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Abstract: A distributed system guarantees the acceptance of Byzantine fault tolerance (BFT) for
information transmission. Practical BFT (pBFT) and asynchronous BFT (aBFT) are among the various
available forms of BFT. Distributed systems generally share information with all participating nodes.
After information is shared, the systems reshare it. Thus, ensuring BFT consumes a considerable
amount of time. Herein, we propose Decision search protocols that apply the gossip protocol,
denoted by DecisionBFT, for distributed networks with guaranteed BFT. Each protocol in DecisionBFT
is completely asynchronous and leaderless; it has an eventual consensus but no round-robin or
proof-of-work. The core concept of the proposed technology is the consensus structure, which is
based on the directed acyclic graph (DAG) and gossip protocol. In the most general form, each
node in the algorithm has a set of k neighbors of most preference. When receiving transactions, a
node creates and connects an event block with all its neighbors. Each event block is signed by the
hashes of the creating node and its k peers. The consensus structure of the event blocks utilizes a
DAG, which guarantees aBFT. The proposed framework uses Lamport timestamps and concurrent
common knowledge. Further, an example of a Decision search algorithm, based on the gossip
protocol DecisionBFT, is presented. The proposed DecisionBFT protocol can reach a consensus when
2/3 of all participants agree to an event block without any additional communication overhead.
The DecisionBFT protocol relies on a cost function to identify the k peers and generate the DAG-based
consensus structure. By creating a dynamic flag table that stores connection information between
blocks, the gossip protocol achieves a consensus in fewer steps than that in the case of the existing
aBFT protocol.

Keywords: consensus algorithm; byzantine fault tolerance; gossip protocol; continuous common
knowledge; lamport timestamp; directed acyclic graph

1. Introduction

Beyond the success of cryptocurrencies, blockchain has recently emerged as a technology platform
that offers secure, decentralized, and consistent transaction ledgers and has driven innovation across
domains including in financial systems, supply chains, and health care. Despite the high demand
for distributed ledger technology [1], commercialization opportunities have been obstructed by long
processing times for consensus and high power consumption. These issues have been addressed in
consensus algorithms such as [2-5].
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Byzantine fault tolerance (BFT) that ensures information sharing of two-thirds of participation
nodes is usually addressed in distributed database systems [6]. In distributed database systems,
we can consider that the proof of Byzantine fault tolerance is equivalent to the purpose of
the consensus algorithm. It means that the consensus algorithm guarantees the integrity of
transactions between participation nodes in distributed systems [7,8]. Byzantine consensus is not
guaranteed for deterministic, completely asynchronous systems with unbounded delays [9]. However,
achieving consensus is feasible for nondeterministic systems with a probability of one.

Several approaches have been proposed to reach consensus in distributed systems. The original
Nakamoto consensus protocol in Bitcoin uses Proof-of-Work (PoW), in which it is computationally
intensive to generate the blocks by participants [10]. Alternative schemes, such as the Proof-of-Stake
(PoS) [11], use participants’ stakes to generate the blocks. Another approach utilizes directed acyclic
graphs (DAG) [4,5,12-14] to facilitate consensus.

Tangle [15], Byteball [16], and Hashgraph [17] are examples of DAG-based consensus algorithms.
Tangle selects the blocks to connect in the network, utilizing the accumulated weight of the nonce and
Monte Carlo Markov Chain (MCMC). Byteball generates a main chain from the DAG and reaches
consensus by using the index information of the chain. Hashgraph connects each block from a node to
another random node and searches for whether 2/3 of the members can reach each block and provides
proof of BFT via graph search.

1.1. Motivation

Practical Byzantine Fault Tolerance (pBFT) allows all nodes to successfully reach an agreement
for a block (information) when a Byzantine node exists [18]. In pBFT, a consensus is reached after
all participants share a created block and reshare the share information [19,20]. After consensus is
achieved, the block is added to the participants’ chains [18,21]. Currently, the time complexity of pBFT
is considered to be O(N*).

HashGraph [17] proposes “gossip about gossip” and virtual voting to reach consensus.
HashGraph has several limitations. First, the algorithm operates on a known network, which requires
full awareness of all authoritative participants. Second, gossip propagation is slow, and latency
increases to O(n) with n participants. Third, it remains unclear whether virtual voting is faster than
the chain weight, also known as the longest chain/proof of work concept. These issues are gossip
problems rather than consensus problems.

We are interested in a new approach to address the aforementioned issues in methods based on
pBFT [18-20] and HashGraph [17]. Specifically, we propose a new consensus algorithm that addresses
the following questions: (1) can we reach local consensus in a k-cluster faster for certain values of
k? (2) Can we accelerate the spreading of gossip, such as using a broadband-based gossip subset?
(3) Can continuous common knowledge be used for consensus decisions with high probability? (4) Can
complex decisions be reduced to a binary value consensus?

In this paper, we propose a new approach that can quickly search for Byzantine nodes within
the block DAG. In particular, we introduce a new consensus protocol we named the Decision search
protocol. The core idea of this protocol is to use a new DAG-based structure, the consensus structure,
which allows a faster path search for consensus. We then propose an example of the protocol class,
which is referred to as the Decision search protocol, DecisionBFT.

1.2. Generic Framework of DecisionBFT Protocols

We introduce a generic framework of Decision search protocols, DecisionBFT. The Decision search
protocol is a DAG-based asynchronous non-deterministic protocol that guarantees aBFT. We propose a
consensus structure for a new DAG structure for faster consensus. The consensus protocol generates
each block asynchronously, and the consensus algorithm achieves consensus by confirming the number
of nodes that know the blocks using the structure. Figure 1 shows an example of the consensus structure
that was constructed by using the Decision search protocol. This structure is the result of guaranteed



Mathematics 2020, 8, 1673 3 of 38

finality. In other words, the color is grouped among events that can verify more than 2/3 of different
stages after completing the entire process until re-selection.
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Figure 1. Example of a consensus structure.

The Decision search protocol is based on the following main concepts:

e Event block: All nodes can create event blocks at time . The structure of an event block
includes the signature, generation time, transaction history, and hash information to references.
The information of the referenced event blocks can be copied by each node. The first event block
of each node is referred to as a leaf event.

e Decision search protocol: Decision search protocol is the set of rules that govern the
communication between nodes. When each node creates event blocks, it determines which
nodes choose other nodes to broadcast to. Node selection can either be random or occur via a
cost function.

e  Happened-before: Happened-before is the relationship between nodes that have event blocks.
If a path exists from an event block x to y, then x is Happened-before y, which means that the
node creating y knows event block x.

* Root: An event block is termed a Root if either (1) it is the first generated event block of a
node, or (2) it can reach more than two-thirds of other Roots. Every Root can be a candidate
for subDecision.

. Root set: Root set (Rs) is the set of all Roots in the frame. The cardinality of the set is
2n/3 < Rs < n, where n is the number of all nodes.

e  Frame: Frame f is a natural number that separates Root sets. The frame increases by 1 in the case
of a Root in the new set (f + 1). Moreover, all event blocks between the new set and the previous
Root set are included in the frame f.

¢  Flag table: The Flag table stores the reachability from an event block to another Root. The sum of
all reachabilities, namely all values in the flag table, indicates the number of reactions from an
event block to other Roots.

¢  Lamport timestamps: For topological ordering, the algorithm responsible for Lamport timestamps
uses the happened-before relation to determine the partial order of the entire event block based
on logical clocks.

e  subDecision: A subDecision is a Root that satisfies being known by more than 2n/3 nodes and
more than 2n/3 nodes know the information that is known in nodes. A subDecision can be a
candidate for a Decision.

®  Decision: A Decision is assigned consensus time by using the Decision search algorithm and is
utilized for determining the order between event blocks. Decision blocks allow time consensus
ordering and responses to attacks.

*  Re-selection: To solve the Byzantine agreement problem, each node reselects a consensus time
for a sub-selection, based on the collected consensus time in the Root set of the previous frame.
When the consensus time reaches the Byzantine agreement, a subDecision is confirmed as a
Decision and is then used for time consensus ordering.
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e Consensus structure: The consensus structure is the local view of the DAG held by each node,
this local view is used to identify topological ordering, select subDecision, and create time
consensus through Decision selection.

As a motivating example, Figure 2 illustrates how consensus is reached via a path search in the
consensus structure. In the figure, the leaf set, denoted by Ry, consists of the first event blocks created
by individual participant nodes. V is the set of event blocks that belong to neither Ryy nor any Root
set Rg;. Given a vertex v in V U Ry;, there exists a path from v that can reach a leaf vertex u in Ry.
Let rq and r, be the Root event blocks in Root set Rs; and Ry, respectively. Here, rq is the block in
which a quorum or more blocks exist on a path that reaches a leaf event block. Every path from r{ to a
leaf vertex contains a vertex in Vj. Thus, if there exists a vertex r in V; such that r is created by more
than a quorum of participants, then r is already included in Ry;. Likewise, r, is a block that can be
reached for R including r; by using blocks created by a quorum of participants. All leaf event blocks
that could be reached by r; are connected with more quorum participants through the presence of ;.
The existence of the Root 7, shows that the information of r; is connected with more than a quorum.
This kind of path search allows the chain to reach consensus in a similar manner as the aBFT consensus
processes. It is essential to keep track of the blocks that satisfy the aBFT consensus process to accelerate

path search.
Leaf events Vv, Vv,
s N
O
O
O
O
@) Leaf set: an initial set of vertices by participants
Vertex set (V,): a set of vertices created by participants

Root set (R,): blocks created by participants

Figure 2. Consensus method that employs path-search in a directed acyclic graph (DAG) (combines
chain with consensus process of asynchronous Byzantine fault tolerance (aBFT)).

1.3. Decision Search Protocol

We now introduce a new specific consensus protocol, namely DecisionBFT. This protocol
DecisionBFT is a DAG-based asynchronous non-deterministic protocol that guarantees aBFT.
DecisionBFT generates each block asynchronously and uses the consensus structure for faster consensus
by verifying the number of nodes that know the blocks.

In this DecisionBFT protocol, we propose several algorithms. In particular, we introduce an
algorithm in which a node can identify lazy participants from among its cost-effective peers—say,
its k peers. We must stress that a generic Decision search protocol does not depend on any k peer
selection algorithm; each node can choose k peers randomly. Each message created by a node is then
signed by the creating node and its k peers. We also introduce a flag table data structure that stores
the connection information of event blocks. The flag table allows us to quickly traverse the consensus
structure to find reachability between event blocks.

The consensus structure can be used to optimize the path search. By using certain event blocks
(Root, subDecision, and Decision), a set of Decisions can maintain reliable information between event
blocks and reach consensus. Generating event blocks via the Decision search protocol, the consensus
structure is updated frequently and can respond strongly to attack situations such as forking and
parasite attack. Further, using the flag table over the consensus structure, consensus can be quickly
reached, and the ordering between specific event blocks can be determined.
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1.4. Contributions

In summary, this study makes the following contributions:

e  We propose new consensus protocols, namely Decision search protocols. We introduce the
consensus structure for faster consensus.

*  We define the topological ordering of nodes and event blocks in the consensus structure.
Lamport timestamps are used to introduce more intuitive and reliable ordering in distributed
systems. We introduce a flag table at each top event block to improve Root detection.

¢ We present proof of the way in which a DAG-based protocol can implement concurrent common
knowledge for consistent cuts.

®  The Decision search protocols allow for faster node synchronization with k-neighbor broadcasts.

* A specific Decision search protocol DecisionBFT is then introduced with specific algorithms.
The benefits of the Decision search protocol DecisionBFT include (1) the Root selection algorithm
via the flag table, (2) an algorithm to build the DAG, (3) an algorithm for k peer selection via a
cost function; (4) faster consensus selection via k peer broadcasts;

The remainder of this paper is organized as follows. In Section 2, we provide an overview of
blockchain-related work as well as existing DAG-based protocols. We also describe the preliminaries
of our protocols. Section 3 describes our new consensus protocol (Decision search protocol). Section 4
provides proof of Byzantine fault tolerance for our consensus protocol (Decision search protocol).
Section 5 presents the consensus algorithm (Decision search algorithm). Several discussions about the
Decision search protocols are presented in Section 6. Section 7 concludes the paper with suggestions
for future work.

2. Background
2.1. Related Work

2.1.1. Consensus Algorithms

In a consensus algorithm, all participant nodes of a distributed network share transactions and
agree with the integrity of the shared transactions [6]. This is equivalent to proving the Byzantine
fault tolerance (BFT) in distributed database systems [7,8]. Practical BFT (pBFT) allows all nodes to
successfully reach an agreement for a block when a Byzantine node exists [18].

Numerous consensus algorithms have been proposed [2,3]. Proof-of-Work (PoW) requires
large amounts of computational work to generate the blocks [10]. Proof-of-Stake (PoS) [11] used
participants’ stakes and delegated participants’ stakes to generate the blocks. Alternative schemes have
been proposed to improve algorithms using directed acyclic graphs (DAG) [12]. These DAG-based
approaches utilize graph structures to decide consensus; blocks and connections are considered as
vertices and edges, respectively.

2.1.2. DAG-Based Approaches

IOTA [15] published a DAG-based technology known as Tangle. The Tips concept was used to
address scalability issues within the limitations of the Internet of Things. In addition, a nonce that uses
the weight level was composed to achieve the transaction consensus by setting the user’s difficulty.
To solve the double-spending problem and parasite attack, they used the Markov chain Monte Carlo
(MCMC) tip selection algorithm, which randomly selects tips based on the size of the accumulated
transaction weights. However, if a transaction conflicts with another, there is still a need to examine all
past transaction history to find the conflict.

Byteball [16] uses an internal pay system based on bytes. This is used to pay for adding data
to the distributed database. Storage units are all connected to each other, which includes hashes of
previous storage units. In particular, the consensus ordering is composed by selecting a single main
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chain, which is determined as a Root consisting of the most Roots. A majority of Roots detects the
double-spend attempts through the consensus time of the main chain. The fee is charged according
to the size of the bytes, and requires a list of all units to be searched and updated in the process of
determining the Roots.

RaiBlocks [22] have been developed to lower high fees and slow transaction processing. It is a
process of obtaining consensus by using a balance-weighted vote on conflicting transactions. Each node
participating in the network becomes the principal and manages its data history locally. However,
because RaiBlocks generate transactions in a similar way to the anti-spam tool of PoW, all nodes must
communicate to create transactions. In terms of scalability, steps would need to be inserted to verify
the entire history of transactions when a new node is added.

Hashgraph [17] is an asynchronous DAG-based distributed ledger. Each node is connected by
its own ancestor and randomly communicates known events through a gossip protocol. At this time,
any famous node can be determined by the see and strong-see relationship at each round to reach a
consensus quickly. They state that if more than 2/3 of the nodes reach consensus for an event, it will
be assigned a consensus position.

Conflux [14] is a DAG-based Nakamoto consensus protocol. Conflux is a fast, scalable,
and decentralized blockchain system that optimistically processes concurrent blocks without discarding
any as forks. The Conflux protocol achieves consensus on the total order of the blocks. The total order
of the transactions is determined by all participants in the network. Conflux can tolerate up to half
of the network as malicious, while the BFT-based approaches can only tolerate up to one-third of
malicious nodes.

Parsec [13] proposed a consensus algorithm that guarantees Byzantine faults tolerance in a
random synchronous network. Similar to Hashgraph [17], there is no leader. In the algorithm,
there is no round-robin and no proof-of-work either. The consensus occurs with a probability of
one. Unlike Hashgraph, it provides high-speed processing even in the presence of faults. The parsec
algorithm reaches BFT consensus with very weak synchrony assumptions. The algorithm delivers the
messages with random delays and the average delay is finite. It allows up to one-third of Byzantine
(arbitrary) failures.

Phantom [5] is a protocol based on PoW for a permissionless ledger with a DAG concept. To set
higher throughput, PHANTOM can adjust the level of tolerance. For this, the algorithm uses parameter
k to control the blocks created concurrently. PHANTOM utilizes a greedy algorithm on the graph
structures to identify between blocks by honest nodes and others. This distinction endows PHANTOM
with a robust total order of the blocks that is eventually agreed upon by all honest nodes.

Specter [4] is a protocol for cryptocurrencies. It is based on PoW and relies on DAG to generalize
blockchain structures. It remains secure from attackers with up to 50% of the computational power
even under high throughput and fast confirmation times. The SPECTRE protocol satisfies weaker
properties than classic consensus requires. In SPECTRE, the order between any two transactions
can be decided from transactions performed by honest users. This is different from the conventional
paradigm in which the order must be decided by all non-corrupt nodes.

Blockmania [21], is a mechanism to achieve consensus with several advantages over the more
traditional pBFT protocol and its variants. In Blockmania, nodes in a quorum only emit blocks linking
to other blocks, irrespective of the consensus state machine. The resulting DAG of blocks (block DAG)
is later interpreted to ensure consensus safety, finality, and liveliness. The resulting system has a
communication complexity of O(N?) even in the worst case, and low constant factors, as compared to
O(N*) for pBFT.

Table 1 shows the highlight of related studies for DAG-based approaches
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Table 1. Recent studies on DAG-based approaches.

Approach Description Limitation
The Markov chain Monte Carlo
IOTA [15] (MCMC) tip selection algorithm Time consuming to detect conflicts

and DAG-based techniques

Consensus ordering is composed
by selecting a single main chain,
which is determined as a Root
consisting of the most Roots.

Byteball [16] Time consuming to reach consensus

A process of obtaining consensus
RaiBlocks [22] through the balance weighted vote Time consuming to reach consensus
on conflicting transactions.

Each node is connected by its own ancestor
Hashgraph [17]  and randomly communicates known events ~ Each node maintains large information
through a gossip protocol.

Conflux [14] DAG-based Nakamoto consensus protocol. Time consuming to reach consensus

An consensus algorithm
Parsec [13] that guarantees Byzantine faults tolerance
in a random synchronous network.

It allows up to one-third Byzantine
(arbitrary) failures.

A protocol based on PoW
Phantom [5] for a permission-less ledger Time consuming to reach consensus
with a DAG concept.

A protocol based on PoW and DAG
to generalize blockchain structures.

Specter [4] Time consuming to reach consensus

A mechanism to achieve consensus with
Blockmania [21]  several advantages over the more traditional
pBFT protocol and its variants.

Only provides communication efficiency,
not consensus protocol.

2.1.3. Lamport Timestamps

Lamport [23] defines the “happened-before” as the relation between any pair of events in a
distributed system of machines. The happened-before relation, denoted by —, is defined without
using physical clocks to partially order events in the system. The relation “—" satisfies the following
three conditions: (1) if v and ¢’ are events in the same process, and v precedes v/, then v — /; (2) if
v is the action for sending a message by one process and ¢’ is the receipt of the sent message by
another process, then v — v/; (3) if v — v/ and v/ — v then v — v”. Two distinct events v and v’ are
considered to be concurrent if v - v’ and v' - v. The happens-before relation can be viewed as a
causality effect: that v — v’ implies that event v may causally affect event ¢’. If one cannot causally
affect another, two events are concurrent.

Lamport introduces logical clocks, which are a way of assigning a number to an event. A clock C;
for each process P; is a function that assigns a number C;(v) to any event v € P;. The entire system of
blocks is represented by the function C that assigns to any event v the number C(v), where C(v) = C;(v)
if b is an event in process P;. The Clock Condition states that for any events v, v': if v — v/, then C(v)
< C(?').

To satisfy the Clock Condition, the clocks must satisfy two conditions. First, each process i
increments C; between any two successive events. Second, each message m contains a timestamp T,
which means the time at which the message is sent. After receiving a message with T}, a process
advance the clock to be later than T},.

Given any arbitrary total ordering < of the processes, the total ordering = is defined as follows:
if v is an event in process P; and v’ is an event in process Pj, then v = ¢’ if and only if either (i)
Ci(v) < Cj(v') or (ii) C(v) = Cj(v') and P; < P;. The Clock Condition implies that if v — ¢/,
thenv = v'.



Mathematics 2020, 8, 1673 8 of 38

2.1.4. Concurrent Common Knowledge

Panangaden and Taylor [24] defined a model to explain the concurrent common knowledge (CCK)
in asynchronous distributed systems. The system consists of a series of processes that can communicate
only by transmitting messages along a fixed set of channels. The network is not necessarily fully
connected. The system is asynchronous in that it does not include a global clock, and the relative speed
of the process is independent. The delivery time for a message is finite but unbounded.

The local state of a process is denoted by sﬂ. Actions are state transformers; an action is a function
from local states to local states. An action can be either a send(m) action, where m is a message,
a receive(m) action, and an internal action. #; is a local history of process i. It is a (possibly infinite)
sequence of alternating local states starting with distinct initial states and actions. We write this

?, zx},s}, zx%, slz, zx?..., where sf is the j-th state (action) in the local history

sequence as follows: h; = s
of process i.

An asynchronous system consists of the following sets: a set P = {1,...,N} of process identifiers;
aset C C {(i,j) s.t. i,j € P} of channels. A set H; of possible local histories for each process; a set A of
asynchronous runs, where each run is ¢ = (hy, hy, hs, ...hy), and a set M of messages.

The CCK model of an asynchronous system does not mention time, but rather, events are ordered
based on Lamport’s happens-before relation. They use Lamport’s theory to describe the global states
of an asynchronous system. They use the concepts of the global-state and consistent-run to define a
model of concurrent common knowledge.

With this paper, we are the first to define semantics for DAG-based protocols. In particular,
we use concurrent common knowledge [24] as the basis for explaining the BFT of asynchronous
distributed systems.

2.2. Preliminaries

The history of a Decision search protocol can be represented by a DAG, G = (V, E), where V is
a set of vertices and E is a set of edges. Each vertex in a row (node) represents an event. Time flows
from left-to-right along the graph, thus the left vertices represent events that occurred earlier in history.
A path p in G is a sequence of vertices (v1, vy, . . ., Ux) obtained by following the edges in E. Let v, be a
vertex in G. A vertex vy, is the parent of v, if there is an edge from v, to v.. A vertex v, is an ancestor
of v, if there is a path from v, to v..

Definition 1 (node). Each machine that participates in the Decision search protocol is referred to as a node.

Let n denote the total number of nodes. In Decision search protocols, we assume that # is a
fixed number.

Definition 2 (event block). Each node can create event blocks and send (receive) messages to (from) other nodes.
Definition 3 (vertex). An event block is a vertex of the consensus structure.

Suppose a node n; creates an event v, after an event vs in n;. Each event block has exactly k
references, one of which is self-reference, and the other k — 1 references point to the top events of the
k — 1 peer nodes of n;.

Definition 4 (peer node). A node n; has k peer nodes.
Definition 5 (top event). An event v is the top event of a node n; if no other event in n; references v.

Definition 6 (self-ref). An event v is termed the “self-ref” of event v, if the self-ref hash of v, points to the
event vs. We denote v, —*° vs.
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Definition 7 (ref). An event v, is termed the “ref” of event v, if the reference hash of v, points to the event vy.
We denote v, —" v,.

For simplicity, we can use — to denote a reference relationship (either <" or —°).

Definition 8 (self-ancestor). An event block v, is the self-ancestor of an event block v, if there exists a sequence
of events such that v, —° vy —=° ... =° vy, =% v,. We denote v, —°* v,.

Definition 9 (ancestor). An event block v, is an ancestor of an event block v, if there exists a sequence of
events such that v — v < ... = vy — v,. We denote v, —* v,.

For simplicity, we simply use v, —“ v to refer to both ancestor and self-ancestor relationships,
unless we need to distinguish between the two cases.

Definition 10 (Consensus structure). The consensus structure is a DAG graph G = (V, E) consisting of V
vertices and E edges. Each vertex v; € V is an event block. An edge (v;,v;) € E refers to a hashing reference
from v; to vj; that is, v; — v;.

Domination Relation
Then, we define the domination relation for the event blocks. To begin with, we first introduce

pseudo-vertices, top and bot, of the DAG consensus structure G.

Definition 11 (pseudo top). A pseudo-vertex, termed the top, is the parent of all top event blocks.
Denoted by T.

Definition 12 (pseudo bottom). A pseudo-vertex, termed the bottom, is the child of all leaf event blocks.
Denoted by L.

With the pseudo-vertices, we have that L happened before all event blocks. In addition, all event
blocks happened before T. That is, for all events v;, L. — v;, and v; — T.

Definition 13 (dom). An event vy dominates an event vy if every path from T to vy is required to pass through
v4. We denote vy >> vy.

Definition 14 (strict dom). An event v, strictly dominates an event vy if vy > vy and vy does not equal vy.
We denote vg >° vy.

Definition 15 (domfront). A vertex v, is said to be a vertex vy if vy dominates an immediate predecessor of
vy, but vy does not strictly dominate vy. We denote v, > o,

Definition 16 (dominance frontier). The dominance frontier of a vertex vy is the set of all nodes vy such that
vg > vy. Denoted by DF (v,).

From the above definitions of the domfront and dominance frontier, the following holds.
If v; >/ vy, then v, € DF(vy).
Here, we introduce a new idea that extends the concept of domination.

Definition 17 (subgraph). For a vertex v in a DAG G, let G[v] = (Vy, Ey) denote an induced-subgraph of G
such that V,, consists of all ancestors of v including v, and E, is the induced edges of V;, in G.
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For a set S of vertices, an event v, %—dominates S if there are more than 2/3 of vertices v, in S
such that v; dominates v,. Recall that Ry is the set of all leaf vertices in G. The %-dom set Dy is the
same as the set Ry. The %—dom set D; is defined as follows:

Definition 18 (%-dom set). A vertex vy belongs to a %—dom set within graph Glvy), if v4 %—dominates Rj.
The %—dom set Dy, consists of all Roots d; such that d; ¢ D;, Vi =1..(k-1), and d; %—dominates D; 1.

Lemma 1. The %—dom set D; is the same as the Root set R; for all nodes.
Table 2 contains the notations of symbols used in definitions, propositions, and lemmas.

Table 2. Notations of symbols used in definitions, propositions, and lemmas.

Symbol Name Definition Example

ya rof reference hash of an event block 0. s
points to another event block ¢ 4

T pseudo-top parent of all top event blocks T

1 pseudo-bottom child of all leaf event blocks 1

— Happened-Immediate-Before  if vy is a (self-) ref of vy, Ux > Uy

— Happened-Before if vy is a (self-) ancestor of vy Ux — Uy
Two event blocks are said

I concurrent to be concurrent if neither of them vy || vy
happened before the other

M fork If two event blocks have the same creator vy 1h vy

2.3. Examples of Dominant Relation in Consensus Structure

This section provides several examples of consensus structures and the dominant relation between
their event blocks.

Figure 3 shows examples of consensus structure and dominator trees. The dominator tree is
based on Dominator in graph theory. For example, any node d dominating a node n should refer to d.
In terms of the notation, this is written as 4 dom #n. (a) and (b) in Figure 3 are representations of their
connection as events occur over time. Based on the Dominator, event node A2 acts as a dominator
from other nodes. However, Figure 4 explains the case where only 2n/3 or more of the requirements
of the dom set are satisfied. Figure 4 depicts an example of a consensus structure and 2/3 dom sets.
Suppose the connection between event nodes with direct graphs can exchange information with each
other. Al contains four of the five dominant groups a0, b0, c0, 0 and C1 contains groups a0, b0, c0, €0,
and so on. Therefore, if the top event node is connected to A1 and C1, the top can be considered to
dominate more than 2/3 of the total dom sets.

Figure 5 shows an example of dependency graphs. In each row, the left-most figure shows the
latest consensus structure. The figures on the left in each row depict the dependency graphs of each
node, which are in their compact form. In the absence of a fork, each of the compact dependency
graphs is a tree. The nodes from A to E are represented in their respective views, and the graph that
combines all the nodes is shown on the far left. Panels (a)—(c) are representations of their connection as
events occur over time. Figure 5 shows the updated graph that reflects the events of nodes A and E.
Because each node has a graph from its own perspective, each node has its own differences.
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Figure 3. Examples of consensus structure and dominator tree. (a,b) are representations of their
connection as events occur over time.

2/3- Domination graph

2/3-dom set DO
BIPIICNO
Cl

61 2/3-dom set D1

v

Figure 4. Example of consensus structure and its 2/3 domination graph. The %-dominant sets are
shown in gray.

Figure 6 shows an example of a pair of fork events. Each row shows a consensus structure (left
most) and the compact dependency graphs on each node (right). The red and green vertices represent
fork events. For example, suppose that node y and y’ participate in red (A1) and green events (A2),
they do not refer to each other. Thus, they judge the event to differ from node A without the consensus
of more than 2n/3 of all the nodes. When a fork occurs, it can be regarded as an activity of a malicious
node and can be identified by the consensus structure.
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top B- top C- top E-
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Figure 5. Example of dependency graphs on individual nodes. From (a)—(c), one new event block is
appended. The graphs do not fork, and the simplified dependency graphs become trees.

Figure 6. Cont.
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top A-

Figure 6. Example of a pair of fork events in a consensus structure. The fork events are shown in red

and green. The consensus structures from (a)-(c) differ by adding one single event at a time.

3. Generic Framework of Decision Search Protocol

This section describes the key concepts of our new family of consensus protocols.

3.1. Consensus Structure

The core idea of a decision search protocol is to explore a DAG-based structure, known as a
consensus structure. In this protocol, a (participant) node is a server (machine) of the distributed
system. Each node can create messages, send messages to, and receive messages from other nodes.
Communication between nodes is asynchronous.

The consensus structure consists of event blocks, including user information and edges between
event blocks. The event blocks are created by a node after the node communicates information to
another node. The consensus structure comprises event blocks as vertices and block communication
as edges.

Let n be the number of participant nodes. For consensus, the algorithm examines whether an
event block is shared with 2n/3 nodes, where # is the number of all nodes. The happen-before of event
blocks with 2n/3 nodes means that more than two-thirds of all nodes in the consensus structure knows
the event block.

3.2. Decision Search Algorithm

A decision search algorithm (DSA) is presented. The DSA, a consensus algorithm for solving the
byzantine agreement problem, uses Root, subDecision, and Decision blocks to find the consensus time
for event blocks. Algorithm 1 shows the pseudocode of a consensus structure. The algorithm consists
of two parts, which are executed in parallel.

In the first part, each node requests synchronization and creates an event block. In line 3, a node
runs the node selection algorithm. The node selection algorithm returns the k IDs of other nodes
to communicate with. In lines 4 and 5, the node synchronizes with other nodes. Line 6 runs the
event block creation, at which step the node creates an event block and checks whether it is Root.
Then, the node broadcasts the created event block to other nodes in line 7. The step in this line is
optional. In lines 8 and 9, subDecision selection and Decision time consensus algorithms are invoked.
The algorithms determine whether the specified Root can be a subDecision, assign the consensus time,
and then confirm the Decision.

The second part is designed to respond to synchronization requests. In lines 10 and 11, the node
receives a synchronization request and then sends its response to the consensus structure.

Algorithm 1 shows the main procedure of our proposed framework. In this procedure, we first
execute the k-node selection algorithm. Algorithm 2 shows the details of the process for k-node
selection. After the k-selection algorithm, the nodes in the framework communicate synchronized
information with each other. Then, we create a new event block and proceed with the three-step
process for consensus: Root selection, subDecision selection, and Decision time consensus. We repeat
this process, generate new event blocks, and reach a consensus.
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Algorithm 1 Main Procedure

1: procedure MAIN PROCEDURE
2: loop:
3: A, B = k-node Selection algorithm()

4:
5: Request sync to node A and B
6: Sync all known events by Decision search protocol
7: Event block creation
8: (optional) Broadcast the message
9: Root selection
10: subDecision selection
11: Decision time consensus
12: loop:
13: Request sync from a node
14: Sync all known events by Decision search protocol

Algorithm 2 k-neighbor Node Selection

1: procedure k-NODE SELECTION

2: Input: Height Vector H, In-degree Vector I
3: Output: reference node ref
4: min_cost <— INF
5: Sref <— None
6: for k € Node_Set do
r e
8: if min_cost > ¢y then
9: min_cost < ¢ f
10: Sref <k
11: else if min_cost equal c f then
12: Sref ¢ Sref UKk
13: ref < random select in s, ¢

3.3. Node Structure

This section provides an overview of the node structure in the Decision search protocol.

Each node has a height vector, an in-degree vector, flag table, frames, subDecision checklist,
max—min value, and its own consensus structure. In the node structure, height is the number of event
blocks created by the i-th node, and in-degree denotes the number of edges from other event blocks
created by other nodes to the top event block. The top event block indicates the most recently created
event block by a node. The flag table is an n x k matrix, where 7 is the number of nodes and k is the
number of Roots by which an event block can be reached. If an event block e created by the i-th node
can reach j-th Root, then the flag table stores the hash value of j-th Root. Each node maintains the flag
table of each top event block.

Frames are used to store the Root set in each frame. The subDecision checklist has two types of
checkpoints: subDecision candidate (SC) and subDecision (S). If a Root in a frame is a SC, a node
checks C, and if a Root becomes a subDecision, a node checks the S part. The max—min value is the
timestamp that addresses the Decision selection.
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Figure 7 shows an example of the node structure component of a node A. In the figure, each value,
excluding the self-height in the height vector, is 1 because the initial state is shared with all the nodes.
In the in-degree vector, node A stores the number of edges from other event blocks created by other
nodes to the top event block. Therefore, the in-degrees of nodes A, B, and C are 1. In the flag table,
node A knows two other Root hashes because the top event block can reach those two Roots. Node A
also knows that other nodes know their own Roots. In the example situation, a subDecision candidate
and subDecisions do not exist; thus, the subDecision checklist is empty. The max-min value is empty
for the same reason as the subDecision checklist. The Root, subDecision, and Decision selection
algorithm are introduced in Section 5.

3.4. Event Block Creation

In the Decision search protocol, every node can create an event block. Each event block refers
to k other event blocks using their hash values. In a Lachesis protocol, a new event block refers to
k-neighbor event blocks under the following conditions:

1. Each of the k reference event blocks is the top event block of its own node.
2. One reference should be made to a self-ref that refers to an event block of the same node.
3. The other k — 1 reference refers to the other k —1 top event nodes on other nodes.

Height vector Frames
Ny N, N, N, f1 A set of Roots
hy h2 h3 hy,
In_degree vector subDecision Check List
Root a0 b0 n0
N1 N2 N3 Nn
f1 SD, - - -
iy i, [ i, D, _ _ _
Flag table Min Time
Ny A set of reachable Roots
N, A set of reachable Roots
N3 A set of reachable Roots
N, A set of reachable Roots NOde A

Figure 7. Example of node structure.

The flag table information is updated during the block creation process because the top event
block is changed. Figure 8 shows an example of event block creation with a flag table. In this example,
the recently created event block is b; by node B. The figure shows the node structure of node B.
We omit other information, such as height and in-degree vectors because we only focus on the change
in the flag table with event block creation in this example. The flag table of b; in Figure 8 is updated
with the information of the previous connected event blocks a4y, by, and c;. Thus, the set of flag tables
is the results of the OR operation among the three Root sets for al (ag, by, and cy), bg (bo), and ¢1 (by, co,
and dg).
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Figure 8. Example of event block creation with the flag table.

3.5. Topological Ordering of Events Using Lamport Timestamps

Every node has a physical clock and requires physical time to create an even block. However,

Decision search protocols rely on the logical clock of each node.

For this purpose, we use

“Lamport timestamps” [23] to determine the time ordering between event blocks in an asynchronous

distributed system.

The Lamport timestamps algorithm is as follows:

—_

Each node increments its count value before creating an event block.

2. When sending a message that includes its count value, the receiver should consider from which

sender the message is received and increment its count value.

3. If the current counter is less than or equal to the received count value from another node, then the

count value of the recipient is updated.

4. If the current counter is greater than the count value received from another node, then the current

count value is updated.

We use Lamport’s algorithm to enforce a topological ordering of event blocks and use it in the
Decision selection algorithm. Figure 9 shows an example of Lamport timestamps.
Because an event block is created on the basis of logical time, the sequence between each event
block is immediately determined. Because the Lamport timestamps algorithm provides a partial order

of all events, the entire time ordering process can be used for BFT.

(7)e

3

Figure 9. An example of Lamport timestamps.
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3.6. Topological Consensus Ordering

The sequential order of each event block is an important aspect of BFI. To determine
the pre-and-post sequence between all event blocks, we use the Decision consensus time,
Lamport timestamp algorithm, and hash value of the event block.

First, when each node creates event blocks, they have a logical timestamp based on the
Lamport timestamp. This means that they have partial ordering between the relevant event blocks.
Each subDecision has a consensus time of Decision. This consensus time is computed based on the
logical time nominated by the other nodes at the time of the 2n/3 agreement.

In the DSA, each event block is based on the following three rules to reach an agreement:

1.  If there is more than one Decision with different times on the same frame, the event block with

smaller consensus time has higher priority.
2. If there is more than one Decision with the same consensus time on the same frame, determine the

order based on the own logical time from the Lamport timestamp.
3. When more than one Decision has the same consensus time, if the local logical time is the same,

the hash function prioritizes a smaller hash value.

Figure 10 depicts an example of topological consensus ordering. All nodes are represented in
a table with each step of the Lamport timestamp. Here, we explain the time ordering method by
example. Based on the 23 and c3 event blocks, we determine the prioritized ordering of event blocks.
For example, nodes are required to generate each event block. However, when event blocks refer to
different event blocks, they can exchange information with each other. In step 1, all nodes generated
the first event block, and they all had a Lamport time of 1. Further, a and c each generate a second
event block, resulting in a Lamport time of 2. Similarly, in step 2, nodes b and d created a second
block of events, but because they refer to a2 and c2, they have a Lamport time of 3. Likewise, in step 3,
nodes a and ¢ each created a third event block, but each had a different Lamport time. This is because
the previous reference values are different. In this way, we established time ordering rules and propose
topological ordering.

event block a3

2 00

node A
B
=
node B °
= ;
node C e °
B o
node D
=0
node E
Step 1 Step 2 Step 3

Lamport

. Node Lamport Timestamp Node Lamport Timestamp
Timestamp

A al 1 A al 1 a2 2 A al 1 a2 2 a3 4

B bl 1 B bl 1 b2 3 B bl 1 b2 3 b3

© cl 1 © cl 1 c2 2 C cl 1 c2 2 c3 5

D d1 1 D d1 1 d2 3 D d1 1 d2 3 d3

E el 1 E el 1 e2 - E el 1 e2 - e3

Figure 10. Example of topological consensus ordering.
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Figure 11 shows the part of the consensus structure in which the final consensus order is
determined on the basis of these three rules. The number represented by each event block is the
logical time based on the Lamport timestamp.

5 @) 13
Figure 11. Example of time ordering of event blocks.

The final topological consensus order containing the event blocks is based on the agreement for
the Decision. Based on each Decision, the blocks have different colors depending on their range.

3.7. Peer Selection Algorithm

To create an event block, a node needs to select k other nodes. Decision search protocols do not
depend on the way in which peer nodes are selected. A simple approach is to use a random selection
from the pool of n nodes. Another approach is to define criteria or cost functions to select other peers
of a node.

Within a distributed system, a node can select other nodes with low communication costs,
low network latency, high bandwidth, and highly successful transactions.

4. Proof of Decision Search Protocol

This section presents proof of the liveness and safety of our Decision search protocols. We aim to
show that our consensus is BFT with the presumption that more than two-thirds of participants are
reliable nodes. We first provide some definitions, lemmas, and theorems. Then, we validate the BFT.

4.1. Proof of Byzantine Fault Tolerance for Decision Search Algorithm
Definition 19 (Happened-Immediate-Before). An event block vy is said to be a Happened-Immediate-Before

an event block vy, if vy is a (self-)ref of v,. We denote vy — vy.

Definition 20 (Happened-Before). An event block vy is said to have Happened-Before an event block vy if vy
is a (self-)ancestor of vy. We denote vy — vy.

The happens-before relation is the transitive closure of happens-immediately-before.
Thus, an event v, happened before an event vy if one of the following occurs: (a) v, —° vy,
(b) vy =" vy, or (c) vy —" vy. We propose the following proposition:

Proposition 1 (Happened-Immediate-Before consensus structure). vy + vy, iff v, — vy iff edge (v, vx)
€ E of the consensus structure.

Lemma 2 (Happened-Before Lemma). vy — vy, if v, =% vy.
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Definition 21 (concurrent). Two event blocks vy and vy are said to be concurrent if neither of them happened
before the other. We denote vy || vy.

Given two vertices vy and vy, both contained in two consensus structures, G; and G, on two
nodes. We have the following: (1) vy — v, in Gy iff vy — v}, in Gy; (2) vy || v, in Gy iff vy || v, in Gy.
Below are a few of the main definitions in the Decision search protocol.

Definition 22 (Leaf). The first created event block of a node is known as a leaf event block.

Definition 23 (Root). The leaf event block of a node is Root. When an event block v can reach more than 2n/3
of the Roots in the previous frames, v becomes a Root.

Definition 24 (Root set). The set of all first event blocks (leaf events) of all nodes form the first Root set Ry
(IR1| = n). The Root set Ry consists of all Roots r; such that r; ¢ R;, Vi = 1...(k-1) and r; can reach more than
2n/3 other Roots in the current frame, i = 1...(k-1).

Definition 25 (Frame). Frame f; is a natural number that separates the Root sets.
The Root set at frame f; is denoted by R;.

Definition 26 (consistent structures). consensus structures Gy and Gy are consistent iff for any event v
contained in both structures, G1[v] = Gy[v]. We denote Gy ~ Go.

When two consistent structures contain the same event v, both structures contain the same set of
ancestors for v, with the same reference and self-ref edges between those ancestors:

Theorem 1. All nodes have consistent consensus structures.

Proof. If two nodes have consensus structures containing event v, then they have the same k
hashes contained within v. A node will not accept an event during a sync unless that node
already has k references for that event, thus both consensus structures must contain k references
for v. The cryptographic hashes are assumed to be secure; therefore, the references must be the
same. By induction, all ancestors of v must be the same. Therefore, the two consensus structures
are consistent. [J

Definition 27 (creator). If a node ny creates an event block v, then the creator of v, denoted by cr(v), is ny.

Definition 28 (fork). The pair of events (v, v,) is a fork if vy and vy have the same creator, but neither is a
self-ancestor of the other. We denote vy th vy,

For example, let v, be an event in node 71 and two child events vy and vy, of v;. If vy —° v,
vy —° vz, Ux 4° vy, Uy 4° Uz, then (vy, vy) is a fork. The fork relation is symmetric; that is, vy th v, iff
vy M vy
Lemma 3. v, M vy iff cr(vy) = cr(vy) and vy || vy, respectively.

Proof. By definition, (vy, v,) is a fork if cr(vy) = cr(vy), vx 4" vy, and vy ST vy
Using Happened-Before, the second part means vy /+ v, and v, /> vy. By the definition of concurrency,

we obtain vy || vy. O

Lemma 4. (fork detection). If there is a fork vy th vy, then vy and v, cannot both be Roots on honest nodes.
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Proof. Here, we prove by contradiction. Any honest node cannot accept a fork, thus v, and v, cannot
be Roots on the same honest node. Now, we prove a more general case. Suppose that both v, is a Root
of ny and vy, is the Root of 1,, where 1, and n, are honest nodes. Because v, is a Root, it reached events
created by more than 2/3 of the member nodes. Similarly, vy is a Root, and it reaches events created by
more than 2/3 of the member nodes. Thus, there must be an overlap of more than /3 members of
those events in both sets. Because we assume that fewer than 7/3 members are not honest, there must
be at least one honest member in the overlap set. Let 7, be such an honest member. Because 1, is
honest, n,, does not allow a fork. This contradicts the assumption. Thus, the lemma is proved. O

Each node n; has a consensus structure G;. We define a consistent structure from a sequence of
consensus structures G;.

Definition 29 (consistent structure). A global consistent structure GC is a structure if G€ ~ G; forall G;.
We denote G C G’ to denote that G is a subgraph of G'.

Lemma 5. VG, (G€ C G;),

Lemma 6. Yo € G¢ VG; (G¢[v] C G;[v]),

Lemma 7. (Vo. € G°) (Vop € Gj) (vp — ve) = vy € GC).
Now, we state the following important propositions.

Definition 30 (consistent Root). Two structures Gy and Gy are Root consistent; if for every v contained in
both structures, and v is a Root of the j-th frame in Gy, then v is a Root of the j-th frame in G.

Proposition 2. If G; ~ Gy, then Gy and G, are Root-consistent.

Proof. By consistent structures, if G; ~ G, and v belong to both structures, then G; [v] = Gy[v]. We can
prove this proposition by induction. For j = 0, the first Root set is the same in both G; and G,. Hence,
it holds for j = 0. Suppose that the proposition holds for every j from 0 to k. We prove that it also
holds for j= k + 1. Suppose that v is a Root of frame fi,; in G1. Then, there exists a set S reaching
2/3 of members in Gy of frame fi such that Vu € S (1 — v). As G; ~ Gy, and vin G, thenVu € S
(u € Gp). Because the proposition holds for j=k, as u is a Root of frame f; in Gy, u is a Root of frame
fr in Go. Hence, the set S of 2/3 members u occurs before v in G,. Thus, v belongs to f;1 in G;.
This proposition is proved. [

From the above proposition, one can deduce the following;:
Lemma 8. GC is a Root, which is consistent with G; for all nodes.

Thus, all nodes have the same consistent Root sets, which are the Root sets in G€. The frame
numbers are consistent for all nodes.

Lemma 9 (consistent flag table). For any top event v in both consensus structures Gy and Gy, and Gy ~ Gg,
then the flag tables of v are consistent iff they are the same in both structures.

Proof. From the above lemmas, the Root sets of G| and G, are consistent. If v is contained in G;, and v
is a Root of the j-th frame in G!, then v is a Root of the j-th frame in G;. Because G; ~ G, G1[v] = G,[v].
The reference event blocks of v are the same in both chains. Thus, the flag tables of v of both chains are
the same. [
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Thus, all nodes have consistent flag tables.

Definition 31 (subDecision). A Root ry in the frame f, 3 can nominate a Root v, as subDecision if more than
2n/3 Roots in the frame f, 1 Happened-Before r, and ri Happened-Before the Roots in the frame f, 1.

Lemma 10. For any Root set R, all nodes nominate the same Root into subDecision.

Proof. Based on Theorem 2, each node nominates a Root into subDecision via the flag table. If all
nodes have a consensus structure with the same shape, the values in the flag table should be equal
to each other in the consensus structure. Thus, all nodes nominate the same Root into subDecision
because the consensus structure of all nodes has the same shape. [

Lemma 11. In the Reselection algorithm, for any subDecision, a Root in the consensus structure selects the
same consensus time candidate.

Proof. Based on Theorem 2, if all nodes have a consensus structure with the same partial shape, a Root
in the consensus structure selects the same consensus time candidate by the Reselection algorithm. [J

Lemma 12 (Fork Lemma). If the pair of event blocks (x,y) is a fork and a Root has Happened before the fork,
this fork is detected in the subDecision selection process.

Proof. We prove the lemma by contradiction. Assume that no node can detect the fork in the
subDecision selection process.

Assume that there is a Root r; that becomes a subDecision in f;, which was selected as a
subDecision by n/3 of the Roots in f;, 1. More than 2n/3 Roots in f; 1 should have occurred before
by a Root in f; . If a pair (vy, vy) is a fork, there are two cases: (1) assume that r; is one of vy and vy,
(2) assume that r; can reach both v, and vy.

Our proof for both cases is as follows.

Let k denote the number of Roots in f; 1 that can reach 7; in f; (".n/3 < k).

To select Root in fi,, the Root in f;, should reach more than 2n/3 of Roots in fi;1 by
Definition 23. At the moment, assume that / is the number of Roots in f;;1 that can be reached
by the Root in fi 5 (.2n/3 < I).

At this time,n <k +1(.'n/3 +2n/3 < k + 1), there are (n - k + [) Roots in frame f; 1 that should
reach r; in f; and all Roots in f;,» should reach at least n — k + I of Roots in f;; 1. This means that all
Roots in f; |, know the existence of ;. Therefore, the node that generated all the Roots of f;, detects
the fork in the subDecision selection of r;, which contradicts the assumption.

Two cases can be covered. If r; is part of the fork, we can detect it in f;,. If there is a fork (vy,
vy) that can be reached by r;, it can also be detected in f;,, because we can detect the fork in the
subDecision selection of r;, which indicates that all event blocks that can be reached by r; are detected
by the Roots in f; ;5. O

Lemma 13. For a Root v happened-before a fork in the consensus structure, v must see the fork before
becoming a subDecision.

Proof. Suppose that a node creates two event blocks (vy,vy), which form a fork. To create two
subDecisions that can reach both events, it should be possible to reach the event blocks by more
than 2n/3 nodes. Therefore, the consensus structure can structurally detect the fork before Roots
become subDecisions. [

Theorem 2 (Fork Absence). All nodes grow into the same consistent consensus structure G©, which contains
no fork.
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Proof. Suppose that there are two event blocks vy and vy, contained in both G; and G, and their path
between vy and vy in G are not equal to those in G;. We can consider that the path difference between
the nodes is a type of fork attack. Based on Lemma 12, if an attacker forks an event block, each chain
of G; and G, can detect and remove the fork before the subDecision is generated. Thus, any two nodes
have a consistent consensus structure. [

Definition 32 (Decision). If the consensus time of subDecision is validated, then subDecision becomes
a Decision.

Theorem 3. The Decision search algorithm guarantees reaching an agreement for the consensus time.

Proof. For any Root set R in the frame f;, the time consensus algorithm checks whether more than 2n/3
Roots in the frame f;_; select the same value. However, each node selects one of the values collected
from the Root set in the previous frame by the time consensus algorithm and the election process.
Based on the election process, the time consensus algorithm can reach an agreement. However, the
possibility exists that consensus time candidates do not reach an agreement [9]. To solve this problem,
the time consensus algorithm includes a minimal selection frame for the next / frame. In the minimal
value selection algorithm, each Root selects the minimum value among values collected from the
previous Root set. Thus, the consensus time reaches consensus by the time consensus algorithm. O

Theorem 4. If the number of reliable nodes is more than 2n/3, event blocks created by reliable nodes must be
assigned a consensus order.

Proof. In a consensus structure, because reliable nodes try to create event blocks by communicating
with every other node continuously, reliable nodes share the event block x with each other. If a
Root y in the frame f; Happened-Before event block x and more than n/3 Roots in the frame f;
Happened-Before the Root y, the Root v is nominated as subDecision and Decision. Thus, event blocks
x and Root y are assigned a consensus time t.

For an event block, assigning consensus time means that the validated event block is shared
by more than 2n/3 nodes. Therefore, a malicious node cannot try to attack after the event blocks
are assigned a consensus time. When the event block x has consensus time ¢, it cannot occur to
discover new event blocks with an earlier consensus time than ¢. Two conditions are to be assigned
a consensus time earlier than ¢ for new event blocks. First, a Root r in frame f; should be able to
share new event blocks. Second, more than 2n/3 Roots in the frame f; 1 should be able to share r.
Even if the first condition was satisfied by malicious nodes (e.g., a parasite chain), the second condition
cannot be satisfied because at least 2n/3 Roots in the frame f;; are already created and cannot be
changed. Therefore, after an event block is validated, new event blocks should not participate earlier
in consensus on the consensus structure. [

4.2. Semantics of Decision Search Protocol

This section provides the formal semantics of the Decision search protocol. We use the CCK
model [24] of an asynchronous system as the base of the semantics of our Decision search protocol.
Events are ordered based on Lamport’s happens-before relation. In particular, we use Lamport’s theory
to describe the global states of an asynchronous system.

We present notations and concepts that are important for the Decision search protocol. In several
places, we adapt the notations and concepts used in the paper in which CCK was proposed to suit our
Decision search protocol.

An asynchronous system consists of the following:

Definition 33 (process). Process p; represents a machine or a node. The process identifier of p; isi. A set P =
{1,...,n} denotes the set of process identifiers.
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Definition 34 (channel). Process i can send messages to process j if there is a channel (i,j). Let C C {(i,j) s.t.
i,j € P} denote the set of channels.

Definition 35 (state). The local state of a process i is denoted by s;

A local state consists of a sequence of event blocks, s} = 06, v’i, ., U}

In a DAG-based protocol, each v; event block is valid only when the reference blocks exist before
it. A unique DAG can be reconstructed from a local state s; That is, the mapping from a local state
i
j .
local state of a process i by the consensus structure g; (often we simply use G; to denote the current

local state of a process i).

s' into a DAG is injective or one-to-one. Thus, for the Decision search, we can simply denote the j-th

Definition 36 (action). An action is a function from one local state to another local state.

Typically, an action can be a send(m) action, where m is a message, a receive(m) action, or an
internal action. A message m is a triple (i, j, B), where i € P is the sender of the message, j € P is
the message recipient, and B is the body of the message. Let M denote the set of messages. In the
Decision search protocol, B consists of the content of an event block v. Semantics-wise, in Lachesis,
two actions can change the local state of a process: creating a new event and receiving an event from
another process.

Definition 37 (event). An event is a tuple (s,a,s’) consisting of a state, an action, and a state.

Under certain circumstances, the event can be represented by the end state s’. The j-th event in
history h; of process i is <S}—1' «, s}), denoted by v;.

Definition 38 (local history). A local history h; of a process i is a (possibly infinite) sequence of alternating
local states—beginning with a distinguished initial state. A set H; of the possible local histories for each process
iinP.

The state of a process can be obtained from its initial state and the sequence of actions or events
that have occurred up to the current state. In the Decision search protocol, we use append-only
semantics. The local history may be equivalently described as one of the following;:

hi = sh,al,ab,ab ...
h; = sh,vl,0h, 05 ...
h; = sh,sh,sh,sh, ...
In the Decision search, a local history is equivalently expressed as
hi = 0, 81/85/ 8- -
where g;- is the j-th local consensus structure (local state) of process i.

Definition 39 (run). Each asynchronous run is a vector of local histories. Denoted by o = (hy, hy, h3, ...hN).

Let 2 denote the set of asynchronous runs.

We can now use Lamport’s theory to discuss the global states of an asynchronous system. A global
state of run ¢ is an n-vector of prefixes of local histories of ¢, one prefix per process. The happens-before
relation can be used to define a consistent global state, often termed a consistent cut, as follows.
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Definition 40 (Consistent cut). A consistent cut of a run o is any global state such that if v'. — v@ and v]y is
in the global state, then v', is also in the global state. We denote c(c).

According to Theorem 1, all nodes have consistent local consensus structures. The concept of a
consistent cut formalizes the global state of a run. A consistent cut consists of all consistent consensus
structures. A received event block exists in the global state, implying the existence of the original
event block. Note that a consistent cut is simply a vector of local states; we use the notation ¢(c)|i] to
indicate the local state of 7 in cut ¢ of run .

The formal semantics of an asynchronous system are given via the satisfaction relation .
Intuitively, ¢(c) - ¢, “c(0) satisfies ¢,” if fact ¢ is true in cut ¢ of run ¢. We assume that we are
given a function 7 that assigns a truth value to each primitive proposition p. The truth of a primitive
proposition p in ¢(c) is determined by 7 and ¢. This defines ¢(c) - p.

Definition 41 (equivalent cuts). Two cuts ¢’(¢") and <’ (¢") are equivalent to i if
(o) i & () & ()] = < ()]

We introduce two families of modal operators, denoted by K; and P;, respectively. Each family is
indexed by process identifiers. Given a fact ¢, the modal operators are defined as follows:

Definition 42 (i knows ¢). K;(¢) represents the statement “¢ is true in all possible consistent global states
that include the local state of i.”

d(¢') F Ki(9) & V(o) ((") ~i () = (o) F¢),

Definition 43 (i partially knows ¢). P;(¢) represents the statement “there is some consistent global state in
this run that includes the local state of i, in which ¢ is true.”

c(0) - Pi(¢) < 3 (0)(' (o) ~i e(0) A () - 9),

The next modal operator is written as M and stands for “majority concurrently knows.” This is
adapted from the “everyone concurrently knows” in the CCK paper [24]. The definition of M€ (¢) is
as follows:

Definition 44 (majority concurrently knows).
ME(¢) =aer \ KiPi(9),
(S
where S C Pand |S| > 2n/3.

4

In the presence of one-third of faulty nodes, the original operator “everyone concurrently knows”
is not necessarily feasible. Our modal operator M (¢) precisely fits the semantics for BFT systems,
in which unreliable processes may exist.

The last modal operator is concurrent common knowledge (CCK), denoted by CC.

Definition 45 (concurrent common knowledge). CC(¢) is defined as a fixed point of M©(¢p A X),

CCK defines a state of process knowledge that implies that all processes are in the same state
of knowledge, with respect to ¢, along a certain cut of the run. In other words, we aim to achieve a
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state of knowledge X satisfying X = M (¢ A X). CC will be defined semantically as the weakest fixed
point, namely, the greatest fixed-point of M (¢ A X). It therefore satisfies:

CE(¢) & M (p AC(9)),

Thus, P;(¢) states that there is a certain cut in the same asynchronous run o, including the local
state of 7, such that ¢ is true in that cut.

Note that ¢ implies P;(¢). However, this is not the case, in general, that P;(¢) implies ¢, or even
that MC(¢) implies ¢. The truth of M (¢) is determined with respect to a certain cut ¢(c). A process
cannot distinguish which cut of the perhaps many cuts that are in the run and are consistent with its
local state, satisfies ¢; it only knows that such a cut exists.

Definition 46 (global fact). Fact ¢ is valid in system ¥, denoted by L = ¢, if ¢ is true in all cuts of all runs
of L.
Yk ¢,& (VoeX)(Ve)(c(a) - ¢)

Definition 47. Fact ¢ is valid, denoted by &= ¢, if ¢ is valid in all systems, that is, (V) (X F ¢),

Definition 48 (local fact). The fact that ¢ is local to process i in system L if 2. F (¢ = Ki¢),

Theorem 5. If ¢ is local to process i in system X, then £+ (P;(¢) = ¢).

Lemma 14. If ¢ is local to 2/3 of the processes in a system %, then & = (M©(¢) = ¢) and Z - (CC(¢) = ¢).
Definition 49. Indeed, ¢ is attained in run o if 3c(o)(c(0) F ¢).

Often, we refer to “knowing” a fact ¢ in a state rather than in a consistent cut, because knowledge
is dependent only on the local state of a process. Formally, i knows ¢ in state s is shorthand for

Ve(o)(c(o)[i] =s = c(o) F ¢),

For example, if a process in the Decision search protocol knows that a fork exists (i.e., ¢ is the
existence of fork) in its local state s (i.e., g;'-), then a consistent cut that contains the state s will know the
existence of that fork.

Definition 50 (i learns ¢). Process i learns ¢ in state s;'. of run o if i knows ¢ in sj. and, for all previous states
st inrun o, k < j, i does not know ¢.

The following theorem states that if Cc(¢ is attained in a run, then all processes i learn P;CC (¢)
along a single consistent cut.

Theorem 6 (attainment). If CC(¢) is attained in a run o, then the set of states in which all processes learn
P;CC(¢p) forms a consistent cut in o.

We presented the formal semantics of the Decision search protocol based on the concepts and
notations of CCK [24]. The proofs of the theorems and lemmas in this Section are similar to those in
the original CCK paper.

With the formal semantics of the Decision search, the theorems and lemmas described in Section 4
can be expressed in terms of CCK. For example, a fact ¢ (or some primitive proposition p) can be
studied in the following forms: “does a fork exist?” Decision search-specific questions such as “is event
block v a Root?”, “is v a subDecision?”, or “is v a Decision” could be formulated. This is a remarkable
result, because we are the first to define such formal semantics for a DAG-based protocol.
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5. Decision Search Protocol DecisionBFT

This section presents our new Decision Search Protocol DecisionBFT, which is a specific example
of the Decision Search class. We describe the main ideas and algorithms used in the protocol.

5.1. Root Selection

All nodes can create event blocks, and an event block can be a Root when it satisfies specific
conditions. Not all event blocks can be Roots. First, the first created event blocks are Roots. These Leaf
event blocks form the first Root set Rg, of the first frame f;. If there are n nodes and these nodes create
the event blocks, then the cardinality of the first Root set |Rg, | is . Second, if an event block e can
reach at least 2n/3 Roots, then ¢ is referred to as a Root. This event ¢ does not belong to Rg1, but the
next Root set R, of the next frame f,. Thus, excluding the first Root set, the range of cardinality of
the Root set Rg, is 2n/3 < |R5k] < n. The event blocks including Rs, before Rg, ,, are in the frame
fk- The Roots in Rg, | do not belong to frame fi. These are included in the frame fi 1 when a Root
belonging to Rs, ,, occurs.

We introduce the use of a flag table to quickly determine whether a new event block becomes a
Root. Each node maintains a flag table of the top event block. Every event block that is newly created
is assigned k hashes for its k reference event blocks. We apply an OR operation to each set in the flag
tables of the reference event blocks.

Figure 12 shows an example of the use of flag tables to determine a Root. In this example, b; is
the most recently-created event block. We apply an OR operation to each set of the flag tables for the k
reference event blocks of b;. The result is the flag table of b;. If the cardinality of the Root set in the
flag table of by is more than 2n/3, b; is a Root. In this example, the cardinality of the Root set in b is 4,
which is greater than 2n/3 (n = 5). Thus, b; becomes a Root. In this example, b; is added to frame f,
because by becomes the new Root.

= |FT_B|> 2n/3 ~ b1 is Root
node A
{a0, b0, c0, d0} Flag Table Frames

=3 Hue S

ax: A (a0, b0, c0} f1 | {a0, b0, c0, d0, e0}
node B

B {a0, b0, c0, d0} 2 1}

@ e b0, c0, d0} subDecision Check List

— o N a0 Root | a0 | b0 | CO | do | 0

c {b0, c0, d0} E (e0} o | - | - | -] -] -

Node B
node D
=

node E

Figure 12. Example of Root selection.
The Root selection algorithm is as follows:

1.  The first event blocks are considered as Roots.
When a new event block is added to the consensus structure, we check whether the event block
is a Root by applying an OR operation to each set of the flag tables connected to the new event
block. If the cardinality of the Root set in the flag table for the new event block is more than 2n/3,
the new event block becomes a Root.

3. When a new Root appears on the consensus structure, the nodes update their frames. If one of
the new event blocks becomes a Root, all nodes that share the new event block add the hash
value of the event block to their frames.
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4. The new Root set is created if the cardinality of the previous Root set Rg, is more than 2n/3 and
the new event block can reach 2n/3 Root in Rg,.

5. When the new Root set R Seiq 1S created, the event blocks from previous Root set Rs, to before
Rs,,, belong to the frame fj.

5.2. subDecision Selection

A subDecision is a Root that satisfies the conditions under which the subDecision is created.
These conditions are that more than 2n/3 nodes know the Root and a Root knows this information.

For a Root r in frame f; to become a subDecision, » must be reached by more than n/3 Roots in the
frame f;| 1. Based on the definition of the Root, each Root reaches more than 2n/3 Roots in previous
frames. If more than n/3 Roots in the frame f; 1 can reach r, then r is spread to all Roots in the frame
fit2. This means that all nodes know the existence of . If we have any Roots in the frame f; 3, a Root
knows that r is spread to more than 2n/3 nodes. It satisfies the subDecision creation conditions.

In the example in Figure 13, nis 5, and each circle indicates a Root in a frame. Each arrow indicates
that one Root can reach (happened-before) to the previous Root. Each Root has four or five arrows
(out-degree) because n is 5 (more than 2n/3 > 4). by and c; in frame f, are Roots that can reach ¢y in
frame f7. dq and e; can also reach ¢y, but we only marked b; and c; (wWhen n is 5, more thann/3 > 2)
because we require at least n/3 conditions in this example. This is marked with a blue bold arrow (i.e.,
the Roots that can reach Root ¢y are indicated by a blue bold arrow). In this situation, an event block
must be able to reach b; or ¢, to become a Root in frame f3 (in our example, n = 5, more thann/3 > 2,
and more than 2n/3 > 4. To be a Root, either must be reached). Therefore, all Roots in frame f3 reach
o in frame f;.

@ =

b:

®

b4

&

%
SEY -

©

4

\ \\&/

" d2 d:

®

Figure 13. Verification of more than 2n/3 nodes.

To be a Root in frame fy4, an event block must reach more than 2n/3 Roots in frame f3 that can
reach cg. Therefore, if any of the Root in frame f; exists, then Root must be happened-before more than
2n/3 Roots in frame f3. This means that the Root of f; knows that ¢ is spread over more than 2n/3 of
the entire node. Thus, we can select ¢ as a subDecision.

Figure 14 shows an example of a subDecision. In this example, all Roots in the frame f; are
happened-before by more than n/3 Roots in the frame f,. We can select all Roots in the frame f; as a
subDecision because the most recent frame is f4.

Figure 15 shows the state of node A when a subDecision is selected. In this example, node A
knows all Roots in the frame f; become a subDecision.

Algorithm 3 shows the pseudocode for subDecision selection. The algorithm takes Root r as input.
Lines 4 and 5 set c.is_subDecision and c.yes to nil and 0, respectively. Lines 6-8 check whether any
Root ¢’ in frame(i — 3,r) has occurred before with the 2n/3 condition ¢, where i is the current frame.
In lines 9-10, if the number of Roots in frame(i — 2,r) that occurs before ¢ is more than 2n/3, then the
Root c is set as a subDecision. The time complexity of Algorithm 3 is O(n?), where 7 is the number
of nodes.
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bl )< b2

2 |«

do )< dl

d3

e2

3 4

subDecision

Figure 14. Example of a subDecision.

Flag table Frames
A {a3, b2, 3, 2, €2} fl {a0, b0, 0, 0, ¢0}
B {b2, a3, 3} 2 {a2,b1, c2,d1, el}
c {€3, b2, 23, d2} 3 {a3,b2, c3,d2, €2}
D {d2, b2, ¢3, a3, 2} " {€3,d3, a5}
E 2 - .
2} subDecision Check List
Root || a0 | b0 [ c0 | do | e0
fl SD y
D v v
Root || a2 | b1 @2 | a1 el
2 SD
D v v
Root | a3 | b2 | o3 | d2 | e
3 sD v
Node 4
D

Figure 15. Node of A when subDecision is selected.

Algorithm 3 The subDecision selection

1: procedure SUBDECISION SELECTION

2 Input: a Root r

3 forc € frame(i —3,r) do

4 c.is_subDecision < nil

5: c.yes < 0

6 forc' € frame(i —2,r) do

7 if ¢ has happened-before ¢ then
8 c.yes < c.yes + 1

9: if c.yes > 2n/3 then

10: c.is_subDecision < yes

A subDecision can know to spread to more than 2n/3 nodes. It is used for Decision decisions.
Our algorithm for Decision determines the consensus time for a subDecision rather than all event
blocks. A subDecision is therefore necessary for the process of finality for the BFT.
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5.3. Decision Selection

The Decision selection algorithm is the process in which the candidate time generated from a
subDecision selection is shared with other nodes, and each Root re-selects the candidate time repeatedly
until all nodes have the same candidate time for a subDecision.

After a subDecision is nominated, each node then computes the candidate time of the subDecision.
If more than two-thirds of the nodes compute the same value for candidate time, that time value is
recorded. Otherwise, each node re-selects the candidate time from some candidate time that the node
collects. By the reselection process, each node reaches a time consensus for the candidate time of the
subDecision as the consensus structure grows. The candidate time reaching the consensus is referred
to as the Decision consensus time. After the Decision consensus time is computed, a subDecision is
nominated to Decision, and each node stores the hash value of a Decision and the Decision consensus
time. The proof of the Decision consensus time selection is presented in Section 4.

Figure 16 shows an example of a Decision. In this Figure 14, all Roots in the frame f; are selected
as a subDecision through the existence of Roots in the frame f4. Then, each Root in the frame f5
computes the candidate time using the timestamps of reachable Roots in the frame f;. Each Root in
the frame f5 stores the candidate time to min-max value space. The Root 7 in the frame fs can reach
more than 2n/3 Roots in f5, and r4 can know the candidate time the reachable Roots in f5 takes. If 7
knows the same candidate time more than 2n/3, we select the candidate time as Decision consensus
time. Then all subDecisions in the frame f; become Decisions.

Figure 17 shows the state of node B when a Decision is selected. In this example, node B knows
all Roots in the frame f; become Decisions.

f1 3 f4

Decision
Figure 16. Example of a Decision.

Algorithms 4 and 5 show the pseudocode for the Decision consensus time selection and consensus
time re-selection. In Algorithm 4, at line 6, d saves the difference in the relationship between the Root
set of c and w. Thus, line 8 means that w is one of the elements in the Root set of the frame f; 3,
where the frame f; includes c. In line 10, each Root in the frame f; selects its own Lamport timestamp
as a candidate time of ¢ when they confirm Root ¢ as a subDecision. In lines 14, 15, and 16, s, ¢,
and k save the set of Root that w can be happened-before with 2n/3 condition c, the result of the
RE-SELECTION function, and the number of Roots in s with t. Line 17 checks whether a difference of
as much as h exists between i and j, where / is a constant value for the minimum selection frame. Lines
18-22 check whether more than two-thirds of Root in the frame fj,l nominates the same candidate
time. If two-thirds of Roots in the frame fj_l nominates the same candidate time, the Root ¢ is
assigned a consensus time t. Line 24 is the minimum selection frame, in which the minimum value
of the candidate time is selected to reach the byzantine agreement. Algorithm 5 is executed within
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Algorithm 4. The input of Algorithm 5 is the Root set W, and the output is the re-selected candidate
time. Lines 4-5 compute the frequencies of each candidate time from all the Roots in W. In lines
6-15, the candidate time that is the smallest time is the most nominated. The time complexity of
Algorithm 5 is O(n), where n is the number of nodes. Because Algorithm 4 includes Algorithm 5,
the time complexity of Algorithm 4 is O(n?), where 1 is the number of nodes.

Flag table Frames

A {a6, b5} 4 {a5, b4, ¢4, d3, €3}

B {b5} 5 {a6, b5, 7, d4, ed}

c (b5, ¢7} 16 {eS}

D (a6, d4}

e a6, b5, 7, dd, ed} subDecision Check List

Min time Root a0 b0 0 do 0

fl SD
- D

Root a2 bl 2 d1 el

Root a3 b2 3 d2 2

Node B 8oL

Figure 17. Node of B when a Decision is selected.

Algorithm 4 Decision consensus time selection

1: procedure DECISION CONSENSUS TIME SELECTION
2 Input: c: subDecision in frame f;

3 c.consensus_time < nil

4 m <— the index of the last frame f,

5: for d from 3 to (m-i) do

6 R < be the Root set Rs, , in frame f;, 4

7

8

9

forr € Rdo
if d is 3 then
if  confirms ¢ as subDecision then
10: r.time(c) < r.lamport_time
11: else
12: r.time(c) <— INF
13: else if d > 3 then
14: s < the set of Root in f,,_1 that r can have happened-before with 2n/3 condition
15: t < RE-SELECTION(S, c)
16: k < the number of Root having t in s
17: if d mod i > 0 then
18: if k > 2n/3 then
19: c.consensus_time < t
20: r.time(c) <t
21: else
22: r.time(c) <t
23: else

24: r.time(c) <— the minimum value in s
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Algorithm 5 Consensus Time Re-selection

1: function RE-SELECTION
2: Input: Root set R, and subDecision c

3 Output: candidate time ¢

4 T < set of all t; = r.time(c) for all ¥ in R

5: D <« set of tuples (t;,¢;) computed from 7, where ¢; = count(t;)
6: max_count < max(c;)

7: t < infinite

8: for tuple (t;,¢c;) € D do

9: if max_count == c; then

10: if t; == INF && c; > |R|/2 then
11: returnINF

12: else if t; < t then

13: t=t

14: tt

15: return t

In the Decision Consensus Time Selection algorithm, nodes reach consensus agreement about
the candidate time of a subDecision without additional communication (i.e., exchanging candidate
time) with each other. Each node communicates with each other through the Decision search protocol,
and the consensus structure of all nodes grows into the same shape. This allows each node to know
the candidate time of other nodes and reach a consensus agreement. The proof that the agreement
based on the consensus structure becomes agreement in action is shown in Section 4.

A Decision can be determined by the consensus time of each subDecision. It is an event block that
is determined by finality and is non-modifiable. Furthermore, all event blocks can be reached from the
Decision guarantee finality.

5.4. Peer Selection Algorithm via Cost Function

We define three versions of the cost function (Cr). The version on which we focus is the updated
information share and is discussed below. The other two versions focus on Root creation and consensus
facilitation, which will be discussed in a subsequent paper.

We define a cost function (Cr) to prevent the creation of lazy nodes, which is a node that performs
a smaller portion of work. When a node creates an event block, the node selects other nodes with low
values as outputs by using the cost function and refers to the top event blocks of the reference nodes.
Equation (1) of Cr is as follows:

Cr=1/H, 1)

where I and H denote the values of the in-degree vector and height vector, respectively. If the number
of nodes with the lowest Cr exceeds k, one of the nodes is selected at random. The reason for selecting
a large value of H is that we can expect a high possibility to create a Root because the large H indicates
that the communication frequency of the node had more opportunities than others with a small H.
Otherwise, the nodes with large Cr (the case of I > H) generated fewer event blocks than the nodes
with small Cr. Then, we can judge that those kinds of nodes are lazy. If we can detect whether a node
is lazy based on the cost function, we can change the lazy nodes to other participants or remove them.

Figure 18 shows an example of the node selection based on the cost function after the creation
of Leaf events by all nodes. This example is based on five nodes and each node created Leaf events.
All nodes know other Leaf events. Node A creates an event block v; and A calculates the cost functions.
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Step 2 in Figure 18 shows the results of cost functions based on the height and in-degree vectors of
node A. In the initial step, each value in the vectors is the same because all nodes have only leaf events.
Node A randomly selects k nodes and connects v; to the Leaf events of selected nodes. In this example,
we set k = 3 and assume that node A selects node B and C.

Cost function: Cy=I/H Cost function: Cy=I/H
(I In-degree vector / H: Height vector) (I: In-degree vector / H: Height vector)
D @@ B, @
node A Node A node A Node A
EB . [_B Height vector
node B @ Height vector nodeB @
A B C D E
A B C D E
Ch CA 1 1 1 1 1
noTie C 1 1 1 1 1 nodeC @
In-degree vector
CA In-degree vector cA AlBlcl|plE
n oTie D nodeD
A B C D E 0 0 0 0
CA @ -l o o] o]o |
nodeE nodeE G (B)=0 G(O)=0 G (D)=0C (E)=0
Step 1 Step 2

Figure 18. Example of a cost function 1.

Figure 19 shows an example of node selection after a few steps of the simulation in Figure 18.
In Figure 19, the most recent event block is v5 created by node A. Node A calculates the cost function
and selects the other two nodes that have the lowest results of the cost function. In this example,
node B has 0.5 as the result and the other nodes have the same values. Because of this, node A first
selects node B and randomly selects the other nodes from among nodes C, D, and E.

Cost function: Cy = I/H

[_B (I: In-degree vector / H: Height vector)
—.
node A
Node 4
[__LB Height vector
nodeB
A B C D E
G
nodeC 3 2 1 2 1
In-degree vector
GO
nodeD A B C D Iz,
1 3 1 1
3 ©®
nodeE
C(B)=05 C(CO)=3 CD)=0.5 C(B)=1

Figure 19. Example of a cost function 2.

The height of node D in the current consensus structure of the example is 2 (Leaf event and event
block v4). On the other hand, the height of node D in the node structure of A is 1. Node A is still not
aware of the presence of event block v4. This means that a path does not exist from the event blocks
created by node A to event block v4. Thus, node A has 1 as the height of node D.

Algorithm 2 contains the pseudocode for selecting reference nodes. The algorithm is executed to
enable each node to select a communication partner from among the other nodes. Lines 4 and 5 set
min_cost and S,, ¢ to the initial state. Line 7 calculates the cost function ¢ ¥ for each node. In lines 8-10,
we find the minimum value of the cost function and set min_cost and S,,f to ¢y and the ID of each
node, respectively. Lines 11 and 12 append the ID of each node to S, if min_cost equals ;. Finally,
line 13 randomly selects k node IDs from S, as communication partners. The time complexity of
Algorithm 2 is O(n), where n is the number of nodes.
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After the reference node is selected, each node communicates and shares information about all the
event blocks known by them. A node creates an event block by referring to the top event block of the
reference node. The Decision search protocol works and communicates asynchronously. This allows
a node to create an event block asynchronously even when another node creates an event block.
Communication between nodes does not allow simultaneous communication with the same node.

Figure 20 shows an example of the node selection in the Decision search protocol. This example
is based on five nodes (A, B,C, D, and E) and each node generates the first event blocks, referred to
as Leaf events. All nodes share other Leaf events with each other. In the first step, node A generates
new event block 4;. Then, node A calculates the cost function to connect other nodes. In this initial
situation, all nodes have one event block in the form of a leaf event, thus the height vector and the
in-degree vector in node A have the same values. In other words, the heights of each node are 1 and
the values of the in-degree vectors are 0. Thus, node A randomly selects two other nodes and connects
aj to the top two event blocks by two other nodes. Step 2 shows the situation after connections. In this
example, node A selects nodes B and C to connect a1 and the event block a; is connected to the top
event blocks of node B and C. Node A only knows the situation after step 2.
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Step 1 :> Step 2 :> Step 3 :> Step 4

Figure 20. Example of node selection.

After that, in the example, node B generates a new event block b; and calculates the cost function.
B randomly selects the other two nodes, A and D because B only has information about the leaf events.
Node B requests A and D to connect by, then nodes A and D send information for their top event
blocks to node B as a response. The top event block of node A is 41, and node D is the Leaf event.
The event block b; is connected to a; and Leaf event from node D. Step 4 shows these connections.

In Figure 21, the communication process is divided into five steps for two nodes to create an
event block. Simply, node A submits requests to B, in which case B responds directly to A. When two
nodes can interact with each other, the steps they use to share their latest information (three steps)
are synchronized.

node A node B

Request to B (C1)

Response to A (C2)

Synchronous (C3)

A
\4

C1—> Step 1. A requests to B

C2—> Step 2. B responses to A

ng’{Step 3. A sends to B that A knows the information of B
Step 4. B is sent to A by adding the information received and its latest information
Step 5. Termination

Figure 21. Example of a communication process.
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6. Discussions

This section presents several discussions on our Decision search protocol.

6.1. Lamport Timestamps

This section discusses the topological order of event blocks in Decision search protocols using
Lamport timestamps [23].

Our protocols rely on Lamport timestamps to define the topological ordering of event blocks.
The use of these timestamps makes it unnecessary to rely on physical locks to determine the partial
ordering of events.

The “happened-before” relation, denoted by —, gives a partial ordering of events from a
distributed system of nodes. Each node n; (also termed a process) is identified by its process identifier
i. For a pair of event blocks v and ¢/, the relation “—” satisfies (1) if v and v’ are events of process
P;, and v precedes v/, then b — v'. (2) If v is the send(m) by one process and v’ is the receive(m) by
another process, then v — v'. (3) If v — v’ and v' — ¢” then v — v". Two distinct events v and v’ are
said to be concurrent if v - v’ and v' - v.

For an arbitrary total ordering < of the processes, the relation = is defined as follows: if v is an
event in process P; and ¢’ is an event in process Pj, then v = ¢’ if and only if either (i) C;(v) < C;(v')
or (i) C(v) = Cj(v) and P; < P;. This defines a total ordering, and the Clock Condition implies that if
v — v, thenv = v'.

We use this total ordering in our DSA. This ordering is used to determine the consensus time,
as described in Sections 3 and 5.

6.2. Semantics of Decision Search Protocols

This section discusses the possible usage of concurrent common knowledge, described in
Section 2.1.4, to understand DAG-based consensus protocols.

In the Decision search protocol, the consensus structure G = (V,E) is a DAG (i.e., a directed
graph with no cycles), where V is a set of vertices and E is a set of edges. A path with its source and
destination at the same vertex does not exist. A path is a sequence of vertices (v1, vy, ..., x_1, Uk) that
uses no edge more than once.

An asynchronous system consists of the following sets: a set P of process identifiers, a set C of
channels, a set H; of possible local histories for each process 7, a set A of asynchronous runs, and a set
M of all messages.

Each process of a node selects k other nodes as peers. For a certain gossip protocol, nodes may
be constrained to gossip with their k peers. In such a case, the set of channels C can be modeled as
follows: If node i selects node j as a peer, then (i, j) € C. In general, one can express the history of each
node in the DAG-based protocol in general or in the gossip protocol. This is discussed in the paper
that focused on CCK [24].

The proof and formal semantics of Lachesis are described in Section 4.

6.3. Dynamic Participants

Our Decision search protocol allows an arbitrary number of participants to dynamically join
the system. The operation of the consensus structure would still be possible with new participants.
Computation on the flag tables is set based and does not depend on the nature and number of
participants that joined the system. The algorithms for the selection of Roots, subDecision, and Decision
are sufficiently flexible and are not dependent on a fixed number of participants.

6.4. Analysis of Time Complexity

For the existing protocol [17] utilizing DAG-based gossip protocols for block-sharing detection,
for n participating nodes, it is necessary to check whether the block can reach 2n/3 nodes when a
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new block occurs. This is based on rounds, and as the number of rounds increases, each block is
shared with nodes. Each round can be checked for sharing by using the path-search algorithm because
it has a DAG structure. That is, upon the creation of a new block, a graph search algorithm can be
used to detect whether the block is shared on 2n/3 nodes. If we use binary search, we have O(nlogn)
time complexity because it detects all n nodes that need to be reached. Thus, we determined that
the protocol has a total time complexity of O(1% log n) because the blocks that reached 2n/3 through
O(nlogn) were checked again to reach 2n/3. To determine whether a block reaches an agreement,
namely, it has a total time complexity of O(1n? logn) to detect the blocks that have been shared.

6.5. Simulation Results

As we mentioned representative protocol Hashgraph [17], we compared with our proposed
protocol DecisionBFT for various simulation results. We experimented by increasing the total number
of nodes to 4, 8, 16 and 32. We also confirmed that the results were significantly different as the
number of nodes increased. Figure 22 shows the results of the simulation. Table (c) in Figure 22 is the
results of experimentation on a total of three things and a comparison of hashgrpah and DecisionBFT
respectively. More detailed panels (a) and (b) in Figure 22 are graphically represented. The panel (a)
is the result of experimenting in seconds with the number of nodes in which each node creates an
event block. The x-axis is the number of nodes and the y-axis is the generated event blocks per second.
It can be seen that the proposed protocol generates blocks of more than hashgraph at the same time.
The following are the results for the experiment figure (b). First of all, the x-axis is the result of an
increase in the number of nodes, and the y-axis is the corresponding tps time. As the number of nodes
increases, hashgraph naturally increases tps and relatively, DecisionBFT can have a fast settlement
structure because it uses binary search instead of BFS or DFS. Thus, our proposed protocol has better
performance according to an increase the number of nodes. As the number of nodes participating
increases geometrically, we expect much better performance.

The number of event block craetion tps (transaction per second)
300 200,000
250
200 150,000
150 I
100 100,000
52 - I I 50,000
4 8 16 32
# event block creation (sec) Hashgraph 0
m# event block creation (sec) DecisionBFT tps Hashgraph ~ ==tps DecisionBFT
(a) Event block creation (b) Transaction per second
— # event block creation (sec) tps latency (sec)
Hashgraph DecisionBFT Hashgraph DecisionBFT Hashgraph DecisionBFT
4 16.3 46.2 4 080 13,750 0.39 0.32
8 29.6 92 10,960 41,200 0.73 0.67
16 43.9 166.2 29910 88,200 1.52 0.83
32 71 249.5 55,900 171,500 3.13 1.35

(c) Simulation results according to the number of nodes

Figure 22. Various simulation results.
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7. Conclusions

With the aim of realizing distributed ledger technology, we proposed a new family of
asynchronous Decision search protocols, namely DecisionBFT. We additionally introduced a consensus
structure for a faster consensus. Lamport timestamps were used to improve the intuitiveness and
reliability of the topological ordering of event blocks in distributed systems. We added a flag table at
each top event block to improve Root detection.

Further, we presented a specific Decision search protocol as an example of DecisionBFT.
The DecisionBFT protocol uses a new flag table in each top event block as a shortcut to check
for reachability from an event block to a Root along the consensus structure. The path search is
used as proof of aBFT consensus. In terms of effectiveness, using the flag table in the DecisionBFT
protocol is more effective for consensus compared to path searching approaches. To ensure the
distribution of participating nodes, the Decision search protocol defines a new cost function and
an algorithm that efficiently and quickly selects peers. We also proposed new algorithms for Root
selection and subDecition selection based on the flag table for Decision selection by weight after time
consensus ordering.

Based on the DecisionBFT protocol and the new consensus algorithm, our solution can protect
against malicious attacks such as forks, double spending, parasite chains, and network control.
These protections guarantee the safety of the consensus structure. We can also verify the existence of a
Decision within the consensus structure, confirming that the consensus structure guarantees finality
and liveliness. The time ordering ensures this guarantee by using the weight value on the flag table.
Based on these properties, DSA provides a fair, transparent, and effective consensus algorithm.

We described our formal proof of aBFT for our protocol in Section 4. We also presented formal
semantics for the protocol in Section 4.2. Our work is the first to study such concurrent common
knowledge semantics [24] in DAG-based protocols. These semantics can be used in systems that
require rapid consensus among nodes, such as public or private blockchain environments.

Our framework allows as many as k-nodes to be selected in the gossip environment. This ensures
that the selection of additional nodes results in a faster agreement. In our framework, we assigned a
value of 3 to k and can improve the current form by adding k from 3 to n.

Future Work

Our generic framework is flexible and extensible and enables the development of a new protocol
on the basis thereof. A number of directions for future work are available:

e  Using the Decision search protocols, we are designing a fast node synchronization algorithm with
k-neighbor broadcasts. The consensus structure and k peer selection make it possible to achieve
faster gossip broadcast.

¢  We are interested in comparing the performance of various gossip strategies, such as random
gossip, broadcast gossip, and collection tree protocol for distributed averaging in wireless
sensor networks.

A preliminary version of this paper appeared on arXiv [25] and the web [26].
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