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Abstract: Hybrid numbers are generalizations of complex, hyperbolic and dual numbers.
A hyperbolic complex structure is frequently used in both pure mathematics and numerous areas
of physics. In this paper we introduce a special kind of spacelike hybrid number, namely the
F(p, n)-Fibonacci hybrid numbers and we give some of their properties.
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1. Definitions and Preliminary Results

In [1] Özdemir introduced hybrid numbers as a new type of numbers which generalize complex,
hyperbolic and dual numbers. We recall this definition.

Let K be the set of hybrid numbers Z of the form

Z = a + bi + cε + dh,

where a, b, c, d ∈ R and i, ε, h are operators for which

i2 = −1, ε2 = 0, h2 = 1 (1)

and
ih = −hi = ε + i. (2)

Let Z1 = a1 + b1i + c1ε + d1h and Z2 = a2 + b2i + c2ε + d2h be arbitrary hybrid numbers. Then
we define equality, addition, subtraction and multiplication by scalar s ∈ R in the following way:

Z1 = Z2 if and only if a1 = a2, b1 = b2, c1 = c2, d1 = d2,
Z1 ± Z2 = (a1 ± a2) + (b1 ± b2)i + (c1 ± c2)ε + (d1 ± d2)h,
sZ1 = sa1 + sb1i + sc1ε + sd1h.

Using equalities (1) and (2) we define the hybrid numbers multiplication. Moreover, by (1) and
(2) we can find the product of any two hybrid units as presented in Table 1.

Table 1. The hybrid number multiplication.

· i ε h

i −1 1− h ε + i
ε h + 1 0 −ε
h −ε− i ε 1
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Rules given in Table 1. are helpful for the multiplication of hybrid numbers and it can be made
analogously as multiplications of algebraic expressions.

The conjugate of a hybrid number Z is the hybrid number

Z = a + bi + cε + dh = a− bi− cε− dh.

The real number

C(Z) = ZZ = ZZ = a2 + (b− c)2 − c2 − d2 = a2 + b2 − 2bc− d2

is named as the character of the hybrid number Z.
Hybrid numbers are classified as spacelike, timelike and lightlike according to its character.

We say that a hybrid number Z is spacelike, timelike or lightlike if C(Z) < 0, C(Z) > 0 or C(Z) = 0,
respectively.

For the basics on hybrid number theory and also algebraic and geometric properties of hybrid
numbers, see [1].

Hybrid numbers generalize complex, hyperbolic and dual numbers. Hyperbolic complex structure
have many applications also in physics, see for example [2,3]. Hybrid numbers can be connected with
the well-known numbers belonging to the family of Fibonacci type numbers.

We recall that the nth Fibonacci number Fn is defined recursively by Fn = Fn−1 + Fn−2 for n ≥ 2
with F0 = F1 = 1. Note that Fibonacci sequence {Fn} starts also from F0 = 0, F1 = 1 but in this paper
we put F0 = F1 = 1. The nth Lucas number Ln is defined recursively by Ln = Ln−1 + Ln−2 for n ≥ 2
with L0 = 2, L1 = 1.

Besides the usual Fibonacci and Lucas numbers many kinds of generalizations of these numbers
have been presented in the literature. These generalizations are given by the pth order linear recurrence
relations, see for their list [4]. Among many generalizations Kwaśnik and Włoch [5] generalized
Fibonacci and Lucas numbers in the context of their interpretations in graph theory.

Let p ≥ 2, n ≥ 0 be integers. Generalized Fibonacci numbers F(p, n) were defined as follows

F(p, n) = n + 1, for n = 0, 1, . . . , p− 1

F(p, n) = F(p, n− 1) + F(p, n− p), for n ≥ p.

For their graphs applications the sequence {F(p, n)} starts from F(p, 0) = 1.
Based on the definition of F(p, n) generalized Lucas numbers L(p, n) were defined as follows

L(p, n) = n + 1, for n = 0, 1, . . . , 2p− 1

L(p, n) = L(p, n− 1) + L(p, n− p), for n ≥ 2p.

The same recurrence relations were introduced by Stakhov as “Fibonacci and Lucas p-numbers”,
see [6].

Note that for n ≥ 0 we have that F(2, n) = Fn+1 and for n ≥ 2 holds L(2, n) = Ln. Moreover,
F(3, n) = un+2, where un is the well-known nth Fibonacci–Narayana number defined as follows
u0 = u1 = u2 = 1 and un = un−1 + un−3 for n ≥ 3, see for details in [7].

Numbers F(p, n) and L(p, n) were investigated in many papers with respect to their combinatorial
and algebraic properties, see for example [8–15]. Fibonacci polynomials can be used as special
generalization of Fibonacci numbers, and they are studied in the context of their roots, power series,
matrix generators and also connections with Chebyshev polynomials, more details can be found
in [16–19].

Fibonacci numbers have applications in studying topological indices (Hosoya index and
Marrifield-Simmons index) related to variety of physicochemical properties of alkanes, for example
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their boiling points. These structure descriptors are used in the theory of conjugated π-electron systems
of molecular-graphs, see [20].

For these reasons Fibonacci numbers and their generalizations are intensively studied both from
the pure mathematical point of view and their applications. A new generalization of Fibonacci and
Lucas hybrid numbers were presented quite recently in [21]. Another generalization of Fibonacci and
Lucas hybrid numbers are the Fibonacci and Lucas hybrinomials, see [22].

Table 2 presents initial terms of generalized Fibonacci numbers and generalized Lucas numbers
for special cases of n and p.

Table 2. The values of F(p, n), L(p, n), Fn, un and Ln.

n 0 1 2 3 4 5 6 7 8 9 10

Fn 1 1 2 3 5 8 13 21 34 55 89
F(2, n) 1 2 3 5 8 13 21 34 55 89 144

un 1 1 1 2 3 4 6 9 13 19 28
F(3, n) 1 2 3 4 6 9 13 19 28 41 60
F(4, n) 1 2 3 4 5 7 10 14 19 26 36
F(5, n) 1 2 3 4 5 6 8 11 15 20 26

Ln 2 1 3 4 7 11 18 29 47 76 123
L(2, n) 1 2 3 4 7 11 18 29 47 76 123
L(3, n) 1 2 3 4 5 6 10 15 21 31 46
L(4, n) 1 2 3 4 5 6 7 8 13 19 26

For F(p, n) and L(p, n) some identities were given for example in [11,13]. We recall some of them.

Theorem 1 ([13]). Let p ≥ 2 be integer. Then for n ≥ p + 1

n−p

∑
l=0

F(p, l) = F(p, n)− p. (3)

Theorem 2 ([13]). Let p ≥ 2, n ≥ p be integers. Then

n

∑
l=1

F(p, lp− 1) + 1 = F(p, np). (4)

Theorem 3 ([11]). Let p ≥ 2, n ≥ p be integers. Then

n

∑
l=1

F(p, lp) = F(p, np + 1)− F(p, 1), (5)

n

∑
l=1

F(p, lp + 1) = F(p, np + 2)− F(p, 2), (6)

n

∑
l=1

F(p, lp + 2) = F(p, np + 3)− F(p, 3). (7)

Theorem 4 ([13]). Let p ≥ 2, n ≥ 2p− 2 be integers. Then

F(p, n) =
p−1

∑
l=0

F(p, n− (p− 1)− l). (8)
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Theorem 5 ([13]). Let p ≥ 2, n ≥ 2p be integers. Then

n

∑
l=2

L(p, pl) = L(p, np + 1)− (p + 2). (9)

Theorem 6 ([11]). Let p ≥ 2, n ≥ 2p be integers. Then

n

∑
l=2

L(p, pl + 1) = L(p, np + 2)− L(p, p + 2). (10)

n

∑
l=2

L(p, pl + 2) = L(p, np + 3)− L(p, p + 3). (11)

n

∑
l=2

L(p, pl + 3) = L(p, np + 4)− L(p, p + 4). (12)

Theorem 7 ([13]). Let p ≥ 2, n ≥ 2p be integers. Then

L(p, n) = pF(p, n− (2p− 1)) + F(p, n− p). (13)

In spite of generalized Fibonacci numbers F(p, n) and generalized Lucas numbers L(p, n) have
been studied, mainly with respect to their graph and combinatorial properties, they found applications
also in the theory of quaternions [11] and bicomplex numbers [8]. In this paper we introduce and
study F(p, n)-Fibonacci hybrid numbers and we describe their distinct properties.

2. F(p, n)-Fibonacci Hybrid Numbers

Let n ≥ 0, p ≥ 2 be integers. The nth F(p, n)-Fibonacci hybrid number FHp
n and the nth

L(p, n)-Lucas hybrid number LHp
n are defined as

FHp
n = F(p, n) + F(p, n + 1)i + F(p, n + 2)ε + F(p, n + 3)h, (14)

LHp
n = L(p, n) + L(p, n + 1)i + L(p, n + 2)ε + L(p, n + 3)h, (15)

respectively.
For p = 2 we obtain FH2

n = FHn+2 and LH2
n = LHn, where FHn and LHn denote the nth

Fibonacci hybrid number and the nth Lucas hybrid number, respectively (see [23]).
Defining the nth Fibonacci–Narayana hybrid number uHn as

uHn = un + un+1i + un+2ε + un+3h

we have that FH3
n = uHn+2.

Theorem 8. Let p ≥ 2 be integer. Then for n ≥ p + 1

n−p

∑
l=0

FHp
l = FHp

n − p− (p + F(p, 0)) i− (p + F(p, 0) + F(p, 1)) ε+

− (p + F(p, 0) + F(p, 1) + F(p, 2)) h.
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Proof. Using (3) and (14) we have

n−p

∑
l=0

FHp
l = FHp

0 + FHp
1 + · · ·+ FHp

n−p

= F(p, 0) + F(p, 1)i + F(p, 2)ε + F(p, 3)h

+ F(p, 1) + F(p, 2)i + F(p, 3)ε + F(p, 4)h + · · ·
+ F(p, n− p) + F(p, n− p + 1)i + F(p, n− p + 2)ε + F(p, n− p + 3)h

= F(p, 0) + F(p, 1) + · · ·+ F(p, n− p)

+ (F(p, 1) + · · ·+ F(p, n− p + 1) + F(p, 0)− F(p, 0)) i

+ (F(p, 2) + · · ·+ F(p, n− p + 2) + F(p, 0) + F(p, 1)− F(p, 0)− F(p, 1)) ε

+ (F(p, 3) + · · ·+ F(p, n− p + 3) + F(p, 0) + F(p, 1) + F(p, 2)

−F(p, 0)− F(p, 1)− F(p, 2)) h

= F(p, n)− p + (F(p, n + 1)− p− F(p, 0)) i

+ (F(p, n + 2)− p− F(p, 0)− F(p, 1)) ε

+ ((F(p, n + 3)− p− F(p, 0)− F(p, 1)− F(p, 2)) h

= FHp
n − p− (p + F(p, 0)) i− (p + F(p, 0) + F(p, 1)) ε

− (p + F(p, 0) + F(p, 1) + F(p, 2)) h,

which ends the proof.

Remark 1. If p = 2 then we have

n−2

∑
l=0

FH2
l = FH2

n − 2− (2 + F(2, 0)) i− (2 + F(2, 0) + F(2, 1)) ε

− (2 + F(2, 0) + F(2, 1) + F(2, 2)) h

= FH2
n − (2 + 3i + 5ε + 8h)

= FH2
n − FH2

1 .

On the other hand FH2
n = FHn+2, so

n

∑
l=0

FHl = FH0 + FH1 + · · ·+ FHn

= FH0 + FH1 + FH2
0 + FH2

1 + · · ·+ FH2
n−2

= FH0 + FH1 + FH2
n − FH2

1

= FH0 + FH1 + FHn+2 − FH3

= FH0 + FH1 + FHn+2 − (FH2 + FH1)

= FH0 + FHn+2 − FH2

= FH0 + FHn+2 − (FH1 + FH0)

= FHn+2 − FH1

and we obtain the known equality for the Fibonacci hybrid numbers FHn (see [23])

n

∑
l=0

FHl = FHn+2 − FH1.



Mathematics 2020, 8, 1671 6 of 10

Remark 2. If p = 3 then we have

n−3

∑
l=0

FH3
l = FH3

n − 3− (3 + F(3, 0)) i− (3 + F(3, 0) + F(3, 1)) ε

− (3 + F(3, 0) + F(3, 1) + F(3, 2)) h

= FH3
n − (3 + 4i + 6ε + 9h)

= FH3
n − FH3

2 .

On the other hand FH3
n = uHn+2, so

n−1

∑
l=0

uHl = uH0 + uH1 + · · ·+ uHn−1

= uH0 + uH1 + FH3
0 + FH3

1 + · · ·+ FH3
n−3

= uH0 + uH1 + FH3
n − FH3

2

= uH0 + uH1 + uHn+2 − uH4

= uH0 + uH1 + uHn+2 − (uH3 + uH1)

= uH0 + uHn+2 − uH3

= uH0 + uHn+2 − (uH2 + uH0)

= uHn+2 − uH2

and we obtain the equality for the Fibonacci–Narayana hybrid numbers uHn

n

∑
l=0

uHl = uHn+3 − uH2.

Theorem 9. Let p ≥ 2, n ≥ p be integers. Then

n

∑
l=1

FHp
lp−1 = FHp

np − (F(p, 0) + F(p, 1)i + F(p, 2)ε + F(p, 3)h) . (16)

Proof. Using (14) we have

n

∑
l=1

FHp
lp−1 = FHp

p−1 + FHp
2p−1 + · · ·+ FHp

np−1

= F(p, p− 1) + F(p, p)i + F(p, p + 1)ε + F(p, p + 2)h

+ F(p, 2p− 1) + F(p, 2p)i + F(p, 2p + 1)ε + F(p, 2p + 2)h + · · ·
+ F(p, np− 1) + F(p, np)i + F(p, np + 1)ε + F(p, np + 2)h

= F(p, p− 1) + F(p, 2p− 1) + · · ·+ F(p, np− 1)

+ (F(p, p) + F(p, 2p) + · · ·+ F(p, np)) i

+ (F(p, p + 1) + F(p, 2p + 1) + · · ·+ F(p, np + 1)) ε

+ (F(p, p + 2) + F(p, 2p + 2) + · · ·+ F(p, np + 2)) h.

Writing (4) as
n
∑

l=1
F(p, lp − 1) = F(p, np) − 1 = F(p, np) − F(p, 0) and using (5)–(7) we

obtain (16).
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Theorem 10. Let p ≥ 2, n ≥ 2p− 2 be integers. Then

FHp
n =

p−1

∑
l=0

FHp
n−(p−1)−l .

Proof. Using (8) and (14) we have

p−1

∑
l=0

FHp
n−(p−1)−l = FHp

n−(p−1) + FHp
n−(p−1)−1 + · · ·+ FHp

n−(p−1)−(p−1)

= F(p, n− (p− 1)) + F(p, n− (p− 1) + 1)i

+ F(p, n− (p− 1) + 2)ε + F(p, n− (p− 1) + 3)h

+ F(p, n− (p− 1)− 1) + F(p, n− (p− 1))i

+ F(p, n− (p− 1) + 1)ε + F(p, n− (p− 1) + 2)h + · · ·
+ F(p, n− (p− 1)− (p− 1)) + F(p, n− (p− 1)− (p− 1) + 1)i

+ F(p, n− (p− 1)− (p− 1) + 2)ε

+ F(p, n− (p− 1)− (p− 1) + 3)h

= F(p, n) + F(p, n + 1)i + F(p, n + 2)ε + F(p, n + 3)h = FHp
n ,

which ends the proof.

Remark 3. If p = 2 and n ≥ 2 then we obtain the basic equality for the Fibonacci hybrid numbers FHn

FHn = FHn−1 + FHn−2.

Remark 4. If p = 3 and n ≥ 4 then we obtain the basic equality for the Fibonacci–Narayana hybrid
numbers uHn

uHn = uHn−2 + uHn−3 + uHn−4

= uHn−3 + (uHn−2 + uHn−4) = uHn−3 + uHn−1.

Theorem 11. Let p ≥ 2, n ≥ 2p be integers. Then

n

∑
l=2

LHp
pl = LHp

np+1 − LHp
p+1. (17)

Proof. Using (15) we have

n

∑
l=2

LHp
pl = LHp

2p + LHp
3p + · · ·+ LHp

np

= L(p, 2p) + L(p, 2p + 1)i + L(p, 2p + 2)ε + L(p, 2p + 3)h

+ L(p, 3p) + L(p, 3p + 1)i + L(p, 3p + 2)ε + L(p, 3p + 3)h + · · ·
+ L(p, np) + L(p, np + 1)i + L(p, np + 2)ε + L(p, np + 3)h

= L(p, 2p) + L(p, 3p) + · · ·+ L(p, np)

+ (L(p, 2p + 1) + L(p, 3p + 1) + · · ·+ L(p, np + 1)) i

+ (L(p, 2p + 2) + L(p, 3p + 2) + · · ·+ L(p, np + 2)) ε

+ (L(p, 2p + 3) + L(p, 3p + 3) + · · ·+ L(p, np + 3)) h.
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Writing (9) as
n
∑

l=2
L(p, pl) = L(p, np + 1)− L(p, p + 1) and using (10)–(12) we obtain (17).

Remark 5. If p = 2 then we have

n

∑
l=2

LH2l = LH2n+1 − LH3,

and

n

∑
l=0

LH2l =
n

∑
l=2

LH2l + LH0 + LH2

= LH2n+1 − LH3 + LH0 + LH2

= LH2n+1 − (LH2 + LH1) + LH0 + LH2

hence we obtain the known equality for the Lucas hybrid numbers LHn (see [23])

n

∑
l=0

LH2l = LH2n+1 + LH0 − LH1.

Theorem 12. Let p ≥ 2, n ≥ 2p be integers. Then

LHp
n = p · FHp

n−(2p−1) + FHp
n−p.

Proof. Using (14) we have

FHp
n−(2p−1) = F(p, n− (2p− 1)) + F(p, n− (2p− 1) + 1)i

+ F(p, n− (2p− 1) + 2)ε + F(p, n− (2p− 1) + 3)h

and

FHp
n−p = F(p, n− p) + F(p, n− p + 1)i

+ F(p, n− p + 2)ε + F(p, n− p + 3)h,

consequently

p · FHp
n−(2p−1) + FHp

n−p

= p · F(p, n− (2p− 1)) + F(p, n− p)

+ (p · F(p, (n + 1)− (2p− 1)) + F(p, (n + 1)− p)) i

+ (p · F(p, (n + 2)− (2p− 1)) + F(p, (n + 2)− p)) ε

+ (p · F(p, (n + 3)− (2p− 1)) + F(p, (n + 3)− p)) h.

Using (13) we have

p · FHp
n−(2p−1) + FHp

n−p

= L(p, n) + L(p, n + 1)i + L(p, n + 2)ε + L(p, n + 3)h,

which ends the proof.
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3. Concluding Remarks

Let {an} be an increasing sequence of integer numbers. Then nth an-hybrid number aHn is
defined as aHn = an + an+1i + an+2ε + an+3h. We shall show that an-hybrid numbers are spacelike.
Since {an} is increasing, so

C(aHn) = (an)
2 + (an+1)

2 − 2an+1an+2 − (an+3)
2

< (an)
2 + (an+1)

2 − 2(an+1)
2 − (an+3)

2

= (an)
2 − (an+1)

2 − (an+3)
2 < 0.

From the above immediately follows that F(p, n)-Fibonacci hybrid numbers and L(p, n)-Lucas
hybrid numbers are spacelike.

Among generalizations of Fibonacci type numbers the well-known is generalization given by
Horadam, see [24].

Let p, q, n be integers. For n ≥ 0 the nth Horadam number Wn = Wn(W0, W1; p, q) is defined by

Wn = p ·Wn−1 − q ·Wn−2,

for n ≥ 2 with fixed real numbers W0, W1.
The Horadam hybrid numbers were introduced in [25] as follows. The nth Horadam hybrid

number Hn is defined as
Hn = Wn + Wn+1i + Wn+2ε + Wn+3h.

The character C(Hn) of the Horadam hybrid number Hn is equal to

C(Hn) = W2
n(1− p2q2) + WnWn+1(2q + 2p3q− 2pq2)

+W2
n+1(1− 2p− p4 + 2p2q− q2).

The well known special case of Horadam numbers are Pell numbers, Pell-Lucas numbers,
Jacobsthal numbers, Jacobsthal-Lucas numbers, Mersenne numbers and many others. Since the
corresponding sequences are increases, so the hybrid numbers based on these sequences are spacelike.
However it seems to be interesting to describe which Horadam hybrid numbers are spacelike.
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