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Abstract: Differential equations of fractional order are believed to be more challenging to compute
compared to the integer-order differential equations due to its arbitrary properties. This study
proposes a multistep method to solve fractional differential equations. The method is derived based
on the concept of a third-order Adam–Bashforth numerical scheme by implementing Lagrange
interpolation for fractional case, where the fractional derivatives are defined in the Caputo sense.
Furthermore, the study includes a discussion on stability and convergence analysis of the method.
Several numerical examples are also provided in order to validate the reliability and efficiency of
the proposed method. The examples in this study cover solving linear and nonlinear fractional
differential equations for the case of both single order as α ∈ (0, 1) and higher order, α ∈ [1, 2),
where α denotes the order of fractional derivatives of Dαy(t). The comparison in terms of accuracy
between the proposed method and other existing methods demonstrate that the proposed method
gives competitive performance as the existing methods.

Keywords: multistep method; fractional differential equation; linear FDE; nonlinear FDE; single
order FDE ; higher order FDE; fractional Riccati differential equation

1. Introduction

Fractional calculus, particularly fractional differential equation (FDE), has significant applications,
which thus plays a crucial role in various fields of science and engineering such as signal processing [1],
control theory [2], modeling of materials [3] and diffusion processes [4]. The work by Woon [5]
mentions the important implications of mathematical applications in other sciences such as physics.
In addition, a study by Bagley and Torvik [6] remarks that fractional modelings are also extensively
used in the field of viscoelasticity due to its ability to describe the high-frequency behavior of many
viscoelastic materials.

First and foremost, we study the fractional initial value problem (FIVP) in the form [7],

CDα
t0

y(t) = f (t, y(t)), y(t0) = y0 (1)

where 0 < α < 1 is the fractional order and CDα
t0

denotes the fractional Caputo’s α−derivative operator

CDα
t0
=RL Dα

t0
(y(t)− y(t0)) with RLDα

t0
(y(t)) is the Riemann–Liouville differential operator defined

as [8]:

RLDα
t0

y(t) =
1

Γ(m− α)

(
d
dt

)m ∫ t

t0

y(τ)dτ

(t− τ)α−m+1 , α > 0, m = dαe . (2)
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The definition in Equation (2) has been applied especially in seeking for an analytical solution.
However, when it comes to the real application, it might be very challenging. This is because, as pointed
out by [9], specific additional conditions are needed to solve a differential equation in order to obtain a
unique solution. These additional conditions for the Riemann–Liouville fractional derivative constitute
a certain fractional derivative of unknown solution at the initial points which might result in an
unclear physical meaning. Due to this reason, in the present work, we consider the fractional Caputo’s
α-derivative, CDα

t0
(in sequel, we shall simply denote as Dα), which is defined as [10]

Dαy(t) =
1

Γ(m− α)

∫ t

t0

y(m)(τ)dτ

(t− τ)α−m+1 , m− 1 < α < m ∈ Z+, (3)

where α > 0 and m = dαe; see also [11].
In literature, several analytical and numerical methods have been developed over the past few

decades, namely the variational iteration method [12,13], homotopy perturbation method [14,15]
and the Adams–Bashforth–Moulton method [10] to solve the fractional differential and integral
equations. However, in some cases, solving differential equations numerically has proven to be more
efficient and convenient compared to analytical solutions especially when dealing with huge and
complex problems. Therefore, many researchers have developed numerous numerical methods to
solve various kinds of differential equations. For example, research by Podlunby [16] used the first
order finite difference numerical method and managed to solve FDE problems with O(h) accuracy.
Following that, Gorenflo [17] proposed a second order difference method to solve FDE and managed
to achieve the desired accuracy. Another well-known numerical method of a predictor–corrector type
has been developed by Diethelm et al. [18] In the study, they developed an algorithm of P(EC)mE
(Predict–Evaluate–Correct–Evaluate) where m is the number of iterations to solve linear and nonlinear
FDE. In addition, Galeone and Garrappa [19] present a study on multistep methods for differential
equations of fractional order that concerns numerical treatment of FDE on both implicit and explicit
types. They managed to prove that explicit methods in the treatment of FDE give a good numerical
solution with good stability analysis. Later, Blaszczyk and Leszczynski [20] proposed a study on FDE
of higher order with a mixture of integer and Caputo derivatives using Euler’s method. They modified
the discrete form of the Caputo derivative being dependent on a range of the parameter, α and
found that, when the range increases, the number of discrete equations occurring in the algorithm
also increases.

The focus of this study is to derive an explicit multistep method based on the concept of the
third-order Adams–Bashforth method, where the derivation of the proposed method is given in
Section 2. Furthermore, the analysis of the stability and convergence is demonstrated in Section 3.
Following from there, the implementation of the proposed method is shown in Section 4. The numerical
results for solving six examples of FDEs are presented in Section 5, where it also includes a discussion
on the numerical results obtained to illustrate the efficiency and effectiveness of the proposed method.

2. Fractional Explicit Adams Method of Order 3

This section will introduce a derivation of the fractional explicit Adams method of order 3 (FEAM3).
In the first step, consider the FIVP is in the form [21]:

Dαy(t) = f (t, y(t)), yk(0) = yk
0, k = 0, 1, . . . , dαe − 1. (4)

It is well-known that FIVP in Equation (4) can be rewritten in the form equivalent to the Volterra
integral equation [21] as:

y(t) =
dαe−1

∑
k=0

tk

k!
yk(0) +

1
Γ(α)

∫ t

0
[(t− τ)α−1 f (τ, y(τ))]dτ. (5)



Mathematics 2020, 8, 1675 3 of 23

Note that, according to Diethelm [22], it is common to consruct methods for FDE by taking
methods for classical (typically first-order) equations and generalizing the concept in an appropriate
way. Therefore, we have Equation (4) as:

Dy(t) = f (t, y(t)), y(0) = y0. (6)

Next, simplify Equation (5) as [23]:

y(t) = y0 +
1

Γ(α)

∫ t

0
[(t− τ)α−1 f (τ, y(τ))]dτ. (7)

Now, we propose an approximate solution that involves approximation at the points t = tn and
t = tn+1. Thus,

i. If t = tn;

y(tn) = y0 +
1

Γ(α)

∫ tn

0
[(tn − τ)α−1 f (τ, y(τ))]dτ (8)

ii. If t = tn+1;

y(tn+1) = y0 +
1

Γ(α)

∫ tn+1

0
[(tn+1 − τ)α−1 f (τ, y(τ))]dτ. (9)

Subtracting Equation (9) from Equation (8) will yield:

y(tn+1) = y(tn) +
1

Γ(α)

[∫ tn+1

0
(tn+1 − τ)α−1 f (τ, y(τ))dτ−∫ tn

0
(tn − τ)α−1 f (τ, y(τ))dτ

]
.

(10)

The proposed method is of order 3; therefore, taking the Lagrange interpolation with
three interpolating functions of Fn, Fn−1 and Fn−2 are required to evaluate the approximate solutions
as follows:

P(t)(≈ f (τ, y(τ))) =
(t− tn−1)(t− tn−2)

(tn − tn−1)(tn − tn−2)
Fn +

(t− tn)(t− tn−2)

(tn−1 − tn)(tn−1 − tn−2)
Fn−1

+
(t− tn)(t− tn−1)

(tn−2 − tn)(tn−2 − tn−1)
Fn−2

(11)

Next, let:
h = tn+1 − tn, τ = t. (12)

Substituting Equations (11) and (12) into Equation (10), we obtain:

y(tn+1) = y(tn) +
1

Γ(α)

[∫ tn+1

0
(tn+1 − t)α−1

(
(t− tn−1)(t− tn−2)

(tn − tn−1)(tn − tn−2)
Fn+

(t− tn)(t− tn−2)

(tn−1 − tn)(tn−1 − tn−2)
Fn−1 +

(t− tn)(t− tn−1)

(tn−2 − tn)(tn−2 − tn−1)
Fn−2

)
dt
]

− 1
Γ(α)

[∫ tn

0
(tn − t)α−1

(
(t− tn−1)(t− tn−2)

(tn − tn−1)(tn − tn−2)
Fn+

(t− tn)(t− tn−2)

(tn−1 − tn)(tn−1 − tn−2)
Fn−1 +

(t− tn)(t− tn−1)

(tn−2 − tn)(tn−2 − tn−1)
Fn−2

)
dt
]

.

(13)

i. The first fractional integral is evaluated as:
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∫ tn+1

0
(tn+1 − t)α−1 f (τ, y(τ))dτ

=
n

∑
p=0

∫ tp+1

tp
(tn+1 − t)α−1

[
(t− tn−1)(t− tn−2)

(tn − tn−1)(tn − tn−2)
Fn+

(t− tn)(t− tn−2)

(tn−1 − tn)(tn−1 − tn−2)
Fn−1 +

(t− tn)(t− tn−1)

(tn−2 − tn)(tn−2 − tn−1)
Fn−2

]
dt

=
n

∑
p=0

[
Fn

(tn − tn−1)(tn − tn−2)

∫ tp+1

tp
(tn+1 − t)α−1(t− tn−1)(t− tn−2)dt+

Fn−1

(tn−1 − tn)(tn−1 − tn−2)

∫ tp+1

tp
(tn+1 − t)α−1(t− tn)(t− tn−2)dt+

Fn−2

(tn−2 − tn)(tn−2 − tn−1)

∫ tp+1

tp
(tn+1 − t)α−1(t− tn)(t− tn−1)dt

]
=

n

∑
p=0

[
Fn

2h2

∫ tp+1

tp
(tn+1 − t)α−1(t− tn−1)(t− tn−2)dt−

Fn−1

h2

∫ tp+1

tp
(tn+1 − t)α−1(t− tn)(t− tn−2)dt+

Fn−2

2h2

∫ tp+1

tp
(tn+1 − t)α−1(t− tn)(t− tn−1)dt

]
.

(14)

Now, consider making substitution y = tn+1 − t, dy = −dt; then:

n

∑
p=0

{
Fn

2h2

[
−
∫ tn+1−tp+1

tn+1−tp
(y)α−1(tn+1 − y− tn−1)(tn+1 − y− tn−2)dy

]
−

Fn−1

h2

[
−
∫ tn+1−tp+1

tn+1−tp
(y)α−1(tn+1 − y− tn)(tn+1 − y− tn−2)dy

]
+

Fn−2

2h2

[
−
∫ tn+1−tp+1

tn+1−tp
(y)α−1(tn+1 − y− tn)(tn+1 − y− tn−1)dy

]}
=

Fn

2h2

[
−6h2

α
[(tn+1 − tn+1)

α − (tn+1 − t0)
α]+

5h
α + 1

[(tn+1 − tn+1)
α+1 − (tn+1 − t0)

α+1]−

1
α + 2

[(tn+1 − tn+1)
α+2 − (tn+1 − t0)

α+2]

]
−

Fn−1

h2

[
−3h2

α
[(tn+1 − tn+1)

α − (tn+1 − t0)
α]+

4h
α + 1

[(tn+1 − tn+1)
α+1 − (tn+1 − t0)

α+1]−

1
α + 2

[(tn+1 − tn+1)
α+2 − (tn+1 − t0)

α+2]

]
+

Fn−2

2h2

[
−2h2

α
[(tn+1 − tn+1)

α − (tn+1 − t0)
α]+

3h
α + 1

[(tn+1 − tn+1)
α+1 − (tn+1 − t0)

α+1]−

1
α + 2

[(tn+1 − tn+1)
α+2 − (tn+1 − t0)

α+2]

]
.

(15)

Thus, the computation for the first fractional integral is given by:
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hα

[(
3(n + 1)α

α
− 5(n + 1)α+1

2α + 2
+

(n + 1)α+2

2α + 4

)
Fn−(

3(n + 1)α

α
− 4(n + 1)α+1

α + 1
+

(n + 1)α+2

α + 2

)
Fn−1+(

(n + 1)α

α
− 3(n + 1)α+1

2α + 2
+

(n + 1)α+2

2α + 4

)
Fn−2

]
.

(16)

ii. Similar to the above steps, the second fractional integral can be computed as in the following form:

∫ tn

0
(tn − t)α−1 f (τ, y(τ))dτ

=
n−1

∑
p=0

∫ tp+1

tp
(tn − t)α−1

[
(t− tn−1)(t− tn−2)

(tn − tn−1)(tn − tn−2)
Fn+

(t− tn)(t− tn−2)

(tn−1 − tn)(tn−1 − tn−2)
Fn−1 +

(t− tn)(t− tn−1)

(tn−2 − tn)(tn−2 − tn−1)
Fn−2

]
dt

=
n−1

∑
p=0

[
Fn

2h2

∫ tp+1

tp
(tn − t)α−1(t− tn−1)(t− tn−2)dt−

Fn−1

h2

∫ tp+1

tp
(tn − t)α−1(t− tn)(t− tn−2)dt+

Fn−2

2h2

∫ tp+1

tp
(tn − t)α−1(t− tn)(t− tn−1)dt

]
.

(17)

Next, making the changes y = tn − t and dy = −dt gives:

n−1

∑
p=0

{
Fn

2h2

[
−
∫ tn−tp+1

tn−tp
(y)α−1(tn − y− tn−1)(tn − y− tn−2)dy

]
−

Fn−1

h2

[
−
∫ tn−tp+1

tn−tp
(y)α−1(tn − y− tn)(tn − y− tn−2)dy

]
+

Fn−2

2h2

[
−
∫ tn−tp+1

tn−tp
(y)α−1(tn − y− tn)(tn − y− tn−1)dy

]}
=

Fn

2h2

[
−2h2

α
[(tn − tn)

α − (tn − t0)
α]+

3h
α + 1

[(tn − tn)
α+1 − (tn − t0)

α+1]−

1
α + 2

[(tn − tn)
α+2 − (tn − t0)

α+2]

]
−

Fn−1

h2

[
2h

α + 1
[(tn − tn)

α+1 − (tn − t0)
α+1]−

1
α + 2

[(tn − tn)
α+2 − (tn − t0)

α+2]

]
+

Fn−2

2h2

[
h

α + 1
[(tn − tn)

α+1 − (tn − t0)
α+1]−

1
α + 2

[(tn − tn)
α+2 − (tn − t0)

α+2]

]
.

(18)

Therefore, we obtain the computation for the second fractional integral



Mathematics 2020, 8, 1675 6 of 23

hα

[(
(n)α

α
− 3(n)α+1

2α + 2
+

(n)α+2

2α + 4

)
Fn −

(
−2(n)α+1

α + 1
+

(n)α+2

α + 2

)
Fn−1+(

−(n)α+1

2α + 2
+

(n)α+2

2α + 4

)
Fn−2

]
.

(19)

Now, if we substitute Equations (16) and (19) into Equation (10), then we obtain a numerical
scheme for FEAM3 as follows:

y(tn+1) = y(tn) +
hα

Γ(α)

[(
3(n + 1)α − (n)α

α
+

3(n)α+1 − 5(n + 1)α+1

2α + 2

+
(n + 1)α+2 − (n)α+2

2α + 4

)
Fn +(

−3(n + 1)α

α
+

4(n + 1)α+1 − 2(n)α+1

α + 1

+
(n)α+2 − (n + 1)α+2

α + 2

)
Fn−1 +(

(n + 1)α

α
+

(n)α+1 − 3(n + 1)α+1

2α + 2

+
(n + 1)α+2 − (n)α+2

2α + 4

)
Fn−2

]
.

(20)

Therefore, Equation (20) is the proposed numerical scheme known as FEAM3. The method
analysis and performance evaluation of FEAM3 are discussed in the latter section.

3. Analysis of the Method

3.1. Order of the Method

Definition 1 ([24]). Linear multistep method is said to be of order p if, C0 = C1 = . . . = Cp = 0 and
Cp+1 6= 0. The formula used to calculate the constant Cp is given by:

Cp =
k

∑
j=0

[ jpαj

p!
−

jp−1β j

(p− 1)!

]
, p = 0, 1, 2, . . . (21)

where k is the order of the proposed method, α and β is the coefficient obtained from the proposed method. Note
that Cp+1 is the error constant of the method.

In order to check the order of the method Equation (20), we consider the general formulation of
fractional linear multistep method for the solution of Equation (4) [19] as:

n

∑
j=0

αjyn−j = hα
n

∑
j=0

β j f (tn−j, yn−j) (22)

where αj and β j are real parameters and α denotes the fractional order.
By comparing Equations (20) and (22), we obtain αj and β j as follows:

α0 = 0, β0 =
1

Γ(α)

(
(n + 1)α

α
+

(n)α+1 − 3(n + 1)α+1

2α + 2
+

(n + 1)α+2 − (n)α+2

2α + 4

)
,

α1 = 0, β1 =
1

Γ(α)

(
−3(n + 1)α

α
+

4(n + 1)α+1 − 2(n)α+1

α + 1
+

(n)α+2 − (n + 1)α+2

α + 2

)
,

α2 = −1, β2 =
1

Γ(α)

(
3(n + 1)α − (n)α

α
+

3(n)α+1 − 5(n + 1)α+1

2α + 2
+

(n + 1)α+2 − (n)α+2

2α + 4

)
,

α3 = 1, β3 = 0.

(23)
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Substitute Equation (23) into Equation (21) and it gives:

C0 =
k

∑
j=0

αj = 0.

C1 =
k

∑
j=0

(jαj − β j) = 0.

C2 =
k

∑
j=0

(
j2αj

2!
− jβ j) = 0.

C3 =
k

∑
j=0

(
j3αj

3!
−

j2β j

2!
) = 0.

C4 =
k

∑
j=0

(
j4αj

4!
−

j3β j

3!
) =

3
8

.

(24)

Therefore, the method is proven to be of order 3 with error constant C4 = 3
8 .

3.2. Stability Analysis

The following test equation [7] was considered in order to analyze the stability properties
of FEAM3:

Dαy(t) = λy(t), λεC, 0 < α < 1,

y(t0) = y0
(25)

where the exact solution can be expressed in terms of the Mittag–Leffler function:

Eα(t) =
∞

∑
k=0

(
tk

Γ(αk + 1)

)

as y(t) = Eα(λ(t− t0)
α)y0.

Substitute test Equation (25) into the numerical method in Equation (20), which resulted in the
stability polynomial of:

y(tn+1) = y(tn) +
h̄

Γ(α)

[(
3(n + 1)α − (n)α

α
+

3(n)α+1 − 5(n + 1)α+1

2α + 2

+
(n + 1)α+2 − (n)α+2

2α + 4

)
yn +(

−3(n + 1)α

α
+

4(n + 1)α+1 − 2(n)α+1

α + 1

+
(n)α+2 − (n + 1)α+2

α + 2

)
yn−1 +(

(n + 1)α

α
+

(n)α+1 − 3(n + 1)α+1

2α + 2

+
(n + 1)α+2 − (n)α+2

2α + 4

)
yn−2

]

(26)

where h̄ = λhα.
Next, taking Equation (26) into consideration, the stability region of FEAM3 is drawn as shown

in Figures 1–3 by using Maple software for different values of α. The planes are separated between
the imaginary and the real field (horizontal axis, labelled as Re, represents Real while vertical axis,
labelled as Im, represents Imaginary).
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(a) α = 0.3 (b) α = 0.5

(c) α = 0.7

Figure 1. Stability region for FEAM3 when 0 < α < 1.

Figure 2. Stability region of FEAM3 for different values of α.
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(a) α = 1.3 (b) α = 1.5

(c) α = 1.7 (d) α = 1.9

Figure 3. Stability region for FEAM3 when 1 < α < 2.

3.2.1. Single Order

A fractional equation is called single order FDE when 0 < α < 1. For comparison purposes,
this paper separates the analysis for both single and higher order FDE.

While investigating the stability analysis, we are interested to investigate the values of h̄ = λhα.
To determine the stability region, we take into consideration whether every root of λi is real and must
satisfy |λi| ≤ 1 as stated in [25]. Thus, as the result, Equation (26) proved to be stable inside the shaded
region as shown in Figure 1. In addition, we can also see from Figures 1 and 2 that, as the value of α

increases, the stability region approaches to the left and is symmetric to the real axis. As for the area of
the stability regions, we can observe from Figure 2 that the region became larger as the α increased.

3.2.2. Higher Order

In order to be considered as higher order FDE, the value of α should be when 1 < α < 2. A similar
strategy was applied to determine the stability region for higher order FDE where we were interested
in investigating the values of h̄ = λhα of Equation (26).

As mentioned before, we take into consideration whether every root of λi is real and must satisfy
|λi| ≤ 1. Therefore, Equation (26) proved to be stable inside the shaded region as shown in Figure 3
when 1 < α < 2. According to Figure 3, it shows that the region for higher order FDE also became
larger as the α increased and approached 2. The regions are shown to become larger in the left
imaginary axis and symmetric to the real axis.
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3.3. Convergence Analysis

Recalling the proposed method, FEAM3 as in Equation (20), we have:

y(tn+1) = y(tn) +
hα

Γ(α)

[(
3(n + 1)α − (n)α

α
+

3(n)α+1 − 5(n + 1)α+1

2α + 2

+
(n + 1)α+2 − (n)α+2

2α + 4

)
Fn +(

−3(n + 1)α

α
+

4(n + 1)α+1 − 2(n)α+1

α + 1

+
(n)α+2 − (n + 1)α+2

α + 2

)
Fn−1 +(

(n + 1)α

α
+

(n)α+1 − 3(n + 1)α+1

2α + 2

+
(n + 1)α+2 − (n)α+2

2α + 4

)
Fn−2

]
.

Then, we have the following theorems to prove the convergence properties of FEAM3.
Let:

A =
3(n + 1)α − (n)α

α
+

3(n)α+1 − 5(n + 1)α+1

2α + 2
+

(n + 1)α+2 − (n)α+2

2α + 4

B =
−3(n + 1)α

α
+

4(n + 1)α+1 − 2(n)α+1

α + 1
+

(n)α+2 − (n + 1)α+2

α + 2

C =
(n + 1)α

α
+

(n)α+1 − 3(n + 1)α+1

2α + 2
+

(n + 1)α+2 − (n)α+2

2α + 4

(27)

Next, by implementing Equation (27) into Equation (20), we have:

i The exact form of the system is given by:

y∗(tn+1)− y∗(tn) =
hα

Γ(α)
(A) F∗n +

hα

Γ(α)
(B) F∗n−1 +

hα

Γ(α)
(C) F∗n−2 +

3
8

h4Y4(ξ) (28)

ii The approximate form of the system is:

y(tn+1)− y(tn) =
hα

Γ(α)
(A) Fn +

hα

Γ(α)
(B) Fn−1 +

hα

Γ(α)
(C) Fn−2 (29)

Now, subtracting Equation (29) from Equation (28) will give:

y(tn+1)− y∗(tn+1) = y(tn)− y∗(tn)+
hα

Γ(α)
(A)[ f (tn, yn)− f (t∗n, y∗n)]

+
hα

Γ(α)
(B)[ f (tn−1, yn−1)− f (t∗n−1, y∗n−1)]

+
hα

Γ(α)
(C)[ f (tn−2, yn−2)− f (t∗n−2, y∗n−2)]

+
3
8

h4Y4(ξ).

(30)

Let:
|dn+1| = |yn+1 − y∗n+1|, |dn| = |yn − y∗n|,
|dn−1| = |yn−1 − y∗n−1|, |dn−2| = |yn−2 − y∗n−2|.

(31)

Next, applying Lipschitz condition as in Theorem 1 and the assumption in Equation (31), we have:
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|dn+1| ≤
(

1 +
hα A
Γ(α)

)
|dn|+

hαB
Γ(α)

|dn−1|+
hαC
Γ(α)

|dn−2|+
3
8

h4 |β| . (32)

Rewriting Equation (32) based on Theorem 2, we obtain:

|dn+1| ≤ (1 + Khα) |dn|+ Khα |dn−1|+ Khα |dn−2|+
3
8

h4 |β| . (33)

From the above analysis, it can be seen that, as h → 0, it is proven that |dn+1| ≤ |dn|;
thus, |yn+1| = |y∗n+1| and |yn| = |y∗n|. In conclusion, Theorem 2 is satisfied. Hence, the proposed
method, FEAM3, is proved to converge.

Theorem 1 ([22]). Let f (t, y) be Lipschitz continuous at all points (t, y) in a region D, given by:

a ≤ t ≤ b, −∞ < y < ∞, (34)

such that, for every t, y, y∗, the coordinates t, y, y∗ and (t, y∗) are both in D where

Dαy(t) = f (t, y(t)). (35)

Theorem 2 ([10,22,26]). A linear multistep method is said to be convergent if, for all initial value problems
subject to the hypothesis of Theorem 1 as t ∈ [a, b], we have that:

|y− y∗| ≤ Ktα−1hp, (36)

where K is a constant that depends only on α and p as p ∈ (0, 1), 0 < α < 1 and

lim
h→0

yn = y(tn). (37)

4. Implementation

4.1. Algorithm of the Method

This section includes the algorithm of the proposed method. The inputs of the programming are
the values of endpoints, a and b, number of intervals, N, the value of α as well as the initial value,
y0 as 0 < α < 1 and y0, y′0 as 1 < α < 2. The developed algorithm for the method is illustrated in
Algorithm 1.
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Algorithm 1 The FEAM3 method.

1: Step 1. Set tol = 10−7, t0 = a, t1 = b, y0 = c, y′0 = d, α = alpha, Γ(α) = gamma and h = b−a
N .

2: Step 2. For n = 0, 1, calculate the approximation solution, y1, y2 using Fractional Euler method [27]:

3: y(tn+1) = y(tn) +
hα

Γ(α+1) (Fn).

4: Step 3. For n = 2, 3, . . . , N, calculate the approximation solution, y3, y4, . . . , yN

5: by iterating the procedure in steps 4–7.

6: Step 4. Set t = a + nh and sum = 0.

7: Step 5. Evaluate for yn+1 by using the FEAM3 as in Equation (20).

8: Step 6. Next, check the maximum error.

9: Note that, error = |yn −Yn|, where yn is the approximation solution and Yn is the exact

10: solution.

11: If error > tolerance,

12: OUTPUT: error= maximum error.

13: Step 7. Calculate the average error using:

14: average error= (sum + error)/N,

15: sum =average error,

16: OUTPUT: average error.

17: Step 8. The procedure is completed.

5. Numerical Results

In order to validate the efficiency of the proposed method, six tested FDE problems which consist
of single order as 0 < α < 1 and higher order, 1 ≤ α < 2 were considered. The computation was done
using C programming (CodeBlock). Below are the notations used in the tables:

N Number of intervals.
h Step size.
Approx. Approximate solution.
Error Absolute error.
FEAM3 Fractional Explicit Adams Method order 3 (in this research).
FAM Fractional Adams Method [21].
FLMM-3 Fractional Linear Multistep Method of Order 3 [25].
ATPC Adams-Type Predictor Corrector Method [18].
SFMoPF Spline Function Method of Polynomial Form [28].
3-HOFLMSM High Order Fractional Linear Multistep Method of 3-order [29].
FVIM Fractional Variational Iteration method [30].
MHPM Modified Homotophy Pertubation method [31].

Example 1. A simple linear fractional differential equations [21], given

Dαy(t) = −y(t), y(0) = 1, y′(0) = 0. (38)

The exact solution is y(t) = Eα(−tα), where Eα(z) is the Mittag–Leffler function defined as

Eα(z) =
∞

∑
k=0

zk

Γ(αk + 1)
.
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Example 2. An initial value problem of FDE [25].

Dαy(t) =
Γ(2α + 1)
Γ(α + 1)

tα − 2
Γ(3− α)

t2−α +
(

t2α − t2
)4
− y4(t), y(0) = 0 (39)

where the exact solution is given by y(t) = t2α − t2.

Example 3. A problem of FIVP with variable coefficients [18] is given by

Dαy(t) =
40320

Γ(9− α)
t8−α − 3

Γ(5 + α/2)
Γ(5− α/2)

t4−α/2 +
9
4

Γ(α + 1)

+

(
3
2

tα/2 − t4
)3
− [y(t)]3/2, y(0) = 0, y′(0) = 0.

(40)

The exact solution is y(t) = t8 − 3t4+α/2 +
9
4

tα.

Example 4. A nonlinear initial value problem of FDE [28] is given by

Dαy(t) = (1− y(t))4 , y(0) = 0. (41)

The exact solution is y(t) =
1 + 3t− (1 + 6t + 9t2)

1
3

(1 + 3t)
as α = 1.0.

Example 5. A problem of higher order nonlinear fractional differential equation [29].

Dαy(t) + y2(t) = f (t), y(0) = 0, y′(0) = 0, (42)

where

f (t) =
Γ(6)

Γ(6− α)
t5−α − 3Γ(5)

Γ(5− α)
t4−α +

2Γ(4)
Γ(4− α)

t3−α +
(

t5 − 3t4 + 2t3
)2

.

The results are tabulated when α = 1.50 where the exact solution is y(t) = t5 − 3t4 + 2t3.

Example 6. An application problem of fractional Riccati differential equations [30,31].

Dαy(t) = −y2(t) + 1, y(0) = 0. (43)

The exact solution is y(t) =
e2t − 1
e2t + 1

when α = 1.0.

Tables 1 and 2 demonstrate the absolute error for solving a simple linear FDE of variable coefficient
where the exact solution is the Mittag–Leffler function. Table 1 shows the absolute error of single
order FDE as α = 0.30, 0.50, 0.70, while Table 2 presents the absolute error of higher order FDE as
α = 1.30, 1.70, 1.90 at different step size, h = 10−3, 10−4. Based on these tables, it can be seen that, for
each step size, h, the absolute error decreases as the order of FDE, and α increases. In addition, Table 3
shows the comparison in terms of absolute error at point, t = 1.0 when solving Example 1 between
FAM and FEAM3 as α = 0.10, 0.90, 1.25, 1.85 at N = 10, 20, 40, 80, 160, 320. From the table, it can be
seen that FEAM3 managed to produce comparable results as FAM. The performance graph for solving
single and higher order of Example 1 are shown in Figures 4 and 5 respectively. The graphs illustrate
that, for both cases, the approximate solution clearly approaches the exact solution when N increases.
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Table 1. Absolute error at each point, t when solving Example 1 using FEAM3 for different step size,
h and 0 < α < 1.

t
α = 0.30 α = 0.50 α = 0.70

h = 10−3 h = 10−4 h = 10−3 h = 10−4 h = 10−3 h = 10−4

0.1 9.5771 ×10−4 9.6093 ×10−5 9.8712 ×10−4 9.8749 ×10−5 9.9312 ×10−5 9.9322 ×10−7

0.2 8.9823 ×10−4 9.0141 ×10−5 9.5845 ×10−4 9.5881 ×10−5 9.7441 ×10−5 9.7451 ×10−7

0.3 8.4558 ×10−4 8.3493 ×10−5 9.2038 ×10−4 9.1833 ×10−5 9.4583 ×10−5 9.4511 ×10−6

0.4 7.7652 ×10−4 7.6492 ×10−5 8.7032 ×10−4 8.6814 ×10−5 9.0656 ×10−5 9.0580 ×10−6

0.5 7.0663 ×10−4 6.9359 ×10−5 8.1225 ×10−4 8.0986 ×10−6 8.5816 ×10−5 8.5735 ×10−6

0.6 6.3651 ×10−4 6.2332 ×10−5 7.4739 ×10−5 7.4512 ×10−6 8.0133 ×10−5 8.0056 ×10−6

0.7 5.6741 ×10−4 5.5624 ×10−5 6.7702 ×10−5 6.7537 ×10−6 7.3689 ×10−5 7.3631 ×10−6

0.8 4.9984 ×10−4 4.9146 ×10−5 6.0223 ×10−5 6.0077 ×10−6 6.6562 ×10−5 6.6514 ×10−6

0.9 4.3429 ×10−4 4.2664 ×10−5 5.2409 ×10−5 5.2357 ×10−6 7.8838 ×10−6 5.8820 ×10−6

1.0 3.7122 ×10−4 3.7096 ×10−5 4.4374 ×10−5 4.4911 ×10−6 7.0611 ×10−6 5.0829 ×10−6

Table 2. Absolute error at each point, t when solving Example 1 using FEAM3 for different step
size, h and 1 < α < 2.

t
α = 1.30 α = 1.70 α = 1.90

h = 10−3 h = 10−4 h = 10−3 h = 10−4 h = 10−3 h = 10−4

0.1 1.9057 ×10−4 3.4686 ×10−4 8.0403 ×10−6 2.1789 ×10−6 2.8747 ×10−6 1.2469 ×10−7

0.2 3.8632 ×10−4 4.3643 ×10−4 2.3011 ×10−5 3.3239 ×10−6 1.0539 ×10−6 2.5204 ×10−7

0.3 4.6840 ×10−4 5.0529 ×10−4 3.3214 ×10−5 2.7909 ×10−6 2.4354 ×10−6 1.5195 ×10−7

0.4 4.7932 ×10−4 4.7977 ×10−5 4.2204 ×10−5 8.4032 ×10−6 4.7842 ×10−6 8.4336 ×10−7

0.5 5.3807 ×10−4 4.2912 ×10−5 4.6650 ×10−5 4.1940 ×10−6 4.8808 ×10−6 6.1950 ×10−7

0.6 5.5647 ×10−4 3.0905 ×10−5 4.7572 ×10−5 1.8945 ×10−6 4.7271 ×10−6 1.9682 ×10−7

0.7 5.6654 ×10−4 5.3644 ×10−5 4.6364 ×10−5 6.9250 ×10−6 4.4137 ×10−7 5.8584 ×10−7

0.8 5.6382 ×10−4 1.3530 ×10−6 4.4518 ×10−5 2.6724 ×10−6 4.1039 ×10−7 1.8696 ×10−7

0.9 5.6442 ×10−4 6.6676 ×10−6 4.2753 ×10−5 1.1572 ×10−7 3.8147 ×10−7 6.6892 ×10−8

1.0 6.7363 ×10−5 3.1084 ×10−6 4.1161 ×10−5 5.6829 ×10−7 3.5291 ×10−7 2.7141 ×10−8

Table 3. Absolute error at point, t = 1 when solving Example 1 using FEAM3 and FAM for different
values of α and N.

N
α = 0.10 α = 0.90 α = 1.25 α = 1.85

FAM FEAM3 FAM FEAM3 FAM FEAM3 FAM FEAM3

10 5.4200 ×10−3 4.8546 ×10−4 7.5100 ×10−4 2.8304 ×10−4 5.6100 ×10−4 2.7017 ×10−4 4.4000 ×10−4 3.9235 ×10−5

20 1.2200 ×10−3 2.0575 ×10−4 1.9100 ×10−4 1.1861 ×10−4 1.2700 ×10−4 3.4704 ×10−4 1.0700 ×10−4 2.2228 ×10−5

40 4.4000 ×10−4 1.4901 ×10−4 4.9900 ×10−5 2.2551 ×10−5 2.9000 ×10−5 1.5263 ×10−5 2.6500 ×10−5 1.1438 ×10−6

80 1.6800 ×10−4 1.9998 ×10−4 1.3200 ×10−5 1.3469 ×10−5 6.6800 ×10−6 5.0983 ×10−5 6.5700 ×10−6 8.3091 ×10−6

160 6.6500 ×10−5 3.2164 ×10−5 3.5400 ×10−6 2.8719 ×10−6 1.5500 ×10−6 1.3484 ×10−6 1.6300 ×10−6 3.3188 ×10−7

320 2.6800 ×10−5 1.1752 ×10−5 9.4800 ×10−7 3.4023 ×10−6 3.6300 ×10−7 3.6436 ×10−6 4.0700 ×10−7 1.8543 ×10−7

Table 4 displays the absolute error at each point, t for solving an initial value problem of FDE in
single order as α = 0.30, 0.50, 0.70 at different step size, h = 10−3, 10−4. The table shows that FEAM3
managed to perform well, whereby, as h decreases and α approaches 1.0, better accuracy was obtained.
In order to observe the efficiency of FEAM3, Table 5, which displays the absolute error at point, t = 1
when solving Example 2 between FEAM3 and FLMM-3 when α = 0.7, 0.8 at h = 0.1, 0.01, 0.001 is
also included. Based on the table, it shows that a comparable result is obtained between FEAM3 and
FLMM-3. For better analysis, the performance graph for Example 2 is included in Figure 6 for α = 0.50
at N = 10, 100, 1000. Based on the graph, it can be seen that, as α increases, the approximate solutions
approach the exact solution.
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Figure 4. Approximate solution, y(t) against each point, t at different N of α = 0.50 when solving
Example 1 using FEAM3.

Figure 5. Approximate solution, y(t) against each point, t at different N of α = 1.50 when solving
Example 1 using FEAM3.

In addition, the numerical results for solving initial value problem of higher order FDE are
tabulated in Table 6 in the form of absolute error when α = 1.30, 1.70, 1.90 as h = 10−3, 10−4. The table
proved that FEAM3 is also able to perform well in solving nonlinear FDE, where the absolute error
decreases when α increases and h decreases. On the other hand, Table 7 shows the absolute error of
various α = 1.25 at different h between FEAM3 and ATPC for solving nonlinear FDE of Example 3,
where FEAM3 is able to obtain a comparable result as the existing method, ATPC. Additionally,
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the graph of approximate solution at each point, t, for solving Example 3 when α = 1.50 for different
N is shown in Figure 7. The graph highlights that the approximate solution does indeed approach the
exact solution as α increases.

Table 4. Absolute error at each point, t when solving Example 2 using FEAM3 for different step size,
h and 0 < α < 1.

t
α = 0.30 α = 0.50 α = 0.90

h = 10−3 h = 10−4 h = 10−3 h = 10−4 h = 10−3 h = 10−4

0.1 1.4849 ×10−2 2.8244 ×10−3 9.0000 ×10−4 1.2241 ×10−4 2.9811 ×10−5 2.2241 ×10−7

0.2 6.3986 ×10−3 3.0468 ×10−3 4.9629 ×10−4 1.3897 ×10−4 2.4031 ×10−5 2.7738 ×10−7

0.3 1.3939 ×10−2 3.2018 ×10−3 8.9975 ×10−4 1.5745 ×10−4 3.4758 ×10−5 3.5718 ×10−7

0.4 1.4322 ×10−2 3.3674 ×10−3 9.4321 ×10−4 1.7734 ×10−4 3.6749 ×10−5 4.5838 ×10−7

0.5 1.4512 ×10−2 3.5558 ×10−3 9.6502 ×10−4 1.9881 ×10−4 3.7973 ×10−5 5.7889 ×10−7

0.6 1.4736 ×10−2 3.7945 ×10−3 9.8398 ×10−4 2.2259 ×10−4 3.9062 ×10−5 7.1756 ×10−7

0.7 1.5078 ×10−2 4.0999 ×10−3 1.0060 ×10−3 2.4936 ×10−4 4.0196 ×10−5 8.7389 ×10−7

0.8 1.5508 ×10−2 4.4709 ×10−3 1.0322 ×10−3 2.7978 ×10−4 4.1447 ×10−5 1.0479 ×10−6

0.9 1.5946 ×10−2 4.8778 ×10−3 1.0613 ×10−3 3.1344 ×10−4 4.2842 ×10−5 1.2395 ×10−6

1.0 1.6321 ×10−2 5.2439 ×10−3 1.0907 ×10−3 3.4778 ×10−4 4.4381 ×10−5 1.4474 ×10−6

Table 5. Absolute error at t = 1 at different α and step size, h using FEAM3 and FLMM-3 in
solving Example 2.

h
α = 0.7 α = 0.8

FEAM3 FLMM-3 FEAM3 FLMM-3

0.1 2.4399 ×10−3 1.8400 ×10−2 9.8785 ×10−3 1.3500 ×10−2

0.01 7.1853 ×10−4 4.4733 ×10−4 2.0451 ×10−4 3.0718 ×10−4

0.001 6.8739 ×10−5 9.3791 ×10−6 1.9192 ×10−5 5.4728 ×10−6

Figure 6. Approximate solution, y(t) against each point, t at different N of α = 0.50 when solving
Example 2 using FEAM3.
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Table 6. Absolute error at each point, t when solving Example 3 by using FEAM3 for different step
size, h and 1 < α < 2.

t
α = 1.30 α = 1.70 α = 1.90

h = 10−3 h = 10−4 h = 10−3 h = 10−4 h = 10−3 h = 10−4

0.1 1.1270 ×10−6 2.6967 ×10−7 7.1098 ×10−8 9.5528 ×10−9 2.8292 ×10−8 2.0712 ×10−9

0.2 1.6199 ×10−6 2.6204 ×10−7 1.2859 ×10−7 9.7208 ×10−9 7.6637 ×10−8 2.0667 ×10−9

0.3 4.0534 ×10−7 2.5826 ×10−7 1.2427 ×10−7 1.1881 ×10−8 7.5718 ×10−8 2.1642 ×10−9

0.4 9.4156 ×10−6 2.7676 ×10−7 1.1910 ×10−7 1.9696 ×10−8 7.5543 ×10−8 2.7266 ×10−8

0.5 8.7041 ×10−6 3.2962 ×10−7 1.1507 ×10−7 3.2683 ×10−8 8.0033 ×10−8 3.8727 ×10−8

0.6 9.0579 ×10−6 3.6668 ×10−7 1.1512 ×10−7 2.9013 ×10−8 8.8761 ×10−8 3.3980 ×10−8

0.7 9.2041 ×10−6 8.5859 ×10−8 1.1223 ×10−7 6.7724 ×10−8 6.8659 ×10−8 7.6489 ×10−8

0.8 9.1149 ×10−6 1.1897 ×10−7 6.8416 ×10−8 4.3546 ×10−8 1.0618 ×10−8 5.1537 ×10−8

0.9 5.9700 ×10−6 3.6511 ×10−7 1.2468 ×10−7 1.3654 ×10−8 7.5398 ×10−7 1.6554 ×10−8

1.0 4.5348 ×10−6 1.0675 ×10−7 7.1850 ×10−7 3.1913 ×10−8 2.4646 ×10−8 3.8947 ×10−9

Table 7. Absolute error when α = 1.25 at different step size, h using FEAM3 and ATPC in
solving Example 3.

h
α = 1.25

FEAM3 ATPC

1/10 1.5273 ×10−3 5.5300 ×10−3

1/20 5.8067 ×10−4 1.5900 ×10−3

1/40 8.5459 ×10−5 4.3300 ×10−4

1/80 1.2959 ×10−5 1.1400 ×10−4

1/160 5.4481 ×10−6 2.9700 ×10−5

1/320 2.2915 ×10−6 7.6600 ×10−6

1/640 6.9897 ×10−6 1.9600 ×10−6

Figure 7. Approximate solution, y(t) against each point, t at different N of α = 1.50 when solving
Example 3 using FEAM3.

Next, Table 8 shows the numerical result for solving Example 4 when α = 1.0 , while Table 9
shows the results when α = 1.50 for solving Example 5. Both tables present the approximate solution
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and absolute errors at each point, t for different N. Based on these tables, it can be seen that better
accuracy is obtained as N increases. For comparison purposes, Table 10 presents the comparison of
absolute error between FEAM3 and SFMoPF at each point, t when α = 1.0 and N = 10 in solving
Example 4, while Table 11 demonstrates the comparison of absolute error at each point, t between
FEAM3 and 3-HOFLMSM in solving nonlinear higher order FDE of Example 5 when α = 1.50 and
N = 100. From these tables, the results given by FEAM3 are seen to be comparable to the respective
existing methods. The performance graph for both examples are shown in Figures 8 and 9, respectively,
where, as α increases, the approximate solutions approach the exact solution.

Table 8. Approximate solutions and absolute errors at each point, t when α = 1.0 for solving Example 4
by using FEAM3 at different intervals, N.

t Exact
N = 10 N = 100 N = 1000

Approx. Error Approx. Error Approx. Error

0.0 1.0000 ×100 1.0000 ×100 0.0000 ×100 1.0000 ×100 0.0000 ×100 1.0000 ×100 0.0000 ×100

0.1 8.3756 ×10−2 8.2805 ×10−2 9.1624 ×10−5 7.6591 ×10−2 9.5393 ×10−6 8.3034 ×10−2 2.0646 ×10−7

0.2 1.4504 ×10−1 1.4551 ×10−1 8.5496 ×10−5 1.3962 ×10−1 4.3778 ×10−6 1.4448 ×10−1 2.9003 ×10−7

0.3 1.9265 ×10−1 1.4567 ×10−1 8.0735 ×10−5 1.8833 ×10−1 1.8424 ×10−7 1.9219 ×10−1 7.1961 ×10−7

0.4 2.3116 ×10−1 1.9381 ×10−1 7.6884 ×10−5 2.2761 ×10−1 4.1394 ×10−6 2.3077 ×10−1 1.0895 ×10−6

0.5 2.6324 ×10−1 2.3246 ×10−1 7.3676 ×10−5 2.6024 ×10−1 7.5527 ×10−6 2.6289 ×10−1 1.4060 ×10−6

0.6 2.9056 ×10−1 2.6453 ×10−1 7.0944 ×10−5 2.8797 ×10−1 1.0483 ×10−5 2.9026 ×10−1 1.6752 ×10−6

0.7 3.1423 ×10−1 2.9179 ×10−1 6.8577 ×10−5 3.1196 ×10−1 1.2981 ×10−5 3.1396 ×10−1 1.9021 ×10−6

0.8 3.3503 ×10−1 3.1539 ×10−1 6.6498 ×10−5 3.3302 ×10−1 1.5097 ×10−5 3.3478 ×10−1 2.0914 ×10−6

0.9 3.5351 ×10−1 3.3610 ×10−1 6.4649 ×10−4 3.5171 ×10−1 1.6871 ×10−5 3.5328 ×10−1 2.2475 ×10−6

1.0 3.7009 ×10−1 3.5451 ×10−1 6.2990 ×10−4 3.6847 ×10−1 1.8343 ×10−5 3.6988 ×10−1 2.3741 ×10−6

Table 9. Approximate solutions and absolute errors at each point, t when α = 1.50 for solving Example 5
by using FEAM3 at different intervals, N.

t Exact
N = 10 N = 1000 N = 10,000

Approx. Error Approx. Error Approx. Error

0.0 0.0000 ×100 0.0000 ×100 0.0000 ×100 0.0000 ×100 0.0000 ×100 0.0000 ×100 0.0000 ×100

0.2 1.1520 ×10−2 4.5689 ×10−2 4.5689 ×10−2 1.1518 ×10−2 1.9701 ×10−6 1.1520 ×10−2 1.5952 ×10−8

0.4 6.1440 ×10−2 5.8370 ×10−2 3.0699 ×10−3 6.1431 ×10−2 8.8948 ×10−6 6.1440 ×10−2 7.4729 ×10−8

0.6 1.2096 ×10−1 1.1856 ×10−1 2.3959 ×10−3 1.2095 ×10−1 9.1466 ×10−6 1.2095 ×10−1 2.7482 ×10−7

0.8 1.2288 ×10−1 1.2003 ×10−1 2.8521 ×10−3 1.2287 ×10−1 1.1237 ×10−6 1.2288 ×10−1 8.1659 ×10−7

1.0 0.0000 ×100 2.4589 ×10−3 2.4589 ×10−3 2.1086 ×10−6 2.1086 ×10−6 1.0322 ×10−6 1.0322 ×10−6

1.2 −2.7648 ×10−1 −2.7182 ×10−1 4.6558 ×10−3 −2.7648 ×10−1 4.2249 ×10−6 −2.7648 ×10−1 2.7720 ×10−6

1.4 −6.5856 ×10−1 −6.9174 ×10−1 3.3179 ×10−2 −6.5857 ×10−1 5.8588 ×10−6 −6.5856 ×10−1 1.5672 ×10−6

1.6 −9.8304 ×10−1 −9.9521 ×10−1 1.2165 ×10−2 −9.8305 ×10−1 1.0593 ×10−5 −9.8305 ×10−1 1.1164 ×10−5

1.8 −9.3312 ×10−1 −9.6244 ×10−1 2.9316 ×10−2 −9.3314 ×10−1 1.7703 ×10−5 −9.3314 ×10−1 1.8906 ×10−5

2.0 0.0000 ×100 1.8550 ×10−2 1.8550 ×10−2 2.2301 ×10−5 2.2301 ×10−5 6.3499 ×10−5 6.3499 ×10−5
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Table 10. Absolute error when α = 1.0 at each point, t using FEAM3 with N = 10 and SFMoPF in
solving Example 4.

t Exact
α = 1.0

FEAM3 SFMoPF

0.1 8.3756 ×10−2 9.1624 ×10−5 9.3660 ×10−5

0.2 1.4504 ×10−1 8.5496 ×10−5 1.1397 ×10−4

0.3 1.9381 ×10−1 8.0735 ×10−5 1.1162 ×10−4

0.4 2.3116 ×10−1 7.6884 ×10−5 1.0297 ×10−4

0.5 2.6324 ×10−1 7.3676 ×10−5 9.3223 ×10−5

0.6 2.9056 ×10−1 7.0944 ×10−5 8.4033 ×10−5

0.7 3.1423 ×10−1 6.8577 ×10−5 7.5850 ×10−5

0.8 3.3503 ×10−1 6.6497 ×10−5 6.8710 ×10−5

0.9 3.5351 ×10−1 6.4649 ×10−4 6.2520 ×10−5

1.0 3.7009 ×10−1 6.2990 ×10−4 5.7152 ×10−5

Table 11. Absolute error when α = 1.50 and N = 100 at each point, t using FEAM3 and 3-HOFLMSM
in solving Example 5.

t
α = 1.50

FEAM3 3-HOFLMSM

0.2 1.5523 ×10−6 3.2219 ×10−6

0.4 6.2872 ×10−6 2.9192 ×10−5

0.6 6.3215 ×10−6 3.9717 ×10−5

0.8 5.3296 ×10−5 3.4898 ×10−5

1.0 3.4589 ×10−5 1.5445 ×10−5

1.2 2.5296 ×10−5 1.8140 ×10−5

1.4 9.4439 ×10−5 6.8333 ×10−5

1.6 4.0478 ×10−4 1.4371 ×10−4

1.8 2.2499 ×10−4 2.5759 ×10−4

2.0 2.2998 ×10−4 4.0599 ×10−4

Figure 8. Approximate solution, y(t) against each point, t of different α at N = 100 when solving
Example 4 using FEAM3.
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Figure 9. Approximate solution, y(t) against each point, t of different α at N = 100 when solving
Example 5 using FEAM3.

This paper also includes solving fractional Riccati differential equation (FRDE). According to [30],
it is well-known that the Riccati differential equation is concerned with applications in pattern
formation in dynamic games, linear systems with Markovian jumps, diffusion problems, river flows,
and econometric models. Therefore, many researchers have developed several analytical and numerical
methods in solving FRDE problems, since it can be considered as one of the examples of application
problems in FDE.

Table 12 presents the result on absolute error for solving FRDE problem by using FEAM3 at
different intervals, N = 10, 100, 1000 when α = 1.0. Based on the table, the absolute error for solving
FRDE by using FEAM3 decreases as N increases. Thus, it gives meaning whereby, as the step size
decreases, the approximate solutions approach the exact solutions. For comparison purposes, Table 13
shows the comparison result of solving the FRDE problem between FEAM3, FVIM, and MHPM when
α = 1.0 and N = 10. According to the table, FEAM3 managed to give a comparable result as FVIM
and MHPM. Furthermore, a graph shows the approximate solution at each point, and t for solving the
FRDE problem is also presented in Figure 10, where the approximate solutions do indeed approach
the exact solution as α increases. Therefore, this implies that FEAM3 is able to perform well in solving
nonlinear FDEs.

Table 12. Absolute error at each point, t in solving Example 6 by using FEAM3 when α =1.0 for
different values of N.

t
α = 1.00

N = 10 N = 100 N = 1000

0.0 0.0000 ×100 0.0000 ×100 0.0000 ×100

0.1 3.3201 ×10−6 1.9293 ×10−7 5.0289 ×10−8

0.2 1.6247 ×10−6 3.7449 ×10−6 1.0653 ×10−7

0.3 1.3343 ×10−5 9.0931 ×10−6 1.5932 ×10−7

0.4 5.3423 ×10−4 1.3975 ×10−5 2.0725 ×10−6

0.5 4.9208 ×10−4 1.8286 ×10−5 2.4929 ×10−6

0.6 4.5129 ×10−4 2.1961 ×10−5 2.8479 ×10−6

0.7 3.9082 ×10−4 2.4971 ×10−5 3.1351 ×10−6

0.8 3.3488 ×10−4 2.7323 ×10−5 3.3549 ×10−6

0.9 2.8359 ×10−4 2.9049 ×10−5 3.5108 ×10−6

1.0 2.3869 ×10−4 3.0198 ×10−5 3.6079 ×10−6
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Table 13. Approximate solution and absolute error at each point, t when α = 1.0 with N = 10 in
solving Example 6 by using FEAM3 compared to previous methods, FVIM and MHPM.

t Exact
FVIM MHPM FEAM3

Approx. Error Approx. Error Approx. Error

0.0 0.0000 ×100 0.0000 ×100 0.0000 ×100 0.0000 ×100 0.0000 ×100 0.0000 ×100 0.0000 ×100

0.1 9.9667 ×10−2 9.9967 ×10−2 0.0000 ×100 9.9667 ×10−2 0.0000 ×100 9.9966 ×10−2 3.3201 ×10−6

0.2 1.9738 ×10−1 1.9738 ×10−1 0.0000 ×100 1.9738 ×10−1 0.0000 ×100 1.9737 ×10−1 1.6247 ×10−6

0.3 2.9131 ×10−1 2.9132 ×10−1 8.0000 ×10−6 2.9131 ×10−1 0.0000 ×100 2.9131 ×10−1 1.3343 ×10−5

0.4 3.7995 ×10−1 3.8001 ×10−1 5.7000 ×10−5 3.7994 ×10−1 4.0000 ×10−6 3.7995 ×10−1 5.3423 ×10−4

0.5 4.6212 ×10−1 4.6234 ×10−1 2.5800 ×10−4 4.6208 ×10−1 3.9000 ×10−5 4.6212 ×10−1 4.9208 ×10−4

0.6 5.3705 ×10−1 5.3792 ×10−1 8.7400 ×10−4 5.3686 ×10−1 1.9200 ×10−4 5.3702 ×10−1 4.5129 ×10−4

0.7 6.0437 ×10−1 6.0677 ×10−1 2.4010 ×10−3 6.0363 ×10−1 7.3600 ×10−4 6.0434 ×10−1 3.9082 ×10−4

0.8 6.6404 ×10−1 6.6970 ×10−1 5.6590 ×10−3 6.6171 ×10−1 2.3300 ×10−3 6.6401 ×10−1 3.3488 ×10−4

0.9 7.1630 ×10−1 7.2814 ×10−1 1.1842 ×10−2 7.0992 ×10−1 6.3780 ×10−3 7.1626 ×10−1 2.8359 ×10−4

1.0 7.6159 ×10−1 7.8413 ×10−1 2.2532 ×10−2 7.4603 ×10−1 1.5562 ×10−2 7.6155 ×10−1 2.3869 ×10−4

Figure 10. Approximate solution, y(t) against each point, t of different α at N = 100 when solving
Example 6 using FEAM3.

6. Conclusions

This paper has proposed a numerical method known as a fractional explicit Adams method
of order 3, FEAM3. The numerical results obtained for each example authenticate that FEAM3 is
adequate to preserve accuracy in solving both linear and nonlinear FDEs. The results also validate
the convergence analysis where the approximate solutions are indeed converged and approach the
exact solution as the step size, h, decreases. Additionally, FEAM3 is proven to be capable of achieving
comparable results as the existing methods in each example. Furthermore, this paper also includes
solving problems of FDE for the case of single and higher order, where the results have shown that the
increment in the value of α yields better accuracy in solving both linear and nonlinear FDE problems.
Therefore, it is proven that FEAM3 is competent and reliable to act as an alternative method to solve
different kinds of FDEs.
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