0

)
k/δ,

(A26)

Since Z(t) decreases (by (A21)), for (S(0), Z(0)) ∈ R0 where Z(0) < ZA
0 , we have ∃t̂ ≥ 0 such

that Z(t̂) = Ẑ(S(0), Z(0)) = ZS
0 (Ŝ(S(0), Z(0))). However, for Z(0) ≥ ZA

0 , depending on the position
of (S(0), Z(0)), Z(t̂) may lie on Z = ZS

0 (S) or Z = ZA
0 . In order to precisely determine the boundary

associated to every point in R0, we first obtain the curve associated with the intersection of the
boundary cases of RS (denoted by (S, Z) = (S3, Z3) given in Equations (35) and (36) and recall that
Z3 = ZA

0 ). The set of points (S(0), Z(0)) ∈ R0 such that ∃t̂ ≥ 0 where (S(t̂), Z(t̂)) = (S3, Z3) is given
by the curve denoted by Z = Ψ(S) that is written in Equation (34), which is found by solving (A21)

with (ŝ, ẑ) = (S3, Z3), and note that dΨ(S)/dS = − k
δ

S3Z3
S2

(
S3
S

) k
δ−1

< 0. By using (34), we define the

partitions of region R0, denoted by RW
0 and RV̄

0 , given in Equations (32) and (33).
Consider a point (S(0), Z(0)) = (s0, z0) such that z0 = Ψ(s0), where s0 < S3 and z0 > Z3.

It satisfies (Ŝ(s0, z0), Ẑ(s0, z0)) = (S3, Z3). Denote by t = t0 such that (S(t0), Z(t0)) = (S3, Z3).
By using (A21), we obtain t0 = 1

k log
(

z0
Z3

)
= 1

δ log
(

S3
s0

)
> 0. Then:

• for (S(0), Z(0)) = (s′, z0) ∈ RW
0 where s′ < s0, we have (S(t0), Z(t0)) = (S(t0), Z3) with S(t0) <

S3; hence (S(t0), Z3) ∈ R0, (S(t0), Z3) /∈ RS, and (S(t0), Z3) /∈ RA. Then, ẑ = ZS
0 (ŝ), and the point

(ŝ, ẑ) is given by (31).
• for (S(0), Z(0)) = (s′′, z0) ∈ RV̄

0 where s′′ > s0, we have (S(t0), Z(t0)) = (S(t0), Z3) with
S(t0) > S3; hence the point (ŝ, ẑ) is given by (A23).

To summarize, if (S, Z) ∈ RW
0 , then Ẑ(S, Z) = ZS

0 (Ŝ(S, Z)), and if (S, Z) ∈ RV̄
0 ,

then Ẑ(S, Z) = ZA
0 .

Since we obtained the boundary case associated with every point in R0, by applying the method
of characteristics (see [43]), we obtain the solution to (A20) given in the following lemma:

Lemma A3. The value function in R0 is written in Equation (29). The function V0(S, Z) is continuously
differentiable in S and Z ∀(S, Z) ∈ R0 and on the boundary cases of R0.

Proof. We first consider Equation (A20) such that V(S, ẑ) = Θ(S, ẑ) with a constant ẑ, where Θ(S, Z)
is an analytical function of S and Z, which is a Cauchy problem. Suppose that a function u, which is
parameterized by τ, is a solution to Equation (A20) such that u(τ) = u(S(τ), Z(τ)) = V(S(τ), Z(τ)).
Introduce the system of ordinary differential equations (ODEs), which are called the characteristic
system for the PDE in (A20):

du
dτ

= ru +
φ

2
Z2;

dS
dτ

= δS;
dZ
dτ

= −kZ such that, (A27)

u(0) = Θ(ŝ, ẑ); S(0) = ŝ; Z(0) = ẑ. (A28)

Solving the last two equations in (A27) with their initial conditions results in

S(τ) = ŝeδτ , Z(τ) = ẑe−kτ . (A29)
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By solving for eτ and ŝ, we obtain τ(S, Z) and Ŝ(S, Z) that satisfy (A29):

eτ =

(
Z(τ)

ẑ

)− 1
k

; ŝ = S(τ)e−δτ = S(τ)
(

Z(τ)
ẑ

) δ
k

. (A30)

We insert Z(τ) given in (A29) into the first ODE in (A27) and obtain the following equation:

du
dτ

= ru +
φ

2
ẑ2e−2kτ . (A31)

Solving (A31) with its initial condition in (A28) yields

u(τ) = erτΘ(ŝ, ẑ) + erτ φẑ2

2(2k + r)

(
1− e−(2k+r)τ

)
. (A32)

Replacing (A30) into (A32) yields

u(S(τ), Z(τ)) =
(

Z(τ)
ẑ

)− r
k

Θ

(
S(τ)

(
Z(τ)

ẑ

) δ
k

, ẑ

)
+

φZ(τ)2

2(2k + r)

((
Z(τ)

ẑ

)− 2k+r
k
− 1

)
; (A33)

Hence, we obtained the solution to (A20), which is verified for any analytical function Θ(S, Z).
Further, in order to satisfy the boundary conditions in (A21) and (A22) ∀(S, Z) ∈ R0, we replace ẑ =

Ẑ(S, Z) and obtain (29). We then write (A20) by using (29), which simplifies to the following equation:(
2

kẐ(.)

(
Z

Ẑ(.)

)− r
k
)(

kZ
∂Ẑ(.)

∂Z
− δS

∂Ẑ(.)
∂S

)
(

rΘ(Ŝ(.), Ẑ(.))−
(

δŜ(.)
∂Θ(Ŝ(.), Ẑ(.))

∂S
− kẐ(.)

∂Θ(Ŝ(.), Ẑ(.))
∂Z

− φ

2
Ẑ(.)2

))
= 0. (A34)

We showed that, for (S, Z) ∈ RW
0 where Θ(S, Z) = W(S, Z), we have Ẑ(S, Z) = ZS

0 (Ŝ(S, Z)). For ẑ =

ZS
0 (ŝ), W(ŝ, ẑ) satisfies the HJB Equation (5) with q∗(ŝ, ẑ) = 0, i.e.,

rW(ŝ, ẑ) = δŝ
∂W(ŝ, ẑ)

∂S
− kẑ

∂W(ŝ, ẑ)
∂Z

− φ

2
ẑ2, (A35)

and for (S, Z) ∈ RV̄
0 where Θ(S, Z) = V̄(Z), we have Ẑ(S, Z) = ZA

0 . When ẑ = ZA
0 , V̄(ẑ) satisfies (5)

with q∗(ŝ, ẑ) = 0,

rV̄(ẑ) = −kẑ
∂V̄(ẑ)

∂Z
− φ

2
ẑ2. (A36)

For both cases, the third term in (A34) is zero and the equation holds true; hence, the function V0(S, Z)
given in (29) satisfies the HJB equation in (5) with q∗i = 0 ∀i and ∀(S, Z) ∈ R0.

For the partial derivatives of V0(S, Z) with respect to S and Z, by collecting the terms multiplied
with ∂Ẑ(S, Z)/∂S and ∂Ẑ(S, Z)/∂Z, using (A35) and (A36) allows us to simplify to the following:

∂V0(S, Z)
∂S

=

(
Z

Ẑ(.)

) δ−r
k ∂Θ(Ŝ(.), Ẑ(.))

∂S
, (A37)

∂V0(S, Z)
∂Z

=

(
Z

Ẑ(.)

)− k+r
k ∂Θ(Ŝ(.), Ẑ(.))

∂Z
− φZ

2k + r

(
1−

(
Z

Ẑ(.)

)− 2k+r
k
)

. (A38)
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The function V0(S, Z) is continuously differentiable in S and Z ∀(S, Z) ∈ RW
0 , ∀(S, Z) ∈ RV̄

0 ,
and ∀(S, Z) | Z = Ψ(S), since on this curve, Ẑ(S, Z) = Z3 and W(S3, Z3) = V̄(Z3).

• Continuity of V(S, Z) on the boundary cases of R0:

There are two cases: (a) (S, Z) = (S, ZS
0 (S)) and (b) (S, Z) = (S, ZA

0 ) with S ≥ S3.

(a) (S, Z) = (S, ZS
0 (S))

On this boundary case, ẑ = ZS
0 (ŝ) and we have lim(S,Z)→(ŝ,ẑ)(Ŝ(S, Z), Ẑ(S, Z)) = (ŝ, ẑ),

lim
(S,Z)→(ŝ,ẑ)

V0(S, Z) = W(ŝ, ẑ), (A39)

Thus, V(S, Z) is continuous on Z = ZS
0 (S). For continuity of its partial derivatives, by using (A37)

and (A38), we obtain

lim
(S,Z)→(ŝ,ẑ)

∂V0(S, Z)
∂S

=
∂W(ŝ, ẑ)

∂S
, lim

(S,Z)→(ŝ,ẑ)

∂V0(S, Z)
∂Z

=
∂W(ŝ, ẑ)

∂Z
; (A40)

Hence, V(S, Z) is continuously differentiable in S and Z on Z = ZS
0 (S).

(b) (S, Z) ∈ (S, ZA
0 ) with S ≥ S3:

On this boundary case, we have lim(S,Z)→(ŝ,ẑ)(Ŝ(S, Z), Ẑ(S, Z)) = (ŝ, ZA
0 ) with ŝ ≥ S3.

For continuity, we have
lim

(S,Z)→(ŝ,ẑ)
V0(S, Z) = V̄(ẑ), (A41)

Thus, V(S, Z) is continuous on Z = ZA
0 . For continuity of its partial derivatives, by using (A38),

we have

lim
(S,Z)→(ŝ,ẑ)

∂V0(S, Z)
∂S

=
∂V̄(ẑ)

∂S
= 0, lim

(S,Z)→(ŝ,ẑ)

∂V0(S, Z)
∂Z

=
∂V̄(ẑ)

∂Z
, (A42)

Thus, V(S, Z) is continuously differentiable on ZA
0 with S ≥ S3.

Therefore, the function V0(S, Z) is continuously differentiable in S and Z in R0 and both its
boundary cases.

Consequently, by using Lemmas A1–A3, under Assumptions 1 and 2, the function V(S, Z) given
in (22) is continuously differentiable in S and Z and satisfies the HJB equation in (5), and the strategy
profile qi = q∗(S, Z) ∀i given in (11) satisfies condition (7) for all (S, Z) ∈ R2

+. The terminal condition
is satisfied because Ż(t) ≤ −kZ(t) + αMnSmax and the set of all S is bounded, while the set of all
Z ≥ 0 can be divided into two parts: a bounded interval and a set in which every admissible trajectory
Z decreases so every admissible trajectory is bounded. Thus, by continuity of V(S, Z), for any given
initial condition (S(0), Z(0)), the limit of V(S(t), Z(t))e−rt exists and equals 0. Therefore, qi = q∗ ∀i
constitutes a symmetric feedback–Nash equilibrium, which proves Theorem 1.

Appendix B. Proof of Theorem 2

In the following, we derive the set of points such that Ṡ(t) = 0 and Ż(t) = 0, respectively, and then
obtain the steady states and study their stability.

We begin with (S, Z) ∈ RS. The locus Ṡ(t) = 0 is given by δS = n(a + c0 + cSS + cZZ)/b(n + 1).
By solving for Z, we obtain the following linear function in S:

Z =
0
SS(S) = S

(
bδ(n + 1)

ncZ
− cS

cZ

)
− a + c0

cZ
. (A43)
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The locus Ż(t) = 0 is given by kZ = αn(a + c0 + cSS + cZZ)/b(n + 1) and defined by the
following linear function in S:

Z =
0
ZS(S) =

αn
bk(1 + n)− αncZ

(a + c0 + cSS). (A44)

The point at which the two loci intersect, i.e., (S, Z) ∈ RS such that Ṡ(t) = 0 and Ż(t) = 0,

is denoted by ξS = { (s∞
S , z∞

S ) | z∞
S =

0
SS(s∞

S ) =
0
ZS(s∞

S ) } and written in Equations in (40) and (41).
We analyze the stability of the steady states by studying the signs of the determinants and traces

of the Jacobian matrix associated with the differential equation system in the neighborhood of the
critical points ([42]); see [44] for a similar analysis. The Jacobian matrix associated with the point ξS is
given by

JS =

(
δ− ncS

b(n+1) − ncZ
b(n+1)

nαcS
b(n+1)

nαcZ
b(n+1) − k

)
. (A45)

Its determinant and trace are written as follows:

det(JS) =
n(kcS + δαcZ)

b(1 + n)
− kδ,

=
(δ− r)(λ− b(n + 1)r)− 2bδk(n− 1)

4bn
, (A46)

tr(JS) = δ− k− n (cS − αcZ)

b(1 + n)
,

= −λ + b(4δ + 2k(n− 1)− 3(1 + n)r)
4bn

. (A47)

It can be verified that det(Js) > 0 and tr(JS) < 0 if δ > r(1 + n)/2. This is a weaker condition
than the first part of Assumption 1; thus, ξS is a stable steady state if Assumption 1 is satisfied.

We now turn to (S, Z) ∈ RA. The locus Ṡ(t) = 0 is given by the following piecewise-linear
function in S:

Z =
0
SA1(S) = S

bδ(n + 1)
nc̄Z

− a + c̄0

c̄Z
, S ≤ Sy, (A48)

Z =
0
SA2(S) = (Smax − S)

bδ(n + 1)
nc̄Z

− a + c̄0

c̄Z
, S ≥ Sy. (A49)

Since c̄Z < 0, we have d
0
SA1(S)/dS < 0 and d

0
SA2(S)/dS > 0. Thus, for (S, Z) ∈ RA, the minimum

level of Z such that Ṡ(t) = 0 occurs at is given by Z =
0
SA1(Sy) =

0
SA2(Sy). The locus Ż(t) = 0 is given

by kZ = αn(a + c̄0 + c̄ZZ)/b(n + 1), which results in the constant denoted by
0
ZA that is given in (44)

(i.e.,
0
ZA = z∞

A1 = z∞
A2). Then, in order to have Ṡ(t) = 0 and Ż(t) = 0 exist,

0
SA1(Sy) =

0
SA2(Sy) <

0
ZA

must be satisfied, which is written in (45). When condition (45) is true, the intersection points denoted

by ξA1 = { (s∞
A1, z∞

A1) | z∞
A1 =

0
SA1(s∞

A1) =
0
ZA } and ξA2 = { (s∞

A2, z∞
A2) | z∞

A2 =
0
SA2(s∞

A2) =
0
ZA } are

given in Equations (42)–(44).
To check stability, we obtain the Jacobian matrices that are associated with these critical points,

written as follows:

JA1 =

(
δ − nc̄Z

b(n+1)
0 nαc̄Z

b(n+1) − k

)
; JA2 =

(
−δ − nc̄Z

b(n+1)
0 nαc̄Z

b(n+1) − k

)
. (A50)
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For the first matrix, we have

det(JA1) =
αδnc̄Z

b(n + 1)
− δk,

= − δ(2bk(n− 1) + λ− b(n + 1)r)
4bn

< 0, (A51)

tr(JA1) =
αnc̄Z

b(n + 1)
+ δ− k,

= δ− k(n− 1)
2n

− λ− b(n + 1)r
4bn

. (A52)

Since det(JA1) < 0, ξA1 is not a stable steady state. For the second one,

det(JA2) = δk− nαδc̄Z
b(n + 1)

,

=
δ(2bk(n− 1) + λ− b(n + 1)r)

4bn
> 0, (A53)

tr(JA2) =
nαc̄Z

b(n + 1)
− δ− k,

= −
(

δ +
k(n− 1)

2n
+

λ− b(n + 1)r
4bn

)
< 0; (A54)

therefore, ξA2 is a stable steady state.
We can conclude that, under Assumptions 1 and 2, stable steady states are either unique {ξS} or

multiple {ξS, ξA2} depending on condition (45). In both cases, q∗(t) converges to a steady state with
q∗(S(t), Z(t)) > 0, ∀(S(0), Z(0)) ∈ R2

+.
In the analysis of stability, in step (A46), we eliminate the possibility of using solution A′ for δ > r,

since replacing λ with −λ in (A46) leads to det(JS) < 0, which means that the point ξS is not stable.
Thus, combining with the previous results in steps (19), (A16), and (A19), the strategy profile in (11)
given by solutions A and B is the only solution that satisfies the sufficient conditions for symmetric
feedback-Nash equilibrium.

Appendix C. Proof of Proposition 1

The partial derivatives of the coefficients of equilibrium strategies with respect to the parameters
n, φ, and δ are written as follows:

∂cS
∂n

= − (2δ− r)
4n3(δ + k)

(
λ +

b2(n + 1)2(2k + r)2

λ
+ 2b(n + 1)(2δ− r)

)
< 0 if δ > r/2, (A55)

∂cZ
∂n

=
(k + r− δ)(λ− b(n + 1)(2k + r))2

4αλn3(δ + k)
⇒ sign(

∂cZ
∂n

) = sign(k + r− δ), (A56)

∂c̄Z
∂n

=
(λ− b(n + 1)(2k + r))2

4αλn3 > 0. (A57)

∂cS
∂φ

=
α2b(n + 1)(2δ− r)

(δ + k)λ
> 0 if δ > r/2, (A58)

∂cZ
∂φ

=
αb(n + 1)(δ− k− r)

(δ + k)λ
⇒ sign(

∂cZ
∂φ

) = sign(δ− k− r), (A59)

∂c̄Z
∂φ

= − αb(n + 1)
λ

< 0. (A60)

∂cS
∂δ

=
(n + 1)(λ(2k + r) + b(n + 1)(2δ− r)(2δ + 4k + r))

4n2(δ + k)2 > 0 if δ > r/2, (A61)

∂cZ
∂δ

=
(n + 1)(2k + r)(λ− b(n + 1)(2k + r))

4αn2(δ + k)2 > 0. (A62)
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Appendix D. Proof of Proposition 2

For n = 1, the steady state in RS, i.e., ξS = (s∞
S , z∞

S ) given in (40) and (41) simplifies to

s∞
S =

8abk(k + r)
δ(λ2 − 4b2r2)

, z∞
S =

8αab(k + r)
λ2 − 4b2r2 . (A63)

The point (s∞
S , z∞

S ) lies on the boundary ZA
S (S) given in (38), i.e., z∞

S = ZA
S (s

∞
S ).

Furthermore, it coincides with z∞
S = z∞

A1 =
0
ZA (given in (44)) and s∞

S = s∞
A1 (given in (42)); then, the

point ξS coincides with the unstable point in RA, i.e., for n = 1, ξS = ξA1, and thus, it is an unstable
steady state; nevertheless, it is sustainable. The analysis on the stability of ξA2 remains valid for n = 1;
therefore, ξA2 = (s∞

A2, z∞
A2) given in (43) and (44) is the only stable steady state.
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