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Abstract: Functional regression allows for a scalar response to be dependent on a functional predictor;
however, not much work has been done when response variables are dependence spatial variables.
In this paper, we introduce a new partial functional linear spatial autoregressive model which
explores the relationship between a scalar dependence spatial response variable and explanatory
variables containing both multiple real-valued scalar variables and a function-valued random
variable. By means of functional principal components analysis and the instrumental variable
estimation method, we obtain the estimators of the parametric component and slope function of the
model. Under some regularity conditions, we establish the asymptotic normality for the parametric
component and the convergence rate for slope function. At last, we illustrate the finite sample
performance of our proposed methods with some simulation studies.

Keywords: partial functional linear spatial autoregressive model; spatial autoregression; functional
principal component analysis; instrument variable

1. Introduction

Over the last two decades, there has been an increasing interest in functional data analysis
in econometrics, biometrics, chemometrics, and medical research, as well as other fields. Due to
the infinite-dimensional nature of functional data, the classical methods for functional data are no
longer applicable. There has been a large amount of work in function data analysis; see Ramsay
and Silverman [1], Cardot et al. [2], Yao et al. [3], Lian and Li [4], Fan et al. [5], Feng and Xue [6],
Kong et al. [7], and Yu et al. [8]. Some methods and theories on partial functional linear models have
been proposed. For example, based on a two-stage nonparametric regression calibration method,
Zhang et al. [9] discussed a partial functional linear model. Shin [10] proposed new estimators of the
parameters and coefficient function of partial functional linear model. Lu et al. [11] considered quantile
regression for the functional partially linear model. Yu et al. [12] proposed a prediction procedure for
the partial functional linear quantile regression model. However, the aforementioned articles have
a significant limitation. That is, they assumed that response variables are independence variables.
However, in many fields, such as economics, finance, and environmental studies, sometimes response
variables are dependence spatial variables. Therefore, it is of practical interest to develop more flexible
approaches using a broader family of data.

There has been considerable work on dependence spatial variables. One useful approach in
dealing with spatial dependence is the spatial autoregressive model, which adds a weighted average
of nearby values of the dependent variable to the base set of explanatory variables. Theories and
methods based on parametric spatial autoregressive models have been extensively studied in Cliff and
Ord [13], Anselin [14], and Cressie [15]. Lee [16] proposed the quasi-maximum likelihood estimation.
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Then, Su and Jin [17] extended the quasi-likelihood estimation method to partially linear spatial
autoregressive models. Koch and Krisztin [18] developed the B-splines and genetic-algorithms method
for partially linear spatial autoregressive models. Chen et al. [19] proposed a new estimation method
based on the kernel estimation method. Du et al. [20] considered partially linear additive spatial
autoregressive models, proposed the instrumental variable estimation method, and established the
asymptotic normality for the parametric component.

It is a good idea to develop more flexible approaches using a broader family of data, where the
limitation can, in principle, be easily solved by proposing a new model. Thus, in this paper, based on
spatial variables and functional data, we combine the spatial autoregressive model and the partial
functional linear model, and propose a partial functional linear spatial autoregressive model.

Let Yi be a real-valued dependence spatial variable corresponding to the ith observation, Zi
be a p-dimensional vector of associated explanatory variables, for i = 1, · · · , n. Xi(t) be zero
mean random functions belonging to L2(T ), and be independent and identically distributed,
i = 1, · · · , n. For simplicity, we suppose throughout that T = [0, 1]. The partial functional linear
spatial autoregressive model is given by

Yi = ρ
n

∑
j=1

wijYj + ZT
i β +

∫ 1

0
γ(t)Xi(t)dt + εi, (1)

where wij is the (i, j)th element of a given n× n non-stochastic spatial weighting matrix Wn, such that
wij = 0 for all i = j, Wn is a specified n× n spatial weight matrix. The definition of spatial weight
matrix Wn is based on the geographic arrangement of the observations or contiguity. More generally,
Wn matrices can be specified based on geographical distance decay, economic distance, and the
structure of a social network. β = (β1, · · · , βp)T is a vector of p-dimensional unknown parameters,
γ(t) is a square integrable unknown slope function on [0, 1], and εi are independent and identically
distributed random errors with zero mean and finite variance σ2.

There are many methods which can be used to deal with functional data, such as the functional
principal component method, spline methods, and the rough penalty method. Functional principal
component analysis (FPCA) can analyse an infinite dimensional problem by a finite dimensional
one—therefore, FPCA is popular and widely used by researchers. Dauxois et al. [21] investigated
the asymptotic theory of FPCA. Cardot et al. [22] applied FPCA to estimate the slope function of the
functional linear model. Hall and Horowitz [23] and Hall and Hosseini-Nasab [24] showed the optimal
convergence rates of slope function based on the FPCA technique.

In this paper, we consider the estimating problem of the model (1). Based on FPCA and
the instrumental variable estimation techniques, we obtain the estimators of the parameters and
slope function of model (1) with the two-stage least squares method. Under some mild conditions,
the rate of convergence and asymptotic normality of the resulting estimators are established.
Finally, some simulation studies are carried out to assess the finite sample performance of the proposed
method. The results are encouraging and show that all estimators perform well in finite samples.
Overall, simulation experiments lend support to our asymptotic results.

The rest of the paper proceeds as follows. In Section 2, functional principal component analysis
and the instrumental variable estimation method is proposed to estimate the partial functional
linear spatial autoregressive regression model. In Section 3, the asymptotic properties are given.
Some simulation studies are described in Section 4. Lastly, we conclude the paper in Section 5 with
some future work.

2. Estimation Procedures

First, we introduce FPCA. Denote the covariance function of X(t) by KX. Then,

by Mercer’s Theorem, we can obtain the spectral decomposition as KX(s, t) =
∞
∑

k=1
λkφk(s)φk(t),

where λ1 ≥ λ2 ≥ · · · ≥ 0 are the eigenvalues of the linear operator associated with KX(s, t), and φk(t)
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are the corresponding eigenfunctions. By the Karhunen-Loève expansion, Xi(t) can be represented

as Xi(t) =
∞
∑

j=1
ξijφj(t), where the coefficients ξik =

∫
Xi(t)φk(t)dt are uncorrelated random

variables with mean zero and variances E(ξ2
ik) = λk, also called the functional principal component

scores. Expanded on the orthonormal eigenbasis {φk(t)}, the slope function can be written as
γ(t) = ∑∞

k=1 γkφk(t). Based on the above FPCA, model (1) can be well-approximated by

Yi=̇ρ
n

∑
j=1

wijYj + ZT
i β +

m

∑
j=1

γj
〈

Xi, φj
〉
+ εi, i = 1, · · · , n, (2)

where 〈·, ·〉 represents the L2(T ) inner product, γj =
〈
γ, φj

〉
, and m is sufficiently large.

The approximate model (2) naturally suggests the idea of principal components regression.
However, in practice, φj are unknown and must be replaced by estimates in order to estimate β and γj
(j = 1, · · · , m). For this purpose, we consider the empirical version of KX(s, t), which is given by

K̂X(s, t) =
1
n

n

∑
i=1

Xi(s)Xi(t) =
∞

∑
j=1

λ̂jφ̂j(s)φ̂j(t),

where (λ̂j, φ̂j) are pairs of eigenvalues and eigenfunctions for the covariance operator associated with
K̂X and λ̂1 ≥ λ̂2 ≥ · · · ≥ 0. We take (λ̂j, φ̂j) as the estimator of (λj, φj).

Replacing φj(t) by φ̂j(t), model (2) can be written as

Yi=̇ρ
n

∑
j=1

wijYj + ZT
i β +

m

∑
j=1

γj〈Xi, φ̂j〉+ εi, i = 1, · · · , n. (3)

Let Yn = (Y1, · · · , Yn)T, Zn = (Z1, · · · , Zn)T, Xn = (X1(t), · · · , Xn(t))T, 〈Xn, φ̂j〉 =∫ 1
0 φ̂j(t)Xn(t)dt = (

∫ 1
0 φ̂j(t)X1(t)dt, · · · ,

∫ 1
0 φ̂j(t)Xn(t)dt)T, and Π = (〈Xn, φ̂1〉, · · · , 〈Xn, φ̂m〉),

α = (γ1, · · · , γm)T, εn = (ε1, · · · , εn)T, model (3) can be written as matrix notation

Yn=̇ρWnYn + Znβ + Πα + εn. (4)

Let P = Π(ΠTΠ)−1ΠT denote the projection matrix onto the space spanned by Π, and we obtain

(I − P)Yn=̇ρ(I − P)WnYn + (I − P)Znβ + (I − P)εn. (5)

Let Q = (WnYn, Zn), θ = (ρ, βT)T, applying the two-stage least squares procedure proposed by
Kelejian and Prucha [25], we propose the following estimator

θ̂ =
(

QT(I − P)M(I − P)Q
)−1

QT(I − P)M(I − P)Yn, (6)

where M = H(HTH)−1HT and H is matrix of instrumental variables. Moreover,

α̂ = (γ̂1, · · · , γ̂m)
T = (ΠTΠ)−1ΠT(Yn −Qθ̂). (7)

Consequently, we use γ̂(t) =
m
∑

k=1
γ̂kφ̂k(t) as the estimator of γ(t).

Similar to Zhang and Shen [26], we next construct the instrument variables H. In the first step,
the following instrumental variables are obtained

H̃ = (Wn(I − ρ̃Wn)
−1(Πα̃, Zn), Zn),
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where ρ̃ and α̃ are obtained by simply regressing Yn on pseudo regressor variables WnYn, Zn, Π.
In the second step, we use H̃ to obtain the estimators ᾱ and θ̄, and then we can construct the
instrumental variables

H = (Wn(I − ρ̄Wn)
−1(Πᾱ + Zn β̄), Zn).

To implement our estimation method, we need to choose m. Here, truncation parameter m is
selected by AIC criterion. Specifically, we minimize

AIC(m) = log RSS(m) + 2n−1m, (8)

where

RSS(m) =
n

∑
i=1

{
Yi −

(
ρ̂

n

∑
j=1

wijYj + ZT
i β̂ +

m

∑
j=1

γ̂j〈Xi, φ̂j〉
)}2

,

with ρ̂, β̂ and γ̂j being the estimated value.

3. Asymptotic Properties

In this section, we discuss the asymptotic normality of θ̂ and the rate of convergence of γ̂(t).
For convenience and simplicity, we let c denote a positive constant that may be different at each
appearance. The following assumptions will be maintained throughout the paper.

Assumption 1. The matrix I − ρWn is nonsingular with |ρ| < 1.

Assumption 2. The row and column sums of the matrices Wn and (I − ρWn)−1 are bounded uniformly in
absolute value for any |ρ| < 1.

Assumption 3. For matrix S = Wn(I − ρWn)−1, there exists a constant ρc such that ρc I − SST is a positive,
semidefinite matrix.

Assumption 4.
1
n

Q̃T(I − P)M(I − P)Q̃ P−→ Σ in probability for some positive definite matrix, where Q̃ =

(S(Znβ + η), Zn), η = (
∫ 1

0 γ(t)X1(t)dt, · · · ,
∫ 1

0 γ(t)Xn(t)dt)T.

Assumption 5. For matrix Q̃ = (S(Znβ + η), Zn), there exists a constant ρc∗ such that ρc∗ I − Q̃Q̃T is a
positive semidefinite matrix.

Assumption 6. The random vector Z has bounded fourth moments.

Assumption 7. For any c > 0, there exists an ε > 0, such that

sup
t∈[0,1]

[E{|X(t)|c}] < ∞, sup
s,t∈[0,1]

(E[{|s− t|−ε|X(s)− X(t)|c}]) < ∞.

For each integer r ≥ 1, λ−r
k E(ξ2r

k ) is bounded uniformly in k.

Assumption 8. X(t) is twice continuously differentiable on [0, 1] with probability 1 and
∫

E[X(2)(t)]4dt < ∞,
X(2)(t) denotes the second derivative of X(t).

Assumption 9. There exists some canstants a > 1 and b > a/2 + 1, such that λj − λj+1 ≥ Cj−a−1 and∣∣γj
∣∣ ≤ Cj−b for j ≥ 1.

Assumption 10. For truncation parameter m, we assume that m = O(n1/(a+2b)).

Assumptions 1–3 impose restrictions on the spatial weighting matrix, and these restrictions are
imposed for the spatial regression models (see Lee [16]; Zhang and Shen [26]; Du et al. [20]). Let the
weighting matrix Wn = ID ⊗ BF , where ID is a D-dimensional unit matrix, BF = (lF lT

F − IF)/(F − 1),
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lF is the F-dimensional unit vector, and ⊗ is a Kronecker product, then weighting matrix Wn can
satisfy Assumptions 1–3. Assumption 4 is used to represent the asymptotic covariance matrix of
θ̂. Assumption 5 is required to ensure the identifiability of parameter θ. Assumption 6 is the usual
condition for the proofs of asymptotic properties of the estimators. Assumptions 7–9 are regularity
assumptions for functional linear models (see Hall and Hosseini-Nasab [24]), where a Gaussian
process with Hölder continuous sample paths satisfies Assumption 7. Assumption 10 usually appears
in functional linear regression (see Feng and Xue [6]; Shin [10]; Hall and Horowitz [23]).

The following Theorem 1 shows the asymptotic property of the estimator of the parameter vector
θ = (ρ, βT)T.

Theorem 1. Under the Assumptions 1–10, then

√
n(θ̂− θ)

D−→ N(0, σ2Σ−1),

where θ̂ = (ρ̂, β̂T)T and “ D−→” denotes convergence in distribution.

Proof of Theorem 1. Let en = η−Πα, then

Yn = Qθ+ η+ εn = Qθ+ en + Πα + εn.

By the definition of θ̂, we have

θ̂− θ

=
(

QT(I − P)M(I − P)Q
)−1

QT(I − P)M(I − P)Yn − θ

=
(

QT(I − P)M(I − P)Q
)−1

QT(I − P)M(I − P)[(I − P)Yn]− θ

=
(

QT(I − P)M(I − P)Q
)−1

QT(I − P)M(I − P)(Qθ+ en + εn)− θ

=
(

QT(I − P)M(I − P)Q
)−1

QT(I − P)M(I − P)(en + εn).

First, consider QT(I − P)M(I − P)Q. Recall that when Yn = (I − ρWn)−1(Znβ + η+ εn), it has

Q = (WnYn, Zn)

=
(

Wn(I − ρWn)
−1(Znβ + η+ εn), Zn

)
=
(

Wn(I − ρWn)
−1(Znβ + η), Zn

)
+
(

Wn(I − ρWn)
−1εn, 0

)
∆
= Q̃ + ẽ,

where Q̃ = (S(Znβ + η), Zn), ẽ = (Sεn, 0), S = Wn(I − ρWn)−1.
Hence, one has

QT(I − P)M(I − P)Q

= (Q̃ + ẽ)T(I − P)M(I − P)(Q̃ + ẽ)

= Q̃T(I − P)M(I − P)Q̃ + ẽT(I − P)M(I − P)ẽ

+ Q̃T(I − P)M(I − P)ẽ + ẽT(I − P)M(I − P)Q̃
∆
= R11 + R12 + R13 + R14,

where
R11 = Q̃T(I − P)M(I − P)Q̃,

R12 = ẽT(I − P)M(I − P)ẽ,
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R13 = Q̃T(I − P)M(I − P)ẽ,

and
R14 = ẽT(I − P)M(I − P)Q̃.

By the properties of projection matrix and Assumption 3, we have

E
[
εT

nST(I − P)M(I − P)Sεn

]
= E

(
trace[εT

nST(I − P)M(I − P)Sεn]
)

= E
(

trace[εT
nST(I − P)H(HTH)−1HT(I − P)Sεn]

)
= E

(
trace[(HTH)−

1
2 HT(I − P)SεnεT

nST(I − P)H(HTH)−
1
2 ]
)

≤ σ2ρcE
(

trace[(HTH)−
1
2 HT(I − P)H(HTH)−

1
2 ]
)

≤ σ2ρcE
(

trace[(HTH)−
1
2 HTH(HTH)−

1
2 ]
)

∆
= O(1).

Hence, we have
εT

nST(I − P)M(I − P)Sεn = Op(1).

Then, we get that

R12 = (Sεn, 0)T(I − P)M(I − P)(Sεn, 0) = Op(1).

By straightforward algebra, one has E(R13) = 0. In addition, based on Assumption 3,

E
(
‖Q̃T(I − P)M(I − P)Sεn‖2

)
= E

(
trace[Q̃T(I − P)M(I − P)SεnεT

nST(I − P)M(I − P)Q̃]
)

≤ σ2ρcE
(

trace[Q̃T(I − P)M(I − P)M(I − P)Q̃]
)

≤ σ2ρcE
(

trace[Q̃TMQ̃]
)

= σ2ρcE
(

trace[Q̃TH(HTH)−1HTQ̃]
)

= σ2ρcE
(

trace[(HTH)−
1
2 HTQ̃Q̃TH(HTH)−

1
2 ]
)

≤ σ2ρcρ∗c E
(

trace[(HTH)−
1
2 HTH(HTH)−

1
2 ]
)

∆
= O(1),

Therefore, we have R13 = Op(1). Similarly, we have R14 = Op(1).
Combining the convergence rates of R12, R13 and R14, we have

QT(I − P)M(I − P)Q = R11 + Op(1).

Now, we consider QT(I − P)M(I − P)en. Obviously,

QT(I − P)M(I − P)en

= Q̃T(I − P)M(I − P)en + ẽT(I − P)M(I − P)en

= Q̃T(I − P)M(I − P)en + εT
nST(I − P)M(I − P)en

∆
= R21 + R22,
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where
R21 = Q̃T(I − P)M(I − P)en,

R22 = εT
nST(I − P)M(I − P)en.

By Lemma 1 of Hu et al. [27], we have

‖en‖ =
∥∥∥∥∥ ∞

∑
j=1

γj〈XN , φj〉 −
m

∑
j=1

γj〈XN , φ̂j〉
∥∥∥∥∥

=

∥∥∥∥∥ m

∑
j=1

γj〈XN , φj − φ̂j〉+
∞

∑
j=m+1

γj〈XN , φj〉
∥∥∥∥∥

≤
∥∥∥∥∥ m

∑
j=1

γj〈XN , φj − φ̂j〉
∥∥∥∥∥+

∥∥∥∥∥ ∞

∑
j=m+1

γj〈XN , φj〉
∥∥∥∥∥ .

By Lemma 1(b) of Kong et al. [7] with the help of Assumptions 7–9, we have∥∥φ̂j − φj
∥∥ = Op(n−

1
2 j).

By Assumptions 7 and 9, one has∥∥∥∥∥ m

∑
j=1

γj〈Xi, φj − φ̂j〉
∥∥∥∥∥

2

≤ ‖Xi(t)‖2

∥∥∥∥∥ m

∑
j=1

(φj − φ̂j)γj

∥∥∥∥∥
2

= Op(
m

∑
j=1

j−b jn−
1
2 )2

= Op(n−1m4−2b).

By Assumptions 9–10, one has

E
∣∣∣ ∞

∑
j=m+1

γj〈Xi, φj〉
∣∣∣ ≤ ∞

∑
j=m+1

∣∣γj
∣∣E
∣∣〈Xi, φj〉

∣∣ = O(m−b+ 1
2 ).

Thus, we have ∥∥∥ ∞

∑
j=m+1

γj〈Xi, φj〉
∥∥∥2

= Op(m1−2b),

‖en‖2 ≤ n ·
∥∥∥∥∥ m

∑
j=1

γj〈Xi, φj − φ̂j〉
∥∥∥∥∥

2

+ n ·
∥∥∥∥∥ ∞

∑
j=m+1

γj〈Xi, φj〉
∥∥∥∥∥

2

= Op(m4−2b) + O(nm1−2b)

= op(n).

Combining this with Assumption 4, we have

E(‖R21‖2) = E
(

trace[eT
n(I − P)M(I − P)Q̃Q̃T(I − P)M(I − P)en]

)
≤ ρ∗c E

(
trace[eT

n(I − P)M(I − P)en]
)

≤ ρ∗c E
(

trace[eT
nen]

)
= op(n).

Thus, we can get R21 = op(
√

n). Similarly, we have R22 = op(
√

n).
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Then, we can find

√
n(θ̂− θ)

=
√

n
(

R11 + Op(1)
)−1 QT(I − P)M(I − P)(en + εn)

=

(
R11

n
+ Op(n−1)

)−1 ( Q̃T(I − P)M(I − P)εn√
n

+ op(1)
)

.

Invoking the central limit theorem and Slutsky’s theorem, we have

√
n(θ̂− θ)

D−→ N(0, σ2Σ−1).

Rate of convergence of the slope function γ̂(t) =
m
∑

k=1
γ̂kφ̂k(t) is given in the following theorem.

Theorem 2. Under the Assumptions 1–10, then

‖γ̂(t)− γ(t)‖2 = Op(n−
2b−1
a+2b ).

The proof of Theorem 2 follows the proof of Theorem 2 of Shin [10], so we omitted it here.

4. Simulation Study

In this section, we conduct simulation studies to assess the finite sample performance of the
proposed estimation method. The data {Yi} are generated from the following model

Yn = ρWnYn + Zn1β1 + Zn2β2 +
∫ 1

0
γ(t)Xn(t)dt + εn,

where Zn1 = (Z11, Z21, · · · , Zn1)
T, Zn2 = (Z12, Z22, · · · , Zn2)

T, Zi1 and Zi2 are independent and
following uniform distributions on [−1, 1] and [0, 1] respectively, for i = 1, 2, · · · , n, β1 = 1, β2 = −1,
γ(t) =

√
2 sin(πt/2) + 3

√
2 sin(3πt/2), εn ∼ N(0, σ2 In).

We suppose the functional predictors can be expressed as Xi(t) = ∑50
j=1 Uijvj(t), where Uij

are independently distributed as the normal with mean 0 and variance λj = ((j − 0.5)π)−2,
vj(t) =

√
2 sin((j− 0.5)πt). For the actual observations, we assume that they are realizations of

{Xi(·)} at an equally spaced grid of 100 points in [0, 1]. As we have said in Section 2, the truncation
parameters m are selected by AIC criterion in our simulation. Similar to Lee [16] and Case [28], we focus
on the spatial scenario with R number of districts, q members in each district, and with each neighbor of
a member in a district given equal weight, that is, Wn = IR ⊗ Bq, where Bq = (lqlT

q − Iq)/(q− 1), lq is
the q-dimensional unit vector, and ⊗ is a Kronecker product. Some simulation studies are examined
with different values of R for 50 and 70, q for 2, 5, and 8, and σ2 for 0.25 and 1. For comparison,
three different values ρ = 0.2, 0.5, 0.7 are considered, which represent spatial dependence of the
responses from weak to strong. ρ = 0.2 represents weak spatial dependence, and ρ = 0.5 represents
mild spatial dependence, whereas ρ = 0.7 represents relatively strong spatial dependence.

Throughout the simulations, for different scalar parameters ρ, β1 and β2, we use the average
bias, standard deviation (SD) as a measure of parametric estimation accuracy. The performance of the
estimator of the slope function γ(t) is assessed using the square root of average squared errors (RASE),
defined as

RASE =

{
1
N

N

∑
l=1

[γ̂(tl)− γ(tl)]
2

}1/2

,
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where {tl , l = 1, · · · , N} are the regular grid points at which the function γ̂(t) is evaluated. In our
simulation, N = 200 is used.

The sample size is n = Rq. We use 1000 Monte Carlo runs for estimation assessment, and then
summarize the results in Tables 1–3 and Figures 1 and 2. Tables 1–3 list average Bias and SD of
the estimators of ρ, β1, and β2, and average RASE of the estimator of γ(t) in the 1000 replications.
Figures 1 and 2 present the average estimate curves of γ(t).

From Tables 1–3 and Figures 1 and 2 we can see that: (1) The biases of ρ̂, β̂1 and β̂2 are fairly small
for almost all cases. (2) The standard deviation of ρ̂, β̂1 and β̂2 decrease as either R or q increases. (3) The
RASEs of γ(t) are small for all cases and decrease as sample size n increases or σ2 decreases, and it can
be concluded that the estimate curves fit better to the corresponding true line, which coincides with
what was discovered from Figures 1 and 2. Overall, the simulation results suggest that the proposed
estimation procedure is effective for the partial functional linear spatial autoregressive model.

Table 1. Simulation results for ρ = 0.2.

σ2 R Est
q = 2 q = 5 q = 8

Bias SD RASE Bias SD RASE Bias SD RASE

R = 50 ρ̂ −1.0×10−4 0.022 −1.4×10−4 0.023 −0.001 0.021
β̂1 −0.002 0.045 −6.5×10−4 0.028 4.0×10−4 0.022
β̂2 0.003 0.048 −0.001 0.034 −0.002 0.030

0.25 γ̂(t) 0.400 0.255 0.197

R = 70 ρ̂ −1.4×10−4 0.018 −0.001 0.019 −9.2×10−5 0.019
β̂1 5.1×10−4 0.038 −2.2×10−4 0.023 1.5×10−4 0.018
β̂2 7.8×10−4 0.042 4.5×10−4 0.029 −1.8×10−4 0.026

γ̂(t) 0.345 0.211 0.168

R = 50 ρ̂ −5.4×10−4 0.084 −0.006 0.092 −0.009 0.086
β̂1 −0.012 0.179 −0.005 0.113 6.6×10−4 0.087
β̂2 0.016 0.188 −0.006 0.136 −0.009 0.118

1 γ̂(t) 0.601 0.386 0.296

R = 70 ρ̂ −0.001 0.070 −0.009 0.075 −0.004 0.075
β̂1 −5.8×10−4 0.151 −0.002 0.092 1.6×10−4 0.072
β̂2 0.003 0.166 −3.7×10−4 0.117 −0.003 0.104

γ̂(t) 0.517 0.317 0.251

Table 2. Simulation results for ρ = 0.5.

σ2 R Est
q = 2 q = 5 q = 8

Bias SD RASE Bias SD RASE Bias SD RASE

R = 50 ρ̂ −2.0×10−4 0.017 −1.3×10−4 0.015 −8.0×10−4 0.014
β̂1 −0.002 0.046 −6.3×10−4 0.029 4.6×10−4 0.022
β̂2 0.003 0.051 −0.001 0.035 −0.002 0.030

0.25 γ̂(t) 0.401 0.255 0.197

R = 70 ρ̂ −1.9×10−4 0.014 −8.9×10−4 0.013 −7.2×10−5 0.012
β̂1 6.0×10−4 0.039 −1.0×10−4 0.023 1.6×10−4 0.018
β̂2 6.0×10−4 0.045 3.0×10−4 0.030 −2.0×10−4 0.027

γ̂(t) 0.346 0.211 0.168

R = 50 ρ̂ −0.002 0.066 −0.004 0.062 −0.006 0.056
β̂1 −0.010 0.182 −0.004 0.113 0.001 0.088
β̂2 0.013 0.200 −0.008 0.141 −0.010 0.121

1 γ̂(t) 0.611 0.387 0.297

R = 70 ρ̂ −0.002 0.055 −0.006 0.051 −0.003 0.049
β̂1 6.2×10−4 0.153 −0.001 0.093 3.8×10−4 0.073
β̂2 6.7×10−4 0.178 − 0.002 0.121 −0.004 0.107

γ̂(t) 0.525 0.317 0.251
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Table 3. Simulation results for ρ = 0.7.

σ2 R Est
q = 2 q = 5 q = 8

Bias SD RASE Bias SD RASE Bias SD RASE

R = 50 ρ̂ −1.9×10−4 0.012 −9.4×10−5 0.010 −5.0×10−4 0.009
β̂1 −0.001 0.047 −6.1×10−4 0.029 5.1×10−4 0.022
β̂2 0.003 0.053 − 0.001 0.036 −0.002 0.031

0.25 γ̂(t) 0.402 0.255 0.197

R = 70 ρ̂ −1.7×10−4 0.010 −5.7×10−4 0.008 −5.0×10−5 0.007
β̂1 7.0×10−4 0.040 −2.0×10−5 0.023 1.6×10−4 0.018
β̂2 4.4×10−4 0.047 1.9×10−4 0.031 −2.2×10−4 0.027

γ̂(t) 0.348 0.211 0.168

R = 50 ρ̂ −0.003 0.046 −0.003 0.039 −0.004 0.035
β̂1 −0.009 0.187 −0.004 0.114 0.002 0.088
β̂2 0.010 0.210 − 0.009 0.145 −0.011 0.123

1 γ̂(t) 0.622 0.389 0.298

R = 70 ρ̂ −0.002 0.038 −0.004 0.032 −0.002 0.030
β̂1 0.002 0.157 −6.9×10−4 0.093 5.5×10−4 0.073
β̂2 −0.002 0.187 −0.003 0.124 −0.004 0.109

γ̂(t) 0.534 0.318 0.251
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Figure 1. Simulation result of γ̂(t) when ρ = 0.2, R = 50, q = 5, σ2 = 0.25. The solid curve denotes
the true curve, the dash curve denotes its estimate.
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Figure 2. Simulation result of γ̂(t) when ρ = 0.7, R = 70, q = 5, σ2 = 1. The solid curve denotes the
true curve, the dash curve denotes its estimate.
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5. Conclusions

In this paper, we proposed a partial functional linear spatial autoregressive model to study the
link between a scalar dependence spatial response variable and explanatory variables containing both
multiple real-valued scalar variables and a functional predictor. We then used functional principal
component basis and an instrumental variable to estimate the parametric vector and slope function
based on the two-stage least squares procedure. Under some mild conditions, we obtained the
asymptotic normality of estimators of a parametric vector. Furthermore, the rate of convergence of the
proposed estimator of slope function was also established. The simulation studies demonstrate that
the proposed method performs satisfactorily and the theoretical results are valid.

There are some interesting future directions. In this paper, we only considered the estimation of
the unknown parametric vector and slope function, which does not present a way to test for the effects
of the covariates, an important aspect of any statistical analysis. In the future, we would like to be able
to identify the model structure by testing for the main effects of the scalar predictors and the functional
predictor. Another interesting direction can be to extend our new procedure to the generalized partial
functional linear spatial autoregressive model.
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