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Abstract: Differential equations of fractional order are believed to be more challenging to compute
compared to the integer-order differential equations due to its arbitrary properties. This study
proposes a multistep method to solve fractional differential equations. The method is derived based
on the concept of a third-order Adam-Bashforth numerical scheme by implementing Lagrange
interpolation for fractional case, where the fractional derivatives are defined in the Caputo sense.
Furthermore, the study includes a discussion on stability and convergence analysis of the method.
Several numerical examples are also provided in order to validate the reliability and efficiency of
the proposed method. The examples in this study cover solving linear and nonlinear fractional
differential equations for the case of both single order as « € (0,1) and higher order, « € [1,2),
where « denotes the order of fractional derivatives of D*y(t). The comparison in terms of accuracy
between the proposed method and other existing methods demonstrate that the proposed method
gives competitive performance as the existing methods.

Keywords: multistep method; fractional differential equation; linear FDE; nonlinear FDE; single
order FDE ; higher order FDE; fractional Riccati differential equation

1. Introduction

Fractional calculus, particularly fractional differential equation (FDE), has significant applications,
which thus plays a crucial role in various fields of science and engineering such as signal processing [1],
control theory [2], modeling of materials [3] and diffusion processes [4]. The work by Woon [5]
mentions the important implications of mathematical applications in other sciences such as physics.
In addition, a study by Bagley and Torvik [6] remarks that fractional modelings are also extensively
used in the field of viscoelasticity due to its ability to describe the high-frequency behavior of many
viscoelastic materials.

First and foremost, we study the fractional initial value problem (FIVP) in the form [7],

cDpy(t) = f(Ly(1),  y(ko) = vo ©)

where 0 < a < 1is the fractional order and cDj, denotes the fractional Caputo’s a—derivative operator
cDj, =rr Di, (y(t) — y(to)) with g Dj (y(t)) is the Riemann-Liouville differential operator defined

as [8]:
1 a\" rt d
RLDRy(t) = Tn—a) (dt) /t Y@t o, = [a]. @)

o (=TT
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The definition in Equation (2) has been applied especially in seeking for an analytical solution.
However, when it comes to the real application, it might be very challenging. This is because, as pointed
out by [9], specific additional conditions are needed to solve a differential equation in order to obtain a
unique solution. These additional conditions for the Riemann-Liouville fractional derivative constitute
a certain fractional derivative of unknown solution at the initial points which might result in an
unclear physical meaning. Due to this reason, in the present work, we consider the fractional Caputo’s
a-derivative, cDj, (in sequel, we shall simply denote as D%), which is defined as [10]

" B 1 tym(r)dr
D y(t) - I—-(m _“) /;0 (t _ T)a—m+1’

m—1l<a<meclZt, 3)

where a > 0 and m = [a]; see also [11].

In literature, several analytical and numerical methods have been developed over the past few
decades, namely the variational iteration method [12,13], homotopy perturbation method [14,15]
and the Adams-Bashforth-Moulton method [10] to solve the fractional differential and integral
equations. However, in some cases, solving differential equations numerically has proven to be more
efficient and convenient compared to analytical solutions especially when dealing with huge and
complex problems. Therefore, many researchers have developed numerous numerical methods to
solve various kinds of differential equations. For example, research by Podlunby [16] used the first
order finite difference numerical method and managed to solve FDE problems with O(h) accuracy.
Following that, Gorenflo [17] proposed a second order difference method to solve FDE and managed
to achieve the desired accuracy. Another well-known numerical method of a predictor—corrector type
has been developed by Diethelm et al. [18] In the study, they developed an algorithm of P(EC)™E
(Predict-Evaluate-Correct-Evaluate) where m is the number of iterations to solve linear and nonlinear
FDE. In addition, Galeone and Garrappa [19] present a study on multistep methods for differential
equations of fractional order that concerns numerical treatment of FDE on both implicit and explicit
types. They managed to prove that explicit methods in the treatment of FDE give a good numerical
solution with good stability analysis. Later, Blaszczyk and Leszczynski [20] proposed a study on FDE
of higher order with a mixture of integer and Caputo derivatives using Euler’s method. They modified
the discrete form of the Caputo derivative being dependent on a range of the parameter, « and
found that, when the range increases, the number of discrete equations occurring in the algorithm
also increases.

The focus of this study is to derive an explicit multistep method based on the concept of the
third-order Adams—Bashforth method, where the derivation of the proposed method is given in
Section 2. Furthermore, the analysis of the stability and convergence is demonstrated in Section 3.
Following from there, the implementation of the proposed method is shown in Section 4. The numerical
results for solving six examples of FDEs are presented in Section 5, where it also includes a discussion
on the numerical results obtained to illustrate the efficiency and effectiveness of the proposed method.

2. Fractional Explicit Adams Method of Order 3

This section will introduce a derivation of the fractional explicit Adams method of order 3 (FEAM3).
In the first step, consider the FIVP is in the form [21]:

DUy(t) = fty(t), YO =y k=01, [a] -1 )

It is well-known that FIVP in Equation (4) can be rewritten in the form equivalent to the Volterra
integral equation [21] as:

""[I -1 tk

v = ¥ g0+ s [ 16— 0 e ®

k=0
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Note that, according to Diethelm [22], it is common to consruct methods for FDE by taking
methods for classical (typically first-order) equations and generalizing the concept in an appropriate
way. Therefore, we have Equation (4) as:

Dy(t) = f(ty(t)),  y(0) = yo. 6)
Next, simplify Equation (5) as [23]:
W) = 0+ gy L= ()l )

Now, we propose an approximate solution that involves approximation at the points t = ¢, and
t =t 1. Thus,

i Ift=t,;
Wt =0+ 7 [ (6= 0wyl ®
i, Ift =ty
br1
Wtw) =10+ g [ (i =2yt ©)

Subtracting Equation (9) from Equation (8) will yield:

Vitwin) =00 + 7 | [ b =0 (e

" (10)
[t =0 (e

The proposed method is of order 3; therefore, taking the Lagrange interpolation with
three interpolating functions of F,, F,_; and F,_; are required to evaluate the approximate solutions
as follows:

N (t —tn1)(t — tn2) (t—tn)(t — tn2)
P(t>(N f(T,]/( ))) (tn - tnfl)(tn - tn—Z)Pn * (tnfl - tn)(tnfl - tn—Z) Fua (11)
+ (t_t")( _tnfl) E, »
(t Z_tn)(tn Z_tn—l) "
Next, let:
h=ty—ty, T=t (12)
Substituting Equations (11) and (12) into Equation (10), we obtain:
_ 1 futt w1 [ (E—ti1)(t—th)
Y(tir1) = y(tn) + T(a) [/0 (1 — 1)1 ((tn 1) (r = tn—Z)Fn+
(t = tn)(t = tn2) (t = tn)(t = tn1) ) }
( n—1— tn)( n—1—" tn 2) anl * (tn72 - tn)(tnfz - tn—l)Fn_z at (13)

LTt (b))t beo)
‘rmUo (tn =1) 1(<tn—tn1><t - 2>F"+

(tn—l - tn)(tn—l - tn72) (tn72 - tn)(tn72

i.  The first fractional integral is evaluated as:
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/O-tn+1(tn+1 . t)a_lf(T,y(T))dT
- Z /vﬂ by — 1)1 {((t ta1)(t—ty_2) -

tn =ty )(tﬂ - tn—Z)

(t—tn)(t = tu—2) (t— ta)(t —ty1)
(tnfl - tn)( 1 —ty— 2) Fnor (fn 2 — tn)(tn—z — tnl)F”2:| dt

p+1
- 2 [(t —tp1) t —ty_2) /t tup1 — )" (t —ty_1)(t — ty_2)dt+
n n— n n—

p=0 ,
Fy_ tp1 B
(i’ 1— tn);zt : 1—t 2) /1‘ (tn+1 - t)lX 1(t — tn)(t - tnfz)di'—k (14)
n— n— e ,
F, —2 tp+1 _
(th—o — tn)?t,1 2 —tp1) /t (tpg1 — )1t —t,)(t — tnl)dt]
- p
L ;7+1 3
= 2 [th / fpp1 — t)lx 1(t — tnfl)(t _ tn_z)dt—
p=0
Fpq [fre 1
2 /t (b = )71 (= ta) (£ = ty2)di+
p
F, o [tr1 B
2nh22 /t (tyg1 — D)Lt —ty) (= t_q)dt] .
p
Now, consider making substitution y = t,,11 —t, dy = —dt; then:

n Ft’l Fpp1—tp1 a—
ZE) {2;12 [_/t W) M e — Y — b)) (a1 — Yy — tn—Z)d?/} -
p:

n+1 *tp

F,_ B —tpr
1;121 |:_/t p (y) 1(tn+l _y_tﬂ)(tn+1 —y—tn_z)dy] +

n+1*tp
F — tn+1_tp+1 _
7 22 |:_/ (y)lx 1(tn+l —Yy—- tn)(tn+1 -y fnl)dy] }
2h tup1—tp
F, [—6h?
:27;2 |:[(t'rl+l - tn+l)lx - (tn+1 — to)’x]—i—
5h
m[(trHl — b)Y = (t1 — o)
1
—— (b1 = tng1)¥T2 = (b1 — 1) T3] | —
o _|_2[( n+1 n+1> ( n+1 0) } (15)
F, 1 [—3h?
221 {[(tnﬂ —tp1)® — (tn1 — t0)*]+
4h
m[(fnﬂ — b)Y = (t1 — o) -
1
m[(tn+1 - tn+1)a+2 — (thar — to)"”rzﬂ +
Fy_o [—2h2
2”]/122 |:[(t1’l+1 - t?’l—}—l)a - (tn+1 — to)a]—F
3h
m[(tn+1 - tn+1>a+l — (b1 — to)"”rl}_
12 (b1 = 1) = (tug1 — fo)““}} :

Thus, the computation for the first fractional integral is given by:
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h“[(s("“)“ 5(1+1)"+1 (”“)HZ)FH

o 200+ 2 200+ 4
3n+1)*  4n+1)~t (n41)x+2
(n+1* 3m+1)*  (n+1)*+2 F

w 20 +2 20+ 4 n=21-

ii.  Similar to the above steps, the second fractional integral can be computed as in the following form:

[t = 0 (s yie

n—1

_ i/ttn+1(tn_t)“71 [((t—tnl)(t th—2) i

tn — tn—l)(t —ty 2)

p=0-*p
(t_tn)(t_tn—z) (t_tn)(t—tnfl)
=ttt " =)tz —toa) 2 o
i {2112 / P+1 ty t)"‘—l(t—tnfl)(t—fn_z)dt—
F;;lgl /tpl’+1 (tn . t)afl (t . tﬂ)(f _ tn_z)dt+
Fy

2 /t T = () (- tnl)dt] .

Next, making the changes y = t, — t and dy = —dt gives:

n—tp

n—1 F}’l i‘n—t +1 a—
E{mﬂ{iﬁ S W%—y—%1XM—y—mﬂwﬂ‘
p=0

F,_ tn—tps1 _
Ex {—/t " 1(tn_]/_tn)(tn_y_tn—2>d]/} +

n—tp
Fy 2 ntpt
s L oty -]}
F, [—2h?
= | 2t = ) — (10— )+
3h

_ a+1 o a+17
“+1[(tn tn) (tn —t0)"""] (18)

“ i 5 [(tn — t0)*F2 = (ty — t9)* 1]
s [vczf1 [(bn = £)* 1 = (0 — 1)) =

w —1|- 2 [(tn — t) 2 = (b0 — to)““]: +
FZnhi22 [zx —111- 1 [(tn — tn)"™ = (tn — to)* 1]

X i 5 L(tn = £a) 2 — (b — to)uz]: '

Therefore, we obtain the computation for the second fractional integral
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o (n)zx B 3(11)”""1 (n)a+2 B 72(1,1)06-"-1 (n)zx+2
h [( it 212 @ 2a+d i atl at2 Fart

(_(n)a—l-l N (n)tx-‘rZ) Fn2:| '

200 +2 200+ 4

(19)

Now, if we substitute Equations (16) and (19) into Equation (10), then we obtain a numerical
scheme for FEAM3 as follows:

¢ b —(n)* n)* 1l _5(n a+1
y(tn+1)=y(tn)+lf(la) {(3(”+1L (n) +3( )t zaif;l) +

(n + 1)a+2 _ (n)oc+2
20 +4 ) Fu +
(—S(n +1)* N 4(n + 1) —2(n)at!

+

o a+1
na+2_ n 1oc+2
S L

a+2
(n_|_1)v< N (n)tx—&-l —3(11—|—1)“+1

o 200+ 2

L

(20)

Therefore, Equation (20) is the proposed numerical scheme known as FEAM3. The method
analysis and performance evaluation of FEAMS3 are discussed in the latter section.

3. Analysis of the Method

3.1. Order of the Method

Definition 1 ([24]). Linear multistep method is said to be of order p if, Co = C; = ... = Cp = 0 and
Cpy1 # 0. The formula used to calculate the constant C), is given by:

k Po: ir—1g.
-y [l ) fﬂ, P=012... 1)

where k is the order of the proposed method, o and (5 is the coefficient obtained from the proposed method. Note
that C, 1 is the error constant of the method.

In order to check the order of the method Equation (20), we consider the general formulation of
fractional linear multistep method for the solution of Equation (4) [19] as:

Z“j]/nfj =h" Z .B]'f(tnfj/ynfj) (22)
=0 j=0

where «; and f; are real parameters and a denotes the fractional order.
By comparing Equations (20) and (22), we obtain «; and f; as follows:

_ _ 1 (n 4 1)zx (n)zx-H _ 3(n + 1)a+1 (n 4 1)¢x+2 _ (n)ac+2

% =0, Po= Ty ( e 20 +2 2n+4 )
7 B 1 —3(11 + 1)zx 4(n + 1)a+1 _ 2(n)‘”+1 (n)zx+2 _ (n + 1)zx+2

a; =0, ﬁl_l"(u)( a + 1 + o ), 23)
B 1 3+ = () 3(n)*T =5+ 1)*TT (n+1)42 — (n)*F2

m=-l B= gy ( « + 20+2 20 +4 >



Mathematics 2020, 8, 1675 7 of 23

Substitute Equation (23) into Equation (21) and it gives:

k
COIZD(]‘:O.

j=0
G =) (joj—Bj) =0.
j=0
k2
e
Co=) (% —iBj) =0. (24)
=0 =
kK 3,. 20,

Jap IR
G=LiG — o) =0
T
k4 i3
v TRy 3
P R

Therefore, the method is proven to be of order 3 with error constant C4 = %.

3.2. Stability Analysis

The following test equation [7] was considered in order to analyze the stability properties
of FEAMS3:
D*y(t) = Ay(t), AeC, 0<a <1,

y(to) = ¥o

where the exact solution can be expressed in terms of the Mittag—Leffler function:

[e) tk
Ex(t) =) <W>

k=0

(25)

as y(t) = Ea(A(t = t0)")yo-
Substitute test Equation (25) into the numerical method in Equation (20), which resulted in the
stability polynomial of:

7 Ks(nﬂ)a — (n)®

a+1 _ a+1
Y(tns1) = y(tn) + e L 30 = 5(n 1)

o 200+ 2
(n + 1)1x+2 _ (n)oc+2
2t 4 Yn +
—3(n+1)" N 4(n+ 1)+ —2(n)*Ht
o a+1
()2 — (n +1)*+2
+ a+2 Yn-1+
((n + 1)tx N (n)lk-‘rl _ 3(n + 1)a+1

(26)

o 200+ 2

(n + 1)1x+2 _ (n)oc+2
+ 20+ 4 Yn—2

where h = Ah*.
Next, taking Equation (26) into consideration, the stability region of FEAM3 is drawn as shown
in Figures 1-3 by using Maple software for different values of a. The planes are separated between

the imaginary and the real field (horizontal axis, labelled as Re, represents Real while vertical axis,
labelled as Im, represents Imaginary).
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(c)a =07

— — alpha=0.5 alpha=0.3 — - — alpha=0.7
""" alpha=1.0- - alpha=0.9

Figure 2. Stability region of FEAMS3 for different values of a.



Mathematics 2020, 8, 1675 9 of 23

08
08

P - : 0.6
0.6 UL ST

", 04
0-4

L _08 -D7 06 -D5 -04.503 -02 -0l
-02]

Re 15

o2

-4

-0.6

-0.8

0.6

/ IS 02 ! ;

: Re oy Re
/ -2 = -1 0.5 0 . =30 -20 -10 0]
: R R B :

-08 —22[)
(cga=17 (d)a=19
Figure 3. Stability region for FEAM3 when 1 < a < 2.
3.2.1. Single Order

A fractional equation is called single order FDE when 0 < a < 1. For comparison purposes,
this paper separates the analysis for both single and higher order FDE.

While investigating the stability analysis, we are interested to investigate the values of i = Ah*.
To determine the stability region, we take into consideration whether every root of A; is real and must
satisfy |A;| < 1 as stated in [25]. Thus, as the result, Equation (26) proved to be stable inside the shaded
region as shown in Figure 1. In addition, we can also see from Figures 1 and 2 that, as the value of «
increases, the stability region approaches to the left and is symmetric to the real axis. As for the area of
the stability regions, we can observe from Figure 2 that the region became larger as the « increased.

3.2.2. Higher Order

In order to be considered as higher order FDE, the value of « should be when 1 < & < 2. A similar
strategy was applied to determine the stability region for higher order FDE where we were interested
in investigating the values of i = Ah® of Equation (26).

As mentioned before, we take into consideration whether every root of A; is real and must satisfy
|Ai| < 1. Therefore, Equation (26) proved to be stable inside the shaded region as shown in Figure 3
when 1 < a < 2. According to Figure 3, it shows that the region for higher order FDE also became
larger as the « increased and approached 2. The regions are shown to become larger in the left
imaginary axis and symmetric to the real axis.
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3.3. Convergence Analysis

Recalling the proposed method, FEAM3 as in Equation (20), we have:

’ n Y —(n)" n)**tl —5(n a+1
y(fn+1)=]/(tn)+lf(la) {(3( +1)" = (n) Jr3( )+l _ 5(n 4 1)t

o 200 +2
1 a+2 a2
(4152 = (2
200 +4
—3(n+1)% N 4(n+1)8+1 —2(n)*+1
o a+1
(n)l!(+2 _ (T’l + 1)0¢+2
F,_
0(+2 n—1 +
(n+1)*  (n)**!1 —3(n+ 1)+
14 200+ 2
(n + 1)v<+2 _ (n)tx—i-z E
20+ 4 n=z
Then, we have the following theorems to prove the convergence properties of FEAMS3.
Let:

A 3(n + 1)v< _ (1’[)“ N 3(n)a+1 _ 5(7’[ + 1)a+1 (n + 1)tx+2 _ (n)oc-i-z
o o 200+ 2 20+ 4
B 73(1,[ + 1)zx N 4(n + 1)0c+1 —2(n)”‘+1 N (n)a+2 _ (n + 1)vc+2
o o a+1 x+2
c— (n 4 1)a N (n)""H _ 3(11 + 1)tx+1 (n + 1)11—1—2 _ (n)a+2

o o 200+ 2 20+ 4

Next, by implementing Equation (27) into Equation (20), we have:
i  The exact form of the system is given by:

(b)) = () = () B + s (BV s + 17 (O Bz + gHY@)

ii ~ The approximate form of the system is:
h* h* h*
Y(tu1) — y(tn) “T(a) (A) Fa + T(a) (B) Fu1 + T(a) (C) Fia

Now, subtracting Equation (29) from Equation (28) will give:

o

Y(tne1) =y (tns1) = y(ta) _]/*(tn)"‘lf(l“)(A)[f(tnr]/n) — f(t,yn)]

+r}g;<3>[f<tn1,yn1> — F(E )]
+r’za)<c>v<t“,ynz> — F(Er )]
+gh4Y4(§).

Let:
[dui1l = [Ynr1 — Yuaal,  |dnl = lyn —yal,

[dual = Yn-1 =yl |du-2| =lyn—2—Yn_al-

10 of 23

(27)

(28)

(29)

(30)

(31)

Next, applying Lipschitz condition as in Theorem 1 and the assumption in Equation (31), we have:



Mathematics 2020, 8, 1675 11 of 23

h*A h*B h*C 3
Aot < (14 o= ) |dn] + 5= [dn_1]| + 5 |dn_2| + SH* B 2
el < (1 75 ) Mal+ gy Mo s Mool + 5418 )

Rewriting Equation (32) based on Theorem 2, we obtain:
3
1] < (1+ KRY) [dy] + KR |dy 1] + KR |dy o] + S [B]. (33)

From the above analysis, it can be seen that, as h — 0, it is proven that |d,.1| < |du|;
thus, |y,41] = |y;;4| and |yu| = [y;;|. In conclusion, Theorem 2 is satisfied. Hence, the proposed
method, FEAMS3, is proved to converge.

Theorem 1 ([22]). Let f(t,y) be Lipschitz continuous at all points (t,y) in a region D, given by:
a<t<bh —oco<y<oo, (34)
such that, for every t,y,y*, the coordinates t,y,y* and (t,y*) are both in D where
Dfy(t) = f(ty(1))- (35)

Theorem 2 ([10,22,26]). A linear multistep method is said to be convergent if, for all initial value problems
subject to the hypothesis of Theorem 1 as t € [a, b], we have that:

ly—y*| <K hP, (36)
where K is a constant that depends only on w and pas p € (0,1),0 < a < 1 and
Plllg})]/n =y(tn). (37)

4. Implementation

4.1. Algorithm of the Method

This section includes the algorithm of the proposed method. The inputs of the programming are
the values of endpoints, a and b, number of intervals, N, the value of a as well as the initial value,
Yoas0 < a < landyg,yjas1 < a < 2. The developed algorithm for the method is illustrated in
Algorithm 1.
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Algorithm 1 The FEAM3 method.

a

1: Step 1. Settol = 1077, tg = a,t; = b,yg = c,yy=d,a = alpha, T'(«) = gamma and h = bﬁ.
2: Step 2. Forn = 0, 1, calculate the approximation solution, y1, yo using Fractional Euler method [27]:

3: Y(tnt1) = y(ta) + r(ﬂH_l) (Fn)-

4: Step 3. Forn = 2,3,..., N, calculate the approximation solution, y3,y4,...,yn

5: by iterating the procedure in steps 4-7.

6: Step 4. Set t = a + nh and sum = 0.

7. Step 5. Evaluate for y,,11 by using the FEAMS3 as in Equation (20).

8: Step 6. Next, check the maximum error.

9: Note that, error = |y, — Y|, where y,, is the approximation solution and Y, is the exact
10: solution.
11: If error > tolerance,
12: OUTPUT: error= maximum error.

13: Step 7. Calculate the average error using;:

14: average error= (sum + error)/N,
15: sum =average error,
16: OUTPUT: average error.

17: Step 8. The procedure is completed.

5. Numerical Results

In order to validate the efficiency of the proposed method, six tested FDE problems which consist
of single order as 0 < « < 1 and higher order, 1 < & < 2 were considered. The computation was done
using C programming (CodeBlock). Below are the notations used in the tables:

N Number of intervals.

h Step size.

Approx. Approximate solution.

Error Absolute error.

FEAM3 Fractional Explicit Adams Method order 3 (in this research).
FAM Fractional Adams Method [21].

FLMM-3 Fractional Linear Multistep Method of Order 3 [25].

ATPC Adams-Type Predictor Corrector Method [18].

SEMoPF Spline Function Method of Polynomial Form [28].
3-HOFLMSM  High Order Fractional Linear Multistep Method of 3-order [29].
FVIM Fractional Variational Iteration method [30].

MHPM Modified Homotophy Pertubation method [31].

Example 1. A simple linear fractional differential equations [21], given

DU(t) = —y(t), y(0)=1, y(0)=0. (38)
The exact solution is y(t) = En(—t*), where Ey(z) is the Mittag—Leffler function defined as

00 k
kzor ak+1)
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Example 2. An initial value problem of FDE [25].

Dy = e - R () e, o=

where the exact solution is given by y(t) = t2* — 2.

Example 3. A problem of FIVP with variable coefficients [18] is given by

40320 g0 T(+0/2) 4as O (a1)

DY) =t —g T(5—a/2) 4

w (G ) o, (0) =0, (0) =0

The exact solution is y(t) = 15 — 3t47%/2 4 Zttx,
Example 4. A nonlinear initial value problem of FDE [28] is given by
D'y(t) = (1-y(1)*,  y(0)=0.

o 143t — (146t 4 9£2)3
The exact solution is y(t) = + ((1 :31%) o) as a« = 1.0.

Example 5. A problem of higher order nonlinear fractional differential equation [29].

D*y(t) +v*(t) = f(t),  y(0)=0, y'(0) =0,

where
T(6) 50 3T6) 4o, 204

f<t):1"(6—oc) -« TTa-w

TR (t5 3ty 2t3)2 .

The results are tabulated when & = 1.50 where the exact solution is y(t) = > — 3t* 4 23,

Example 6. An application problem of fractional Riccati differential equations [30,31].

DYy(t) = —y*(H) + 1, y(0) = 0.

2t
o et —1
The exact solution is y(t) = 21 when o = 1.0.

13 of 23

(39)

(40)

(41)

(42)

(43)

Tables 1 and 2 demonstrate the absolute error for solving a simple linear FDE of variable coefficient
where the exact solution is the Mittag—Leffler function. Table 1 shows the absolute error of single
order FDE as & = 0.30,0.50, 0.70, while Table 2 presents the absolute error of higher order FDE as
« = 1.30,1.70,1.90 at different step size, h = 1073,10~%. Based on these tables, it can be seen that, for
each step size, h, the absolute error decreases as the order of FDE, and « increases. In addition, Table 3
shows the comparison in terms of absolute error at point, f = 1.0 when solving Example 1 between
FAM and FEAMS3 as « = 0.10,0.90,1.25,1.85 at N = 10, 20,40, 80, 160, 320. From the table, it can be
seen that FEAM3 managed to produce comparable results as FAM. The performance graph for solving
single and higher order of Example 1 are shown in Figures 4 and 5 respectively. The graphs illustrate
that, for both cases, the approximate solution clearly approaches the exact solution when N increases.
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Table 1. Absolute error at each point,  when solving Example 1 using FEAMS3 for different step size,
hand 0 < a < 1.

x =0.30 « = 0.50 a =0.70

t
h=10"3 h=10"* h=10"3 h=10"* h=10"3 h=10"*

0.1 95771 x10~% 9.6093 x10™° 9.8712 x10~* 9.8749 x10~° 9.9312 x10~> 9.9322 x10~7
02 89823 x10~% 9.0141 x10™° 9.5845 x10~% 9.5881 x10~° 9.7441 x10~> 9.7451 x10~7
0.3 84558 x10~* 8.3493 x107° 9.2038 x10~% 9.1833 x10~> 9.4583 x10~> 9.4511 x10~°
04 77652 x107% 7.6492 x10~°> 87032 x10~* 8.6814 x10~° 9.0656 x10~>  9.0580 x10~°®
05 7.0663 x107* 6.9359 x10~° 81225 x10~% 8.0986 x10~® 8.5816 x10~> 8.5735 x10~°
0.6 6.3651 x107% 62332 x10™° 74739 x10~> 7.4512 x10~® 8.0133 x10~>  8.0056 x10~°®
0.7 5.6741 x107% 55624 x107° 6.7702 x10™°  6.7537 X107 7.3689 x10~°>  7.3631 x10~°
0.8 49984 x10~* 49146 x10™° 6.0223 x10~>  6.0077 x10~® 6.6562 x10~>  6.6514 x10~°
0.9 4.3429 x10~% 42664 x10™°> 52409 x10™° 52357 x10~° 7.8838 x10~® 5.8820 x10~°
1.0 37122 x10™*  3.7096 x10™° 4.4374 x10™5 4.4911 x107°® 7.0611 x107® 5.0829 x10~°

Table 2. Absolute error at each point, t when solving Example 1 using FEAMS3 for different step

size, hand 1 < a < 2.

x =130 x =170 a =190
t
h=10"3 h=10"* h=10"3 h=10"* h=10"3 h=10"*

0.1 19057 x10~* 3.4686 x10~% 8.0403 x107® 2.1789 x10~® 2.8747 x10~° 1.2469 x10~7
02 3.8632 x10™* 4.3643 x10~% 2.3011 x10~> 3.3239 x10~® 1.0539 x10~® 2.5204 x10~7
0.3 4.6840 x10~* 5.0529 x10~% 3.3214 x107> 2.7909 x10~® 2.4354 x10°® 1.5195 x10~7
04 47932 x107% 4.7977 x10™° 4.2204 x10~> 8.4032 x1076 4.7842 x10~° 8.4336 x10~7
0.5 5.3807 x10™% 42912 x107°  4.6650 x107° 41940 x107°® 4.8808 x10~®  6.1950 x10~7
0.6 55647 x107% 3.0905 x10™° 4.7572 x10~>  1.8945 x10~6¢ 4.7271 x10~® 1.9682 x10~7
0.7 5.6654 x10™* 53644 x107°  4.6364 x107° 6.9250 x107°® 4.4137 x10~7 5.8584 x10~7
0.8 5.6382 x10™% 1.3530 x107°® 4.4518 x107° 2.6724 x10~® 4.1039 x10~7 1.8696 x10~7
0.9 5.6442 x10~*  6.6676 x107® 4.2753 x10~° 1.1572 x10~7 3.8147 x10~7 6.6892 x10~8
1.0 6.7363 x107° 3.1084 x10~® 4.1161 x10™° 5.6829 x10~7 3.5291 x10~7 2.7141 x10~®

Table 3. Absolute error at point, t = 1 when solving Example 1 using FEAM3 and FAM for different

values of « and N.

«=0.10 & = 0.90 =125 « =185
N
FAM FEAM3 FAM FEAM3 FAM FEAM3 FAM FEAM3

10 54200 x1073  4.8546 x10~% 75100 x10~* 2.8304 x10~* 5.6100 x10~* 2.7017 x10~*  4.4000 x10~* 3.9235 x10~°
20 12200 x1073  2.0575 x10~%* 19100 x10~* 1.1861 x10~% 12700 x10~* 3.4704 x10~* 1.0700 x10~* 2.2228 x10~>
40 44000 x10™*  1.4901 x10~% 49900 x10~° 2.2551 x10~> 2.9000 x10~° 1.5263 x10~>  2.6500 x10~° 1.1438 x10~°
80  1.6800 x10™* 1.9998 x10~% 1.3200 x10™° 1.3469 x10~> 6.6800 x10~° 5.0983 x10~>  6.5700 x10~® 8.3091 x10~°
160  6.6500 x107° 32164 x107° 3.5400 x107® 2.8719 x107® 1.5500 x10~® 1.3484 x10~® 1.6300 x10~® 3.3188 x10~7
320 26800 x1075  1.1752 x10~5  9.4800 x10~7 3.4023 x10® 3.6300 x10~7  3.6436 x107° 4.0700 x10~7  1.8543 x10~7

approach the exact solution.

Table 4 displays the absolute error at each point, ¢ for solving an initial value problem of FDE in
single order as « = 0.30,0.50,0.70 at different step size, h = 1073,10~%. The table shows that FEAM3
managed to perform well, whereby, as /i decreases and a approaches 1.0, better accuracy was obtained.
In order to observe the efficiency of FEAM3, Table 5, which displays the absolute error at point, t = 1
when solving Example 2 between FEAM3 and FLMM-3 when &« = 0.7,0.8 at h = 0.1,0.01,0.001 is
also included. Based on the table, it shows that a comparable result is obtained between FEAMS3 and
FLMMS-3. For better analysis, the performance graph for Example 2 is included in Figure 6 for & = 0.50
at N = 10,100, 1000. Based on the graph, it can be seen that, as « increases, the approximate solutions
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y(t)

035

0.8 \

0.7

0.6
0.5

0.4

03
0.2

0.1

== N=10 == N=100 N=1000 Exact

Figure 4. Approximate solution, y(¢) against each point, ¢ at different N of « = 0.50 when solving
Example 1 using FEAMS3.

y(t)

05
0.8
0.7
0.6
0.5
04
03
0.2

01

e N=10 e N=100 N=1000 Exact

Figure 5. Approximate solution, y(¢) against each point, ¢ at different N of « = 1.50 when solving
Example 1 using FEAM3.

In addition, the numerical results for solving initial value problem of higher order FDE are
tabulated in Table 6 in the form of absolute error when a = 1.30,1.70,1.90 as h = 10~3,10%. The table
proved that FEAM3 is also able to perform well in solving nonlinear FDE, where the absolute error
decreases when a increases and h decreases. On the other hand, Table 7 shows the absolute error of
various & = 1.25 at different i between FEAM3 and ATPC for solving nonlinear FDE of Example 3,
where FEAMS is able to obtain a comparable result as the existing method, ATPC. Additionally,
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the graph of approximate solution at each point, ¢, for solving Example 3 when a = 1.50 for different
N is shown in Figure 7. The graph highlights that the approximate solution does indeed approach the
exact solution as « increases.

Table 4. Absolute error at each point,  when solving Example 2 using FEAMS3 for different step size,
hand 0 < a < 1.

a=0.30 a = 0.50 « = 0.90
t
h=10"3 h=10"* h=10"3 h=10"* h=10"3 h=10"*

0.1 1.4849 x1072 2.8244 x10™3 9.0000 x10~% 1.2241 x10~* 29811 x10~° 2.2241 x10~7
02 6.3986 x1073 3.0468 x1073 4.9629 x10~* 1.3897 x10~*% 2.4031 x10~> 2.7738 x10~7
03 1.3939 x1072 3.2018 x10™3 8.9975 x10~* 1.5745 x10~* 3.4758 x10~> 3.5718 x10~7
04 14322 x1072 33674 x1073  9.4321 x10~* 1.7734 x10~* 3.6749 x10~> 4.5838 x10~7
05 14512 x1072 3.5558 x1073  9.6502 x10~% 1.9881 x10~* 3.7973 x10~> 5.7889 x10~7
0.6 1.4736 x1072 3.7945 x1073 9.8398 x10~% 22259 x10~% 3.9062 x10~> 7.1756 x10~7
0.7 15078 x1072  4.0999 x1073  1.0060 x10~3 2.4936 x10~* 4.0196 x10~> 8.7389 x10~7
0.8 1.5508 x1072 4.4709 x1073 1.0322 x10~3 2.7978 x10~% 4.1447 x10~> 1.0479 x10~°
0.9 1.5946 x1072 4.8778 x10™3 1.0613 x1073 3.1344 x10~% 4.2842 x10~> 1.2395 x10~°
1.0 1.6321 x1072 52439 x10~3 1.0907 x1073 3.4778 x10~% 4.4381 x10™° 1.4474 x10~°

Table 5. Absolute error at t = 1 at different « and step size, h using FEAM3 and FLMM-3 in
solving Example 2.

y(t)

0.05
0.04
0.03
0.02

0.01

« = 0.7 « = 0.8
h
FEAMS3 FLMM-3 FEAMS3 FLMM-3
0.1 24399 x1073  1.8400 x102 9.8785 x10~3  1.3500 x 102
0.01  7.1853 x10~* 44733 x10~% 2.0451 x10~* 3.0718 x10~*
0.001 6.8739 x10~5 9.3791 x107% 1.9192 x10~> 5.4728 x10~°

N=10

N=100

N=1000

Exact

Figure 6. Approximate solution, y(t) against each point, t at different N of « = 0.50 when solving
Example 2 using FEAMS3.
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Table 6. Absolute error at each point, t when solving Example 3 by using FEAMS3 for different step

size, hand 1 < & < 2.

o =130 a =170 a =190
t
h=10"3 h=10"* h=103 h=10"* h=10"3 h=10"*

0.1 1.1270 x10~% 2.6967 x10~7 7.1098 x10~8 95528 x10~° 2.8292 x10~8 2.0712 x10~?
02 1.6199 x107® 2.6204 x10~7 1.2859 x10~7 9.7208 x10~° 7.6637 x10~8  2.0667 x10~?
0.3 4.0534 x10~7 25826 x10~7 1.2427 x10~7 1.1881 x10~8 75718 x10~8 2.1642 x10~?
04 94156 x107% 27676 x10~7 1.1910 x10~7 19696 x10~8 7.5543 x10~8 2.7266 x10~8
05 87041 x107¢ 3.2962 x10~7 1.1507 x10~7 3.2683 x10~8 8.0033 x10~8 3.8727 x10~8
0.6 9.0579 x107¢ 3.6668 x10~7 1.1512 x10~7 2.9013 x10~8 8.8761 x10~8 3.3980 x10~8
0.7 9.2041 x107° 85859 x1078 1.1223 x10~7 6.7724 x1078  6.8659 x10~8  7.6489 x10~8
0.8 9.1149 x107® 1.1897 x10~7 6.8416 x10~% 4.3546 x10~8 1.0618 x10~8 5.1537 x10~8
0.9 5.9700 x107® 3.6511 x10~7 1.2468 x10~7 1.3654 x10~8 75398 x10~7 1.6554 x10~8
1.0 45348 x107°% 1.0675 x10~7 7.1850 x10~7 3.1913 x10~8 2.4646 x10~% 3.8947 x10~?

Table 7. Absolute error when «

solving Example 3.

y()

0.3

07

0.6

0.5

04

0.3

0.2

0.1

-0.1

0.1

1.25 at different step size, h using FEAM3 and ATPC in

« = 1.25
h
FEAMS3 ATPC
1/10 15273 x10~3  5.5300 x1073
1/20  5.8067 x10~* 1.5900 x10~3
1/40 85459 x10~5  4.3300 x10~*
1/80  1.2959 x10~°  1.1400 x10~*
1/160 5.4481 x10~® 2.9700 x10~>
1/320 22915 x107¢  7.6600 x10~°
1/640 6.9897 x107¢  1.9600 x10~°
0.2 0.3 0.4 0.5 0.6 0.7 0.8
N=10 N=100 MN=1000 Exact

05 1

Figure 7. Approximate solution, y(t) against each point, ¢ at different N of # = 1.50 when solving
Example 3 using FEAM3.

Next, Table 8 shows the numerical result for solving Example 4 when & = 1.0 , while Table 9
shows the results when a« = 1.50 for solving Example 5. Both tables present the approximate solution
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and absolute errors at each point, ¢ for different N. Based on these tables, it can be seen that better
accuracy is obtained as N increases. For comparison purposes, Table 10 presents the comparison of
absolute error between FEAM3 and SFMoPF at each point, t when & = 1.0 and N = 10 in solving
Example 4, while Table 11 demonstrates the comparison of absolute error at each point, t between
FEAM3 and 3-HOFLMSM in solving nonlinear higher order FDE of Example 5 when & = 1.50 and
N = 100. From these tables, the results given by FEAM3 are seen to be comparable to the respective
existing methods. The performance graph for both examples are shown in Figures 8 and 9, respectively,

where, as & increases, the approximate solutions approach the exact solution.

Table 8. Approximate solutions and absolute errors at each point, t when a = 1.0 for solving Example 4
by using FEAMS3 at different intervals, N.

N =10 N =100 N = 1000
t Exact
Approx. Error Approx. Error Approx. Error

0.0 1.0000 x10°  1.0000 x10°  0.0000 x10°  1.0000 x10°  0.0000 x10°  1.0000 x10°  0.0000 x10°
0.1 83756 x1072 82805 x1072 9.1624 x10~>  7.6591 x10~2 95393 x10~° 8.3034 x10~2  2.0646 x10~7
0.2 14504 x1071 1.4551 x10~1 85496 x107° 1.3962 x10~1 43778 x10~¢ 1.4448 x10~1 2.9003 x10~7
0.3 19265 x1071 1.4567 x10~1 8.0735 x107°> 1.8833 x10~1 1.8424 x10~7 1.9219 x10~1 7.1961 x10~7
04 23116 x1071  1.9381 x10°1 7.6884 x107°> 22761 x10~1 4.1394 x10~® 2.3077 x10~1 1.0895 x10~°
05 2.6324 x10~1  2.3246 x10~!  7.3676 x107°  2.6024 x10~1  7.5527 x107° 2.6289 x10~1  1.4060 x10~°
0.6 29056 x10~1 2.6453 x10~!  7.0944 x10~> 2.8797 x10~1  1.0483 x10~° 2.9026 x10~1 1.6752 x10~°
0.7 31423 x1071 29179 x10°! 6.8577 x107° 3.1196 x10~1 1.2981 x10~> 3.1396 x10~1 1.9021 x10~°
0.8 3.3503 x10~! 3.1539 x10~! 6.6498 x107° 3.3302 x10~1 15097 x10~° 3.3478 x10~1  2.0914 x10~®
0.9 35351 x10~!  3.3610 x10~!  6.4649 x10~* 35171 x10~! 1.6871 x10~° 3.5328 x10~1 2.2475 x10~°
1.0 3.7009 x10~1 35451 x10~1 6.2990 x10~* 3.6847 x10~1 1.8343 x10~° 3.6988 x10~! 2.3741 x10~°

Table 9. Approximate solutions and absolute errors at each point, t when & = 1.50 for solving Example 5
by using FEAM3 at different intervals, N.

N =10 N = 1000 N = 10,000
t Exact
Approx. Error Approx. Error Approx. Error

0.0  0.0000 x10° 0.0000 x10° 0.0000 x10°  0.0000 x10° 0.0000 x10°  0.0000 x10° 0.0000 x10°
02 1.1520 x1072 45689 x102 45689 x10~2  1.1518 x102 1.9701 x10~®  1.1520 x10~2 1.5952 x10~8
04 6.1440 x1072 5.8370 x102 3.0699 x107%  6.1431 x102 8.8948 x107®  6.1440 x102 7.4729 x10~8
0.6 12096 x10~! 1.1856 x10~! 2.3959 x1073  1.2095 x10~1 9.1466 X107  1.2095 x10~! 2.7482 x10~7
0.8 1.2288 x10°1! 1.2003 x10~1 2.8521 x10~3  1.2287 x10~1 1.1237 x10~¢  1.2288 x10~! 8.1659 x10~7
1.0 0.0000 x10° 2.4589 x10~3 24589 x10~3  2.1086 x10~° 2.1086 x10~®  1.0322 x10~° 1.0322 x10~°
12 —27648 x107!  —2.7182 x10~! 4.6558 x1073 —2.7648 x10~1 42249 x107°® —2.7648 x10~! 2.7720 x10~¢
14 —6.5856 x10~1  —6.9174 x10~1 3.3179 x10~2 —6.5857 x10~! 5.8588 x10~® —6.5856 x10~1 1.5672 x10~®
1.6 —9.8304 x10~!  —9.9521 x10~! 1.2165 x1072 —9.8305 x10~! 1.0593 x10~°> —9.8305 x10~! 1.1164 x10~5
1.8 —9.3312 x10~!  —9.6244 x10~1 29316 x10~2 —9.3314 x10~! 1.7703 x10~> —9.3314 x10~!  1.8906 x10~>
2.0 0.0000 x10° 1.8550 x10~2 1.8550 X102 2.2301 x10~> 22301 x107%  6.3499 x10~° 6.3499 x107>
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Table 10. Absolute error when & = 1.0 at each point, ¢ using FEAM3 with N = 10 and SFMoPF in

solving Example 4.

a«=1.0
t Exact
FEAMS3 SFMoPF

0.1 83756 x1072 9.1624 x10~° 9.3660 x10~°
02 1.4504 x10~1 85496 x10™° 1.1397 x10~*
0.3 19381 x10~! 8.0735 x10~° 1.1162 x10~*
04 23116 x10~1  7.6884 x10™5 1.0297 x10~*
05 26324 x1071 73676 x1075 9.3223 x10~°
0.6 29056 x10~!  7.0944 x10™° 8.4033 x107>
0.7 3.1423 x10~! 6.8577 x10~5 7.5850 x10~°
0.8 3.3503 x10~! 6.6497 x1075 6.8710 x10~°
0.9 35351 x10~!  6.4649 x10~* 6.2520 x10~°
1.0 3.7009 x10~!  6.2990 x10~% 5.7152 x10~°

Table 11. Absolute error when & = 1.50 and N = 100 at each point, t using FEAM3 and 3-HOFLMSM

in solving Example 5.

y(t)

0.05

0 0.1 0.2

—— 0=0.25

a =150
t
FEAMS3 3-HOFLMSM
0.2 15523 x10~% 3.2219 x10~°
04 62872 x107% 29192 x10~°
0.6 6.3215x107°% 3.9717 x10~°
0.8 5.3296 x10~>  3.4898 x10~°
1.0 34589 x10~> 1.5445 x10~°
12 25296 x10™°  1.8140 x10~5
14 9.4439 x107° 6.8333 x10~°
1.6 4.0478 x10~* 1.4371 x10~*
1.8 22499 x10~* 25759 x10~4
20 22998 x10~*  4.0599 x10—*
0.3 0.4 0.5 0.6 0.7 0.8
a=0.50 a=0.70 Exact

0.9

Figure 8. Approximate solution, y(t) against each point, ¢ of different « at N = 100 when solving

Example 4 using FEAM3.
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—e— a=1.30 o=1.50 a=1.70 a=1.90 - @ - Exact

Figure 9. Approximate solution, y(t) against each point, ¢ of different  at N = 100 when solving
Example 5 using FEAM3.

This paper also includes solving fractional Riccati differential equation (FRDE). According to [30],
it is well-known that the Riccati differential equation is concerned with applications in pattern
formation in dynamic games, linear systems with Markovian jumps, diffusion problems, river flows,
and econometric models. Therefore, many researchers have developed several analytical and numerical
methods in solving FRDE problems, since it can be considered as one of the examples of application
problems in FDE.

Table 12 presents the result on absolute error for solving FRDE problem by using FEAMS3 at
different intervals, N = 10, 100, 1000 when a« = 1.0. Based on the table, the absolute error for solving
FRDE by using FEAM3 decreases as N increases. Thus, it gives meaning whereby, as the step size
decreases, the approximate solutions approach the exact solutions. For comparison purposes, Table 13
shows the comparison result of solving the FRDE problem between FEAM3, FVIM, and MHPM when
« = 1.0 and N = 10. According to the table, FEAM3 managed to give a comparable result as FVIM
and MHPM. Furthermore, a graph shows the approximate solution at each point, and ¢ for solving the
FRDE problem is also presented in Figure 10, where the approximate solutions do indeed approach
the exact solution as « increases. Therefore, this implies that FEAMS3 is able to perform well in solving
nonlinear FDEs.

Table 12. Absolute error at each point, ¢ in solving Example 6 by using FEAM3 when a« =1.0 for
different values of N.

a« = 1.00
t
N =10 N =100 N = 1000

0.0 0.0000 x10°  0.0000 x10°  0.0000 x109
0.1 3.3201 x10~® 1.9293 x10~7 5.0289 x10~8
02 1.6247 x10~® 3.7449 x10~% 1.0653 x10~7
0.3 1.3343 x107° 9.0931 x10~% 1.5932 x10~7
04 53423 x10™%  1.3975 x1075 2.0725 x107°
0.5 49208 x10~% 1.8286 x10™° 2.4929 x10~°
0.6 45129 x10™% 2.1961 x10™5 2.8479 x10~°
0.7 39082 x10~%* 24971 x10~5 3.1351 x10~°
0.8 3.3488 x10~% 2.7323 x10™° 3.3549 x10~°
0.9 2.8359 x10~% 29049 x10~° 3.5108 x10~°
1.0 23869 x10~* 3.0198 x10~° 3.6079 x10~°
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Table 13. Approximate solution and absolute error at each point, t when & = 1.0 with N = 10 in
solving Example 6 by using FEAM3 compared to previous methods, FVIM and MHPM.

FVIM MHPM FEAM3
t Exact

Approx. Error Approx. Error Approx. Error

0.0 0.0000 x10°  0.0000 x10°  0.0000 x10°  0.0000 x10°  0.0000 x10°  0.0000 x10°  0.0000 x10°

0.1 9.9667 x1072  9.9967 x10=2  0.0000 x10°  9.9667 x10~2  0.0000 x10°  9.9966 x10~2  3.3201 x10~°
02 19738 x1071 1.9738 x10~!  0.0000 x10° 1.9738 x10~1  0.0000 x10° 1.9737 x10~1  1.6247 x10~°
0.3 29131 x1071 29132 x10~!  8.0000 x10~® 29131 x10~1 0.0000 x10° 29131 x10~1 1.3343 x10~>
04 37995 x10~! 3.8001 x10~! 57000 x10~> 3.7994 x10~1  4.0000 x10~° 3.7995 x10~! 5.3423 x10~*
05 4.6212 x10~1  4.6234 x10~!  2.5800 x10~* 4.6208 x10~1  3.9000 x10~5 4.6212 x10~1  4.9208 x10~*
0.6 5.3705 x1071 53792 x10~! 8.7400 x10~% 5.3686 x10~1 1.9200 x10~* 5.3702 x10~1 45129 x10~*
0.7 6.0437 x1071  6.0677 x10~1  2.4010 x1073 6.0363 x10~1  7.3600 x10~* 6.0434 x10~1 3.9082 x10~*
0.8 6.6404 x107!1  6.6970 x10~!  5.6590 x1073  6.6171 x10~1 23300 x10~3  6.6401 x10~1 3.3488 x10~*
09 7.1630 x10~! 72814 x10~! 1.1842 x1072  7.0992 x10~! 63780 x10~3 7.1626 x10~1  2.8359 x10~*
1.0 7.6159 x10~1  7.8413 x10~1 22532 x1072 7.4603 x10~!1 15562 x1072 7.6155 x10~! 2.3869 x10~*

y(t)
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Figure 10. Approximate solution, y(t) against each point, ¢ of different « at N = 100 when solving
Example 6 using FEAMS3.

6. Conclusions

This paper has proposed a numerical method known as a fractional explicit Adams method
of order 3, FEAMS3. The numerical results obtained for each example authenticate that FEAM3 is
adequate to preserve accuracy in solving both linear and nonlinear FDEs. The results also validate
the convergence analysis where the approximate solutions are indeed converged and approach the
exact solution as the step size, h, decreases. Additionally, FEAMS3 is proven to be capable of achieving
comparable results as the existing methods in each example. Furthermore, this paper also includes
solving problems of FDE for the case of single and higher order, where the results have shown that the
increment in the value of « yields better accuracy in solving both linear and nonlinear FDE problems.
Therefore, it is proven that FEAM3 is competent and reliable to act as an alternative method to solve
different kinds of FDEs.



Mathematics 2020, 8, 1675 22 of 23

Author Contributions: Formal analysis, Z.A.M.; Investigation, N.A.Z.; Methodology, N.A.Z.; Project
administration, Z.A.M.; Resources, A.K. and ER.; Supervision, Z.A.M.; Writing—original draft, N.A.Z,;
Writing—review and editing, Z.A.M. All authors have read and agreed to the published version of the manuscript.

Funding: The authors gratefully acknowledge the financial support of Research University Grant (Putra Impact
Grant: UPM/800-3/3/1/9629200) from Universiti Putra Malaysia.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Assaleh, K.; Ahmad, WM. Modeling of speech signals using fractional calculus. In Proceedings of the 2007
9th International Symposium on Signal Processing and Its Applications, Sharjah, UAE, 12-15 February 2007;
pp- 1-4.

Podlubny, I. Fractional-order systems and fractional-order controllers. Inst. Exp. Phys. Slovak Acad. Sci. Kosice
1994, 12, 1-18.

Torvik, PJ.; Bagley, R.L. On the appearance of the fractional derivative in the behavior of real materials.
J. Appl. Mech. 1984, 51, 294-298. [CrossRef]

Olmstead, W.E.; Handelsman, R.A. Diffusion in a semi-infinite region with nonlinear surface dissipation.
SIAM Rev. 1976, 18, 275-291. [CrossRef]

Woon, S. Analytic continuation of operators applications: From number theory and group theory to quantum
field and string theories. Rev. Math. Phys. 1999, 11, 463-501. [CrossRef]

Bagley, R.L.; Torvik, PJ. On the fractional calculus model of viscoelastic behavior. J. Rheol. 1986, 30, 133-155.
[CrossRef]

Biala, T.A.; Jator, S.N. Block implicit Adams methods for fractional differential equations.
Chaos Solitons Fractals 2015, 81, 365-377. [CrossRef]

Garrappa, R. On some explicit Adams multistep methods for fractional differential equations. J. Comput.
Appl. Math. 2009, 229, 392-399. [CrossRef]

Kazem, S. Exact solution of some linear fractional differential equations by Laplace transform. Int. |.
Nonlinear Sci. 2013, 16, 3-11.

Li, C; Tao, C. On the fractional Adams method. Comput. Math. Appl. 2009, 58, 1573-1588. [CrossRef]
Eslahchi, M.R.; Dehghan, M.; Parvizi, M. Application of the collocation method for solving nonlinear
fractional integro-differential equations. J. Comput. Appl. Math. 2014, 257, 105-128. [CrossRef]

Wazwaz, A.M. The variational iteration method: A reliable analytic tool for solving linear and nonlinear
wave equations. Comput. Math. Appl. 2007, 54, 926-932. [CrossRef]

Khan, Y.; Faraz, N.; Yildirim, A.; Wu, Q. Fractional variational iteration method for fractional initial-boundary
value problems arising in the application of nonlinear science. Comput. Math. Appl. 2011, 62, 2273-2278.
[CrossRef]

Liao, S. Homotopy analysis method: A new analytical technique for nonlinear problems. Commun. Nonlinear
Sci. Numer. Simul. 1997, 2, 95-100. [CrossRef]

Zurigat, M.; Momani, S.; Alawneh, A. Analytical approximate solutions of systems of fractional
algebraic—differential equations by homotopy analysis method. Comput. Math. Appl. 2010, 59, 1227-1235.
[CrossRef]

Podlubny, I. Numerical solution of ordinary fractional differential equations by the fractional difference
method. In Advances in Difference Equations: Proceedings of the Second International Conference on Difference
Equations; Elaydi S., Gyori I. and Ladas G., Eds.; Gordon and Breach: Amsterdam, The Netherland, 1997.
Gorenflo, R. Fractional calculus: Some numerical methods. In Fractals and Fractional Calculus in Continuum
Mechanics; Carpinteri A. and Mainardi, F,, Eds.; Springer-Verlag: Vienna, Austria, 1997; pp. 277-290.
Diethelm, K.; Ford, N.J.; Freed, A.D. A predictor—corrector approach for the numerical solution of fractional
differential equations. Nonlinear Dyn. 2002, 29, 3-22. [CrossRef]

Galeone, L.; Garrappa, R. On multistep methods for differential equations of fractional order. Mediterr. ]. Math.
2006, 3, 565-580. [CrossRef]

Btaszczyk, T.; Leszczyriski, J.S. Using the Euler’s method to solve ordinary differential equations of higher
order with a mixture of integer and Caputo derivatives. Sci. Res. Inst. Math. Comput. Sci. 2007, 6, 31-40.


http://dx.doi.org/10.1115/1.3167615
http://dx.doi.org/10.1137/1018044
http://dx.doi.org/10.1142/S0129055X99000179
http://dx.doi.org/10.1122/1.549887
http://dx.doi.org/10.1016/j.chaos.2015.10.007
http://dx.doi.org/10.1016/j.cam.2008.04.004
http://dx.doi.org/10.1016/j.camwa.2009.07.050
http://dx.doi.org/10.1016/j.cam.2013.07.044
http://dx.doi.org/10.1016/j.camwa.2006.12.038
http://dx.doi.org/10.1016/j.camwa.2011.07.014
http://dx.doi.org/10.1016/S1007-5704(97)90047-2
http://dx.doi.org/10.1016/j.camwa.2009.07.002
http://dx.doi.org/10.1023/A:1016592219341
http://dx.doi.org/10.1007/s00009-006-0097-3

Mathematics 2020, 8, 1675 23 of 23

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

Diethelm, K.; Ford, N.J.; Freed, A.D. Detailed error analysis for a fractional Adams method. Numer. Algorithms
2004, 36, 31-52. [CrossRef]

Diethelm, K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using
Differential Operators of Caputo Type; Springer-Verlag: Berlin/Heidelberg, Germany, 2010.

Gnitchogna, R.; Atangana, A. New two step Laplace Adam-Bashforth method for integer a noninteger order
partial differential equations. Numer. Methods Partial Differ. Equ. 2018, 34, 1739-1758. [CrossRef]

Lambert, J.D. Computational Methods in Ordinary Differential Equations; Wiley: Hoboken, NJ, USA, 1973.
Bonab, Z.F,; Javidi, M. Higher order methods for fractional differential equation based on fractional backward
differentiation formula of order three. Math. Comput. Simul. 2020, 172, 71-89. [CrossRef]

Biala, T.A.; Jator, S.N. Block backward differentiation formulas for fractional differential equations. Int. J.
Eng. Math. 2015, 2015, 650425. [CrossRef]

Ahmed, H. Fractional Euler method; an effective tool for solving fractional differential equations. J. EQypt.
Math. Soc. 2018, 26, 38-43. [CrossRef]

Al-Rabtah, A.; Momani, S.; Ramadan, M.A. Solving linear and nonlinear fractional differential equations
using spline functions. Abstr. Appl. Anal. 2012, 2012, 426514. [CrossRef]

Lin, R;; Liu, F. Fractional high order methods for the nonlinear fractional ordinary differential equation.
Nonlinear Anal. Theory Methods Appl. 2007, 66, 856-869. [CrossRef]

Merdan, M. On the solutions fractional Riccati differential equation with modified Riemann-Liouville
derivative. Int. J. Differ. Equ. 2012, 2012, 346089. [CrossRef]

Odibat, Z.; Momani, S. Modified homotopy perturbation method: Application to quadratic Riccati
differential equation of fractional order. Chaos Solitons Fractals 2008, 36, 167-174. [CrossRef]

@ (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1023/B:NUMA.0000027736.85078.be
http://dx.doi.org/10.1002/num.22216
http://dx.doi.org/10.1016/j.matcom.2019.12.019
http://dx.doi.org/10.1155/2015/650425
http://dx.doi.org/10.21608/JOEMS.2018.9460
http://dx.doi.org/10.1155/2012/426514
http://dx.doi.org/10.1016/j.na.2005.12.027
http://dx.doi.org/10.1155/2012/346089
http://dx.doi.org/10.1016/j.chaos.2006.06.041
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Fractional Explicit Adams Method of Order 3 
	Analysis of the Method 
	Order of the Method
	Stability Analysis
	Single Order
	Higher Order

	Convergence Analysis

	Implementation 
	Algorithm of the Method

	Numerical Results  
	Conclusions
	References

