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Abstract: Recently, the area of sea ice is rapidly decreasing due to global warming, and since the
Arctic sea ice has a great impact on climate change, interest in this is increasing very much all over the
world. In fact, the area of sea ice reached a record low in September 2012 after satellite observations
began in late 1979. In addition, in early 2018, the glacier on the northern coast of Greenland began to
collapse. If we are interested in record values of sea ice area, modeling relationships of these values
and predicting future record values can be a very important issue because the record values that
consist of larger or smaller values than the preceding observations are very closely related to each
other. The relationship between the record values can be modeled based on the pivotal quantity
and canonical and drawable vine copulas, and the relationship is called a dependence structure.
In addition, predictions for future record values can be solved in a very concise way based on the
pivotal quantity. To accomplish that, this article proposes an approach to model the dependence
structure between record values based on the canonical and drawable vine. To do this, unknown
parameters of a probability distribution need to be estimated first, and the pivotal-based method is
provided. In the pivotal-based estimation, a new algorithm to deal with a nuisance parameter
is proposed. This method allows one to reduce computational complexity when constructing
exact confidence intervals of functions with unknown parameters. This method not only reduces
computational complexity when constructing exact confidence intervals of functions with unknown
parameters, but is also very useful for obtaining the replicated data needed to model the dependence
structure based on canonical and drawable vine. In addition, prediction methods for future record
values are proposed with the pivotal quantity, and we compared them with a time series forecasting
method in real data analysis. The validity of the proposed methods was examined through Monte
Carlo simulations and analysis for Arctic sea ice data.

Keywords: C- and D-vine copulas; confidence interval; exponentiated Gumbel distribution;
pivotal quantity; record values

1. Introduction

Extreme weather and air pollution have been received steadily increasing attention over the past
decade. Examples include extreme temperatures, the exceedances of flood peaks, and pollutant
concentrations deviating considerably from expected average levels. In such cases, predicting
observations more extreme than the current extreme values is an important issue. The topic of record
values was introduced by Chandler [1], and Balakrishnan et al. [2] established some recurrence
relationships for single and double moments of lower record values from the Gumbel distribution.
Coles and Tawn [3] analyzed a daily rainfall series for modeling the extremes of a rainfall process in
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the context of the record values. Wang et al. [4] provided approaches to constructing exact confidence
intervals (CIs) for unknown parameters in the family of proportional reversed hazard distributions
based on lower record values. Seo and Kim [5] provided classical and Bayesian approaches to inference
for the Gumbel distribution based on lower record values. Seo and Kim [6] presented an objective
Bayesian analysis method for the two-parameter Rayleigh distribution based on record values. Seo and
Kim [7] proposed an entropy inference method based on an objective Bayesian approach for when
observed record values have a two-parameter logistic distribution.

There are two types of the record values. If the observation is greater than all the preceding
observations it is called the upper record. On the other hand, if the observation is smaller than
all the preceding observations then it is called the lower record. There are a few situations where
lower record values are of special interest. For example, Arctic sea ice greatly affects climate change,
and the reduction of Arctic sea ice is a very serious issue. In this case, only sea ice extent less than
the previous one is of interest and recorded, which poses a problem of predicting the next sea ice
extent. The lower record value is described as follows. Let {X1, X2, . . .} be a sequence of independent
and identically distributed (iid) random variables with a probability density function (PDF) f (x)
and a cumulative distribution function (CDF) F(x). Then, Xj is a lower record value if Xj < Xi
for every i < j. The indexes for which lower record values occur are given by the record times

{L(k), k ≥ 1}, where L(k) = min
{

j|j > L(k− 1), Xj < XL(k−1),
}

, k > 1, with L(1) = 1. Therefore,

a sequence of lower record values is denoted by
{

XL(k), k = 1, 2, . . .
}

from the original sequence
{X1, X2, . . .} . These record values are heavily related to each other. Imani and Braga-Neto [8] proposed
an efficient finite-horizon feedback controller similar to an optimal linear quadratic Gaussian estimator
for partially-observed Boolean dynamical systems as a general class of nonlinear state-space model.
Imani et al. [9] proposed an optimal Bayesian filter approach to the problem of recursive estimation in
partially-observed Boolean dynamical systems. To establish the relationship between the record values,
a copulas approach based on the canonical (C) and drawable (D) vine is proposed in this article.

Copulas have recently received much attention as a modeling tool for describing the dependency
structure of multivariate data. The notion of a copula function can be found in Sklar [10]. One of the
advantages of copula models is to build a variety of dependence structures based on existing parametric
or non-parametric models of the marginal distributions. The copulas can be described as follows. Let F
be the d-dimensional function of the random vector X = (X1, . . . , Xd)

T with marginal distributions
FX1(x), . . . , FXd(x). Then there exists a copula C such that for all x = (x1, . . . , xd)

T ∈ [−∞, ∞]d,

F(x) = C
(

FX1(x), . . . , FXd(x)
)

,

where the copula C is unique if FX1(x), . . . , FXd(x) are continuous by Sklar’s theorem (Sklar [10], 1959).
In this case, the copula C can be interpreted as the distribution function of a d-dimensional random
variable on [0, 1]d with uniform marginal distributions. Tsung et al. [11] conducted a comprehensive
literature review of statistical transfer learning methods focusing on statistical models and statistical
methodologies, including a Gaussian copula. Rocher et al. [12] proposed a generative copula-based
method that can elaborately estimate the likelihood that a particular person will be correctly
re-identified, even in a very incomplete dataset. Vine copulas were introduced by Joe [13] to overcome
limitations of standard multivariate copulas in higher dimensions, where standard multivariate copulas
lack the flexibility of accurately modeling the dependence.

Aas et al. [14] described statistical inference techniques for the C- and D-vine copulas. Berg and
Aas [15] and Fischer et al. [16] showed the excellence of the D-vine copula approach, compared to
alternative copulas in constructing higher dimensional dependency structures.

To the best of our knowledge, modeling the dependence structure between record values
numerically has been little explored. In this paper, we propose an approach with which to model
the relationship between the record values based on C- and D-vine copulas and to predict future
record values.
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The remainder of the article is organized as follows. Section 2 introduces C- and D-vine copulas
and provides pivotal-based approaches to estimate the model parameters and to predict future
record values by proposing a new algorithm to deal with a nuisance parameter. Section 3 presents
simulation studies to validate the proposed approaches. We applied the methods to Arctic sea ice data;
see Section 4. Concluding remarks and some discussions are in Section 5.

2. Methods

Let f (x; θ) and F (x; θ) be the marginal density and distribution functions of X, respectively,
where θ is an unknown parameter. Then a schematic diagram (Figure 1) of our method is given by

Figure 1. Schematic diagram.

The C -and D-vine copulas are first described in the following subsection.

2.1. C- and D-Vine Copulas

A vine is a flexible graphical model that decomposes a multivariate probability distribution
into bivariate copulas, where each pair-copula can be chosen independently from the others [14].
This article considers C- and D-vine copulas to model the relationship between record values based on
C- and D-vine copulas.

The C-vine decomposition is given by

f (x1, . . . , xn) = f1(x1)
n

∏
i=2

i−1

∏
k=1

ci−k,i|1,...,xi−k−1
fk(xi)

=
n

∏
k=1

fk(xk)

(
n

∏
j=1

k−1

∏
i=1

ci−k,i|1,...,i−k−1

)

=
n

∏
k=1

fk(xk)

(
n−1

∏
j=1

n−j

∏
i=1

cj,j+i|1,...,j−1

)
.

Then, we can specify the pairs of the d-dimensional C-vine copula model in the following order:

(1, 2), (1, 3), (1, 4), . . . , (1, d), (tree 1)

(2, 3|1), (2, 4|1), . . . , (2, d|1), (tree 2)

· · · ,

(d− 1, d|1, . . . , d− 2). (tree d− 1),

which has vectors of length d(d− 1)/2, where d is the number of variables.
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The D-vine decomposition is given by

f (x1, . . . , xn) =
n

∏
i=2

fi|x1,...,xi−1
(xi) f1(x1)

=
n

∏
l=1

fl(xl)

(
n

∏
i=2

i−2

∏
j=1

cji|j+1,...,i−1

)
n

∏
i=2

ci−1,i

=
n

∏
l=1

fl(xl)

(
n−1

∏
i=2

n−i

∏
j=1

cj,i|j+1,...,j+i−1

)
.

Similarly, the pairs of the d-dimensional D-vine copula model are specified in the following order:

(1, 2), (2, 3), (3, 4), . . . , (d− 1, d), (tree 1)

(1, 3|2), (2, 4|3), . . . , (d− 2, d|d− 1), (tree 2)

(1, 4|2, 3), (2, 5|3, 4), . . . , (d− 3, d|d− 2, d− 1), (tree 3)

· · · ,

(1, d|2, . . . , d− 1). (tree d− 1)

To measure the dependence of each pair-copula, we consider tree 1 that can be employed to obtain
Kendall’s τ (Nelsen [17], 2006) given by

τC = 4
(∫ 1

0

∫ 1

0
C(ui, uj)dC(ui, uj)

)
− 1

= 4E
[
C(Ui, Uj)

]
− 1,

where C(ui, uj) is a bivariate copula function for ui, uj ∈ [0, 1].
In a C- and D-vine, consider the exponentiated Gumbel distribution (EGD) with the CDF

F(x) =
(

e−e−x/σ
)λ

, −∞ < x < ∞, σ, λ > 0, (1)

where σ and λ are the scale and shape parameters. Then, ui is the value of the marginal distribution of
XL(i) with

FXL(i)
(x) = e−H(x)

i−1

∑
j=0

[H(x)]j

j!
, (2)

where H(x) = − log F(x) (Ahsanullah [18] and Arnold et al. [19]). That is, for d− 1 pairs of data points
{(xL(i), xL(j)); i < j}, the corresponding couples {(ui, uj); i < j} can be computed from the marginal
distribution (2). In addition, the marginal density function of XL(i) is given by

fXL(i)
(x) =

1
Γ(k)

[− log F(x)]i−1 f (x).

Note that it is necessary to estimate σ and λ for computing the values of ui and uj.

2.2. Pivotal-Based Approach

Here we present a pivotal-based method to estimate the parameters of the CDF (1). First, a lemma
is introduced to deal with nuisance parameters in order to establish the relationship between
record values.
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Lemma 1. Let XL(1), · · · , XL(k) be the lower record values from the CDF (1). Then,

(a) Tk(σ, λ) = 2λe−XL(k)/σ has a χ2 distribution with 2k degrees of freedom;

(b) V(σ) = e
(XL(1)−XL(k))/σ−1

k−1 has a F distribution with 2k− 2 and 2 degrees of freedom;

(c) W(σ) =
2
(

∑k
j=1 XL(j)−kXL(k)

)
σ has a χ2 distribution with 2k− 2 degrees of freedom.

Proof. Let XL(1), · · · , XL(k) be the lower record values from the CDF (1). Then, we have

Zi = − log F(xL(i)), i = 1, . . . , k

that have a standard exponential distribution, and that leads to the following spacings

Si = Zi − Zi−1, i = 1, . . . , k(Z0 ≡ 0),

which is independent and identically distributed as the standard exponential distribution with mean 1.
From the spacings, the pivotal quantities

Tj(σ, λ) = 2
j

∑
i=1

Si

= 2λe−XL(j)/σ, j = 1, . . . , k

(3)

are derived, which are independent random variables such that there is an χ2 distribution
with 2j(j = 1, . . . , k). From (3), the pivotal quantity (a) is easily proved. In addition,
let T−1,k(σ, λ) = 2 ∑k

i=2 Si. Then, the pivotal quantity (b) is proved as

V(σ) =
T−1,k(σ, λ)/(2k− 2)

T1(σ, λ)/2

=
e(XL(1)−XL(k))/σ − 1

k− 1

because T−1,k(σ, λ) and T1(σ, λ) are independent random variables, given the fact that Si (i = 1, . . . , k)
are independent and identically random values, as mentioned earlier; both have a χ2 distribution with
2k− 2 and 2 degrees of freedom, respectively. On top of that, we can derive the following pivotal
quantities by using Lemma 2 of Wang et al. [4] in (3)

Uj =

(
Tj(σ, λ)

Tj+1(σ, λ)

)j

= ej(XL(j+1)−XL(j))/σ, j = 1, . . . , k− 1

which are independent and identically distributed as the uniform distribution on the interval (0, 1).
Then, the pivotal quantity (c) is proved as

W(σ) = −2
k−1

∑
j=1

log Uj

=
2
(

∑k
j=1 XL(j) − kXL(k)

)
σ

.
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From Lemma 1(c), the unique solution σ∗ is given by

σ∗ =
2
(

∑k
j=1 XL(j) − kXL(k)

)
QW

,

where QW follows a χ2 distribution with 2k− 2 degrees of freedom. Then, for any 0 < α < 1, an exact
100(1− α)% CI for σ based on W(σ) is given by(

σ∗([(α/2)N]), σ∗([(1−α/2)N])

)
,

where σ([αN]) is the [αN]th smallest of {σ∗l }. Note that the exact CI is the equal-tail CI because it
splits the probability equally, putting α/2 in each tail of the distribution. For any 0 < α < 1, an exact
100(1− α)% CI with the shortest-length based on σ∗ is given by(

σ∗(l∗), σ∗(l∗+[(1−α)N])

)
,

where l∗ is chosen so that

σ∗(l∗+[(1−α)N]) − σ∗(l∗) = min
1≤l≤N−[(1−α)N]

[
σ∗(l+[(1−α)N]) − σ∗(l)

]
.

Similarly, the unique solution from V(σ) in Lemma 1 is given by

σ∗ =
XL(1) − XL(k)

log [1 + (k− 1)QF]
,

where QF follows a F distribution with 2k− 2 and 2 degrees of freedom. Then, with the same argument,
the exact 100(1− α)% equal-tailed and shortest CIs for σ based on V(σ) can be constructed. In Section 3,
it is found that W(σ) provides a more efficient CI than V(σ) in terms of average lengths (ALs) of the
CIs through Monte Carlo simulations, as in the case of Seo and Kim [5].

For λ, we have that

λ =
Tk

2e−XL(k)/σ
(4)

by putting Tk = Tk(σ, λ) in Lemma 1. In addition, let g(W, xL) be the unique solution of W(σ) = W
for W > 0, where xL =

(
xL(1), · · · , xL(k)

)
. Then, by substituting g(W, xL) for σ in (4), the following

generalized quantity is given by

ψ =
Tk

2e−XL(k)/g(W,xL)
.

The existing literature (Wang et al. [4] and Wang et al. [20]) supposed that W has a χ2 distribution
with 2k − 2 degrees of freedom, and then obtained the percentiles of ψ generating W and Tk
independently from the χ2 distribution with 2k− 2 and 2k degrees of freedom, respectively, althrough
W and Tk are not independent. As an alternative, the following algorithm is proposed to obtain the
percentiles of ψ.

Step 1. Generate Qχ2,1, Qχ2,2, . . . , Qχ2,k from a χ2 distribution with two degrees of freedom.
Step 2. Compute Tj = ∑

j
i=1 Qχ2,i for i = 1, . . . , k.

Step 3. Compute W = 2 ∑k−1
j=1 log

(
Tk
Tj

)
and solve the equation W(σ) = W for σ to obtain g(W, xL).

Step 4. Compute ψ.
Step 5. Repeat N(≥ 10, 000) times.
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From the algorithm, the equal-tailed and shortest CIs for λ based on ψ are given by(
ψ([(α/2)N]), ψ([(1−α/2)N])

)
and (

ψ(l∗), ψ(l∗+[(1−α)N])

)
,

respectively, where l∗ is chosen so that

ψ(l∗+[(1−α)N]) − ψ(l∗) = min
1≤l≤N−[(1−α)N]

[
ψ(l+[(1−α)N]) − ψ(l)

]
.

2.3. Prediction

Let XL(r)(r = k + 1, k + 2, · · · ) be the future lower record values. Then, for any 0 < α < 1,
the conditional quantile is given by

XL(r),α | xL(k) = F−1
XL(r) |XL(k)

(α)

= inf{y ∈ R|FXL(r) |XL(k)
(y) ≥ α},

where FXL(r) |xL(k)
(·) is the conditional distribution of XL(r) given xL(k). However, the quantile cannot be

obtained numerically because it does not have closed forms. Instead, we propose a pivotal approach
based on the following lemma.

Lemma 2. Let YC = log F(xL(k)) − log F(x) in the conditional density function of XL(r) given xL(k) be
defined by Ahsanullah [18] as

fXL(r) |xL(k)
(x) =

[
log F(xL(k))− log F(x)

]r−k−1
f (x)

Γ(r− k)F(xL(k))
, xL(r) < xL(k). (5)

Then, YC has a gamma distribution with the parameters (r− k, 1).

Proof. Let YC = log F(xL(k))− log F(x) in (5). Then, the Jacobian of the transformation is

J =
d

dyC
x

=
F(xL(k))

f (x)
e−y,

and the density function of YC is

fYC (y) =
1

Γ(r− k)
yr−k−1e−y,

which is the probability density function of a gamma distribution with parameters (r− k, 1).
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With the same argument as Section 2, an algorithm for obtaining the Markov-chain Monte-Carlo
(MCMC) samples Xi

L(r)(i = 1, . . . , N) based on the pivotal quantity YC is provided as follows.

Step 1. Generate YC from Gam(r− k, 1).
Step 2. Compute

XL(r) | xL(k) = −σ log
(

YC
λ

+ e−xL(k)/σ
)

.

Step 3. Repeat steps 1 and 2, N times.

3. Simulation Study

A simulation study was performed to examine the validity of the proposed pivotal-based approach
in terms of the coverage probabilities (CPs) and ALs of the proposed confidence intervals (CIs).
The lower record values with sizes k = 6(2)12 were generated from the standard EGD distribution
with λ = 0.5, 0.8, and 1.5. To construct the 95% exact CIs described in Section 2.2, N = 20,000 MCMC
samples were generated, and the corresponding CPs and average lengths (ALs) were computed over
10,000 simulations. The results are reported in Table 1 along with those for the classical inference
(see Proof) (Appendix A) for comparison. Table 1 shows that the CIs using MCMC samples have
nearly same results as those using the classical method, and all considered CIs are well matched to
their corresponding nominal levels; however, the CIs based on W(σ) have shorter length than those
based on V(σ). In addition, all ALs decrease with an increase in the size of record values k. For ALs,
the CIs with the shortest-lengths have shorter lengths than those with equal-tails, as expected.
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Table 1. Coverage probabilities (CPs) (average lengths (ALs)) of CIs for σ and λ.

σ λ

Equal-Tails Shortest Equal-Tails Shortest

V(σ) W(σ) V(σ) W(σ) ψ

λ k Classical MCMC Classical MCMC Classical MCMC Classical MCMC MCMC

0.5 6 0.948(3.094) 0.948(3.093) 0.950(2.600) 0.949(2.565) 0.951(2.623) 0.950(2.603) 0.952(2.214) 0.950(2.194) 0.950(2.942) 0.942(2.440)
8 0.949(2.456) 0.948(2.455) 0.950(1.957) 0.949(1.923) 0.951(2.172) 0.949(2.150) 0.951(1.740) 0.949(1.712) 0.954(2.791) 0.946(2.344)

10 0.948(2.123) 0.948(2.120) 0.950(1.618) 0.949(1.604) 0.950(1.925) 0.947(1.905) 0.952(1.475) 0.950(1.454) 0.952(2.731) 0.947(2.268)
12 0.948(1.915) 0.948(1.919) 0.948(1.405) 0.948(1.401) 0.951(1.765) 0.948(1.760) 0.949(1.301) 0.948(1.297) 0.950(2.580) 0.944(2.174)

0.8 6 0.948(3.094) 0.948(3.093) 0.950(2.600) 0.949(2.565) 0.951(2.623) 0.950(2.603) 0.952(2.214) 0.950(2.194) 0.950(3.517) 0.942(3.006)
8 0.949(2.456) 0.948(2.455) 0.951(1.957) 0.949(1.923) 0.951(2.172) 0.949(2.150) 0.951(1.740) 0.949(1.712) 0.953(3.406) 0.944(2.942)

10 0.948(2.123) 0.948(2.120) 0.950(1.618) 0.949(1.604) 0.950(1.925) 0.947(1.905) 0.952(1.475) 0.950(1.454) 0.954(3.370) 0.948(2.887)
12 0.948(1.915) 0.948(1.919) 0.948(1.405) 0.948(1.401) 0.951(1.765) 0.948(1.760) 0.949(1.301) 0.948(1.297) 0.950(3.225) 0.940(2.801)

1.5 6 0.948(3.094) 0.948(3.093) 0.950(2.600) 0.949(2.565) 0.951(2.623) 0.950(2.603) 0.952(2.214) 0.950(2.194) 0.950(4.561) 0.940(4.068)
8 0.949(2.456) 0.948(2.455) 0.951(1.957) 0.949(1.923) 0.951(2.172) 0.949(2.150) 0.951(1.740) 0.949(1.712) 0.953(4.486) 0.945(4.027)

10 0.948(2.123) 0.948(2.120) 0.950(1.618) 0.949(1.604) 0.950(1.925) 0.947(1.905) 0.952(1.475) 0.950(1.454) 0.957(4.482) 0.943(4.007)
12 0.948(1.915) 0.948(1.919) 0.948(1.405) 0.948(1.401) 0.951(1.765) 0.948(1.760) 0.949(1.301) 0.948(1.297) 0.952(4.346) 0.939(3.939)
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4. Application: Arctic Sea Ice

Sea ice maintains the Earth’s average temperature by reflecting solar energy and keeping the polar
regions cool. Currently, the Arctic is warming faster than any other region on earth. The warming of the
Arctic Circle leads to a decrease in sea ice, which again causes warming of the Arctic Circle. In addition,
it causes global weather changes such as summer heat waves, winter cold waves, and heavy snow.
These climate changes are leading to disturbances of ecosystems formed around Arctic sea ice and
changes in habitats. For this reason, the importance of sea prediction systems to cope with climate
change is increasing. The National Aeronautics and Space Administration (NASA) reported that the
area covered by Arctic sea ice has decreased by about ten percent in the last 30 years (Figure 2).

Figure 2. Sea ice extent in October 1979 (left) and October 2018 (right).

This section analyzes the smallest annual Arctic sea ice extent (see Table 2) from October 1978 to
October 2018 extracted from the National Snow & Ice Data Center (NSIDC).

Table 2. Observed record values from Arctic sea ice data

.
i 1 2 3 4 5 6 7 8 9

xL(i) 3.95 2.66 2.47 2.32 2.19 2.17 2.05 1.60 1.29

To measure goodness of fit of the EGD, the replicated data of observed lower record value xL(i)
were generated from its marginal density function with σ∗ and ψ. All results were obtained by
generating N = 50,000 MCMC samples. In addition, based on the results in the previous simulation
study, σ∗ from W(σ) was only considered in this data analysis.

The 95% confidence region for the replicated data was plotted in Figure 3. It was found that the
confidence regions decreased as the record value of the smallest annual Arctic sea ice decreased.
The correlation coefficient between the observed and expected lower record values indicates a
strong association.

To examine the relationship between observed record values, Figure 4 plots the first trees of the
C- and D-vines with the best copula function in terms of the Akaike information criterion (AIC) and
corresponding Kendall τ.
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Figure 3. 95% Confidence region of the replicated data. The solid line represents the mean of the
replicated data and r is the correlation coefficient of the mean and observed lower record values.

Tree 1

SBB1,0.471

SBB1,0.353
t,0.308

BB1,0.252

N,0.245

N,0.224
N,0.208

N,0.195

V1

V2

V3

V4

V5

V6

V7

V8

V9

(a)

Tree 1

SBB1,0.471

t,0.606

t,0.672

t,0.711

t,0.74

t,0.761

t,0.779
t,0.793

V1

V2

V3

V4

V5

V6

V7

V8

V9

(b)

Figure 4. (a) First tree of C-vine for the observed record values; (b) first tree of D-vine for the observed
record values. The labels are the best pair-copula families and corresponding Kendall’s τ values.
For example, N, t, BB1, and SBB1 represent Gaussian, Student t, Clayton Gumbel, and survival Clayton
Gumbel copula, respectively.
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Note that the AIC is defined as −2 ln(L) + 2k, where L is the likelihood function and k is the
number of estimated parameters of the model. Therefore, the smaller the AIC, the better. The entire
result for the relationships between observed lower record values is reported in Figure 5. It is shown that
the observed lower record values have a positive dependence on each other. In addition, the Kendall’s
τ values increase as the interval between the lower record times decreases. That indicates that xL(i) and
xL(j) such that j− i = 1 for j 6= i have the strongest dependency in terms of the Kendall τ. It is worth
noting that the strength of dependency between xL(i) and xL(j) such that j− i = 1 for j 6= i becomes
stronger as the lower record times increase.

Figure 5. Circular plot for Kendall’s τ between two paired record values.

The 95% exact CIs for σ and λ are reported in Table 3, which shows a similar pattern to the
simulation results.

Table 3. CIs for σ and λ.

σ λ

V(σ) W(σ) W(σ)

Equal-tails Classical (0.462, 2.672) (0.631, 2.635) -

MCMC (0.465, 2.675) (0.631, 2.619) (9.747, 77.629)

Shortest Classical (0.349, 2.330) (0.526, 2.333) -

MCMC (0.347, 2.321) (0.507, 2.302) (6.130, 65.137)

For prediction, the last lower record value xL(9) was assumed to be unknown, and a time series
analysis was conducted, in which it was expected that differences of the observed lower record
values could yield a stationary time series because the observed lower record values had a decreasing
pattern. In fact, the ARIMA (0, 1, 0) model was chosen as the best model in terms of the AIC from
an ARIMA (p, d, q) model, where p is the autoregressive (AR) model order, d is the difference order,
and q is the moving average (MA) model order. Table 4 and Figure 6 present the results for future
record values of the least annual Arctic sea ice. Table 4 shows that there is little difference in measures
of center such as the mean and median for the predictions of the future lower record values based on
the pivotal quantity YC.
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Table 4. Prediction results.

Mean Median Equal-Tails Shortest

X∗L(9) | xL(8) 1.457 1.516 (0.987, 1.599) (1.118, 1.600)
XTS

L(9) 1.407 - (1.071, 1.850) -

X∗L(10) | xL(8) 1.336 1.401 (0.735, 1.583) (0.876, 1.600)
XTS

L(10) 1.237 - (0.840, 1.821) -

X∗L(11) | xL(8) 1.231 1.298 (0.552, 1.560) (0.693, 1.591)
XTS

L(11) 1.087 - (0.677, 1.746) -

0

2

4

6

8

0.0 0.5 1.0 1.5

xL(r)

r=9 r=10 r=11

Figure 6. Estimated kernel density functions for X∗L(r) | xL(8).

For the last lower record value, the ARIMA (0, 1, 0) model provides a closer predictive value than
the mean of X∗L(9)|xL(8) to the actual value of 1.29, while the PI from the ARIMA (0, 1, 0) model has a
longer length than that for XL(r)|xL(k) based on the pivotal quantity YC. Finally, Figure 6 shows that
as the future record time L(r) increases, the variance of the predicted future record value from the
conditional density function increases.

5. Conclusions

This article proposed a copula approach with which to model the dependence structure between
record values from the EGD and to predict future lower record values using a pivotal-based method.
In the pivotal-based method, a new algorithm for dealing with a nuisance parameter has been proposed;
it not only is very computationally convenient in constructing exact CIs with the shortest lengths,
but also provides very satisfactory results in terms of the CPs and ALs, compared with the classical
method. In the approach based on the C- and D-vine copulas, we chose the best copula model in
terms of the AIC among 40 paircopula families and it showed very intuitive and reasonable results
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in analysis based on real data. An interesting point is that the strength of the dependency between
xL(i) and xL(j) such that j− i = 1 for j 6= i becomes strong as the lower record times increase in real
data analysis. The proposed method is applicable to recording values of other real data that have a
probability distribution if the CDF of the probability distribution has a closed form, such as an extreme
value distribution. The prediction results of this paper indicate that we should be alert to the decrease
in Arctic sea ice extent. In future studies, we envision extending this work to predict the size and
decreasing rate of Arctic sea ice extent in real time.
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Appendix A. Proof

Proof. For any 0 < α < 1, we have

1− α = P [θ1(α) < V(σ) < θ2(α)]

= P
[ XL(1) − XL(k)

log [1 + (k− 1)θ2(α)]
< σ <

XL(1) − XL(k)

log [1 + (k− 1)θ1(α)]

]
.

(A1)

Then, the interval length in (A1) is given by

L =

{
1

log [1 + (k− 1)θ1(α)]
− 1

log [1 + (k− 1)θ2(α)]

}
(XL(1) − XL(k))

and the corresponding expected interval is given by

EL =

{
1

log [1 + (k− 1)θ1(α)]
− 1

log [1 + (k− 1)θ2(α)]

}
σ(ψ(1) − ψ(k))

because

E(XL(i)) =
∫ ∞

−∞
x fXL(i)

(x)dx

= σ [log(λ)− ψ(k)] ,

where ψ(·) is the digamma function. The equal-tailed CI based on V(σ) is obtained setting
θ1(α) = F1−α/2,(2k−2,2) and θ2(α) = Fα/2,(2k−2,2) in (A1) because V(σ) has the F distribution with
2k− 2 and 2 degrees of freedom. To find θ1(α) and θ2(α) that minimizes the length such that

∫ θ2(α)

θ1(α)
g(t)dt = 1− α, (A2)

where g(·) is the PDF of the F distribution with 2(k− 1) and 2 degrees of freedom, we have

dL
dθ1(α)

=

[
−h(θ1(α)) + h(θ2(α))

dθ2(α)

dθ1(α)

]
(XL(1) − XL(k))
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and

dθ2(α)

dθ1(α)
=

g(θ1(α))

g(θ2(α))
,

so that

dL
dθ1(α)

=

[
−h(θ1(α)) + h(θ2(α))

g(θ1(α))

g(θ2(α))

]
(XL(1) − XL(k)),

where

h(θ1(α)) =
k− 1

[1 + (k− 1)θ1(α)] [log (1 + (k− 1)θ1(α))]
2 ,

h(θ2(α)) =
k− 1

[1 + (k− 1)θ2(α)] [log (1 + (k− 1)θ2(α))]
2 .

It follows that the minimum occurs at

h(θ1(α))g(θ2(α)) = h2(θ2(α))g(θ1(α)). (A3)

That is, we choose θ1(α) and θ2(α) that satisfy the conditions (A2) and (A3) to construct the
shortest CI for σ based on V(σ).

Similarly, for any 0 < α < 1, the equal-tailed CI based on W(σ) is obtained setting θ1(α) = χ2
1−α/2,2k−2

and θ2(α) = χ2
α/2,2k−2 in

1− α = P [θ1(α) < W(σ) < θ2(α)]

= P

2
(

∑k
j=1 XL(j) − kXL(k)

)
θ2(α)

< σ <
2
(

∑k
j=1 XL(j) − kXL(k)

)
θ1(α)


and the shortest CI can be constructed choosing θ1(α) and θ2(α) that satisfy

∫ θ2(α)

θ1(α)
g(t)dt = 1− α

and

[θ1(α)]
2g(θ1(α)) = [θ2(α)]

2g(θ2(α)).
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