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Abstract: The fractional orthotriple fuzzy set (FOFS) is more generalized than the spherical fuzzy set
(SFS) and picture fuzzy set (PFS) to cope with awkward and complex information in fuzzy set (FS)
theory. The FOFS is a more powerful technique with respect to the existing drawbacks because of its
conditions, i.e., the sum of the f powers of positive, neutral, and negative grades is bounded to [0, 1].
With the advantages of the FOFS, in this paper, we study the basic definitions and some existing
similarity measures (SMs) of intuitionistic fuzzy sets (IFSs), PFSs, Pythagorean fuzzy sets (PyFSs)
and SFSs. The existing approaches have certain limitations and cannot be applied to problems that
are in the form of FOFSs. The goal of this paper is to propose the idea of some new SMs including
cosine SMs for FOFSs, SMs for FOFSs based on the cosine function, and SMs for FOFSs based on the
cotangent function. Further, some weighted SMs (WSMs) are also proposed for which the weight of
the attributes is considered. Then, we apply these SMs and WSMs to the pattern recognition problem.
Finally, the comparative study of the new SMs for FOFSs is established with existing SMs, and also,
some advantages of the proposed work are discussed.

Keywords: fractional orthotriple fuzzy sets; fractional orthotriple fuzzy cosine similarity measure;
fractional orthotriple fuzzy cotangent similarity measure; decision making (DM)

1. Introduction

In practical decision making problems (DMPs), there are many uncertainties, and much imprecise
and vague information, the representations and management of which are always the central
issues. Health professionals and health care administrators are working to reduce the clinical and
maintenance costs in the prevention and management of coronavirus disease. The expenditures of
and need for health care are both growing fast. Health care practitioners, administrators, and other
sectors collectively perform a range of health care management techniques with the goal to facilitate
effective disease prevention approaches using scarce resources. Such principles are used to build a
decision-making model with a number of parameters and alterna- tives. The purpose of multi-criteria
decision-making (MCDM) frameworks to make appropriate decisions at different levels of health care,
such as operational, methodological, and functional. There may be an ideal solution to a difficult
decision-making (DM) problem, but it is a difficult task to find such a solution.
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Zadeh [1] in 1965, defined the theory of fuzzy sets (FSs). FSs are a great achievement and have
some applications in various fields. An FS is based on a characteristic function that has its membership
grade denoted by σ for each number of X (universal set) in the closed interval from zero to one.
Atanassov’s [2] generalized the idea of FS to the idea of intuitionistic fuzzy sets (IFSs). An IFS has
two functions, positive and negative membership grades denoted by σ and υ for each element of
the universal X in the closed-interval from zero to one. Further, the sum of σ and υ must belong to
[0, 1], i.e., sum (σ, υ) ∈ [0, 1]. If we take σ = 0.7 and υ = 0.4, respectively, then 0.7 + 0.4 = 1.15 > 1.
In this situation, the IFSs cannot explain such details. Therefore, due to this limitation, Yager [3,4]
developed the notion of Pythagorean fuzzy sets (PyFSs) by increasing the domain of IFSs. A PyFS also
has two functions, positive and negative membership grades denoted by σ and υ for each element
of the universal X in the closed interval [0, 1]. The sum of squares of σ and υ belongs in the closed
interval [0, 1], i.e., sum

(
σ2, υ2) ∈ [0, 1]. Therefore, the PyFS is the generalization of the IFS because the

domain of the PyFS is larger than the IFS. For some other recent studies on IFSs and PyFSs, one may
refer to Asiain et al. [5], Mahmood et al. [6], Li [7], Peng and Yang [8], Garg [9], Wei and Lu [10] and
Lu et al. [11,12].

In the case of IFSs we know that human opinion only has option types of yes or no. Therefore,
due to this limitation, Cuong [13] introduced the idea of picture fuzzy sets (PFSs) and described their
basic operations and properties. In this case, human opinion have four option types, i.e., yes, no,
abstain, and refusal. A PFS has three types of functions, membership, abstain, and non-membership
grades denoted by σ, η and υ for each element of the universal set X in the closed-interval [0, 1].
In the PFS, the sum of σ, η and υ must belong on the closed-interval [0, 1], i.e., sum (σ, η, υ) ∈ [0, 1].
Therefore, it is proven that the PFS is the direct generalization of the FS and IFS. Akram et al. [14]
proposed a decision-making model under complex picture fuzzy Hamacher aggregation operators.
Ahmad et al. [15] introduced some operations on interval-valued PFSs (IVPFSs), IVPF soft sets,
and their applications. Garg [16] developed some picture fuzzy aggregation operators and an approach
for multi-criteria decision-making. Lin et al. [17] proposed a novel picture fuzzy mult-attribute decision
making (MADM) approach using the extended Multiple Objective Optimization on the basis of Ratio
Analysis plus Full Multiplicative Form (MULTIMOORA) technique to solve the site selection for a
car sharing station. Liu et al. [18] defined similarity measures (SMs) for IVPFSs and discussed their
applications in DMPs. For some other recent studies in these areas, one may refer to [19,20].

PFS extended the Zadeh concept of FS and Atanassov’s idea of IFS, but still there is a limitation of
this structure such as if we take σ = 0.5, η = 0.3 and υ = 0.4 respectively, then it is enough. Because,
in PFS, we know that the values cannot be allowed to its characteristic functions independently. So due
this limitation Mahmood et al. [21] defined the idea of SFS by increasing the domain of PFS. A SFS
has also three functions, positive, abstinence and negative grades denoted by σ, η and υ for each
element of the universal X on the closed-interval [0, 1]. The sum of squares of σ, η and υ belong on the
closed-interval [0, 1], i.e., sum

(
σ2, η2, υ2) ∈ [0, 1]. Therefore, SFS is the generalization of PFS because

the domain of SFS is larger than PFS. However, sometimes, if we take σ = 0.6, η = 0.7 and υ = 0.8
respectively, then it is enough because the sum of squares of them is larger than 1. For some related
work on SFS one we may refer to [22–28].

1.1. Literature Review

SM is an interesting topic in fuzzy mathematics that tells us the degree of similarity of two
objects. SMs can be utilized in pattern recognition’s [29–31], medical diagnosis [32,33], group decision
making [34] and clustering analysis [35] etc. Ye [36] proposed cosine SMs of IFSs. Rajarajeswari and
Uma [37] introduced the cotangent SM of IFSs and Ye [38] developed SMs of IFS using the cosine
function. Further, Wei [39] introduced the concept of SMs for PFSs. Wei [40] proposed cosine SMs for
PFSs and Ahmad et al. [41] developed the concept SMs for picture hesitant fuzzy set (PHFS) and their
applications. Moreover, Wei et al. [42] defined SMs of PyFS using cosine function and Ullah et al. [43]
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developed SMs for FOFS with applications. Recently, Wei et al. [42] proposed the SMs of SFS using the
cosine function. Shougi et al. [44] defined a three-way DM using covering based FOF Rough Set Model.

The idea of similarity is a fundamental notion in human attention. SM plays an significant
role in taxonomy, identification etc. There are many condition of the similarity notion that have
eluded formalization. Under [picture fuzzy set] of a true, general purpose similarity description is
a challenging problem. There is no true, general purpose definition of similarity. There are some
special purpose definitions in cluster analysis, search, classification, recognition and diagnosis that
have been used successfully. The tests of similarity are divided into three groups: (1) metric based
measures, (2) set-theoretic based measures and (3) implication based measures. In dealing with
distance-based SMs, examples have been constructed of perceptual similarity where distance axiom is
clearly violated by dissimilarity measures, in particular triangular inequalities, and consequently the
resulting SM disobeys transitivity. This study suggests that the perceptual distance satisfies the metric
axioms of which many researchers have experimentally questioned the empiric validity, in particular
the triangular inequality. Similarly, for set theoretical similarity measurements, it is noticed that
crisp transitivity is a more stronger requirement for similarity measurement. Set theoretical similarity
measurements are subdivided further into three classes (a) measures based on a crisp logic (b) measures
based on a fuzzy logic (c) measures based on a hesitant fuzzy set.

1.2. Motivation and Novelties

The function of fractional orthotriple fuzzy sets (FOFS) in the DMP is very important among the
other extensions of FSs. In FOFSs, the viewpoint is not only limited to yes or no, but also to some kind of
denial or abstinence. The FOFS is a very useful tool for explaining the object without ambiguity, while in
the other tool the knowledge is complex and uncertain. For example, we assume that a country wants
to build or launch a medical treatment or health care center project. The government party will offer
high support for its proposal, the government allocated membership grade of 0.8 per cent, while the
opposition party will approve it, if the same proposal is not pleasant, they will strongly oppose it.
The minority party would allocate 0.75. to non-membership. The other small party will remain neutral
and will be given a membership grade of 0.2, in case of a PFS, 0.8 + 0.2 + 0.75 = 1.75 > 1, in this case
the PFS could not clarify this detail. Now, assume that an SFS, (0.8)2 + (0.75)2 + (0.2)2 = 1.243 > 1,
in this scenario, too, the SFS failed to justify such details. In case of FOFS, (0.8) f + (0.75) f + (0.2) f ≤ 1,
where f ∈ Q+. In order to resolve this issue of confusion, we need a detailed method to explain
this form of problem during the decision-making process. Keeping the advantages of the SM, in this
article, we studied basic definitions and some existing SMs of PyFSs, PFSs and SFSs. However,
the existing approaches have some limitations and could not be applied on those problems in which
there data occur in the form of FOFNs. This article aims to developed the notion of some new SMs
including cosine SM (WSMs) for FOFSs using the cosine function and SMs (WSMs) for FOFSs using
the cotangent function. Then, we apply these SMs and WSMs to pattern recognition problem. Finally,
the comparative analysis of the new SMs (WSMs) for FOFSs is developed with the existing SMs
(WSMs).

Thus, we observed that the existing SMs of PyFSs and SFSs have some limitation and cannot be
applied to those problems whose environment is FOFSs. To deal with this issue, we proposed SMs
(WSMs) for FOFSs using the cosine function and cotangent function which are the direct generalization
of References [42,43,45]. Therefore, the references [42,43,45] will become the special cases of the defined
SMs (WSMs).

The remainder of the paper is arranged as: In Section 1, the history of existing concepts is discussed
in detail. In Section 2, we discussed some basic definitions of IFSs, PyFSs, PFSs, SFSs and FOFSs.
In Section 3, we propose SMs and weighted SMs based on cosine function for FOFSs. In Section 4,
the SMs developed in Section 3 are applied to pattern recognition. In Section 5, the comparative study
of the proposed work is discussed. Finally, the article is summarized with some future directions.
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2. Preliminaries

In this portion, we studied basic definitions and notion related to IFSs, PyFSs, PFSs, SFSs, FOFSs
and some SMs. In our study by X we mean the universal set and σ, η, υ and γ denote the positive,
abstinence, negative and refusal grades on the closed-interval [0, 1]. Moreover, the notation ” ∨ ” is
denote the maximum operation and the set of FOFNs on X are represented by FOFS(X).

Definition 1. An IFS = on X is of the shape = = {〈g, σ=(g), υ=(g)〉 |g ∈ X} provided that 0 ≤
sum (σ=(g), υ=(g)) ≤ 1. Further, γ=(g) = 1− sum (σ=(g), υ=(g)) is called the refusal grade of g ∈ X
in =. For convenience (σ, υ) is called an intuitionistic fuzzy number (IFN) [2].

Definition 2. A PyFS on X is of the shape = = {〈g, σ=(g), υ=(g)〉 |g ∈ X} provided that 0 ≤
sum

(
σ2
=(g), υ2

=(g)
)
≤ 1. Further, γ=(g) =

√
1− sum

(
σ2
=(g), υ2

=(g)
)

is known the refusal grade of
g ∈ X in =. For convenience (σ, υ) is called a Pythagorean fuzzy number (PyFN) [3,4].

Definition 3. A PFS = on X is of the shape = = {〈g, σ=(g), η=(g), υ=(g)〉 |g ∈ X} provided that
0 ≤ sum (σ=(g), η=(g), υ=(g)) ≤ 1. Further, γ=(g) = 1− sum (σ=(g), η=(g), υ=(g)) is called the
refusal grade of g ∈ X in =. For convenience (σ, η, υ) is called a picture fuzzy number (PFN) [13].

Definition 4. A SFS on X is of the shape = = {〈g, σ=(g), η=(g), υ=(g)〉 |g ∈ X} provided that 0 ≤
sum

(
σ2
=(g), η2

=(g), υ2
=(g)

)
≤ 1. Further, γ=(g) =

√
1− sum

(
σ2
=(g), η2

=(g), υ2
=(g)

)
is called the

refusal grade of g ∈ X in =. For convenience (σ, η, υ) is called a spherical fuzzy number (SFN) [21].

Definition 5. A FOFS = on X is of the shape = = {〈g, µ= (g) , η= (g) , ν= (g)〉 |g ∈ X} provided that

sum
(

µ
f
= (g) + η

f
= (g) + ν

f
= (g)

)
≤ 1. Further π= (g) = f

√
1− sum

(
σ

f
=(g), η

f
=(g), υ

f
=(g)

)
is called

the refusal grade of g ∈ X in =. For convenience, (µ=, η=, ν=) is said to be a fractional orthotriple fuzzy
number (FOFNs) [44].

Remark 1. We know that if
◦ we put f = 2 in definition (5), then FOFS reduces to SFS
◦ we put f = 1 in definition (5), then FOFS reduces to PFS
◦ we put f = 2 and η= = 0 in definition (5), then FOFS reduces to PyFS
◦ we put f = 1 and η= = 0 in definition (5), then FOFS reduces to IFS
◦ we put f = 1 and η= = υ= = 0 in definition (5), then FOFS reduces to FS
This remark identifies that SFS, PyFS, PFS, IFS, and FS are the special cases of FOFS [44].

Definition 6. For two IFNs = = (σ=, υ=) and < = (σ<, υ<) on X, a cosine SM is defined as [36]

IFC1 (=,<) = 1
m

m

∑
i=1

σ=(gi)σ<(gi) + υ=(gi)υ<(gi)√
σ2
=(gi) + υ2

=(gi)
√

σ2
<(gi) + υ2

<(gi)
(1)

Definition 7. For two PFNs = = (σ=, η=, υ=) and < = (σ<, η<, υ<) on X, a cosine SM is described as [39]

PFC1 (=,<) = 1
m

m

∑
i=1

σ=(gi)σ<(gi) + η=(gi)η<(gi) + υ=(gi)υ<(gi)√
σ2
=(gi) + η2

=(gi) + υ2
=(gi)

√
σ2
<(gi) + η2

<(gi) + υ2
<(gi)

(2)



Mathematics 2020, 8, 1653 5 of 19

Definition 8. For any two PFNs = = (σ=, η=, υ=) and < = (σ<, η<, υ<) on X, based on the cosine function,
then SM is defined as [40]

PFCS1(=,<) = 1
m

m

∑
i=1

cos

π

2

 |σ=(gi)− σ<(gi)| ∨
|η=(gi)− η<(gi)| ∨
|υ=(gi)− υ<(gi)|


 (3)

PFCS2(=,<) = 1
m

m

∑
i=1

cos

π

4

 |σ=(gi)− σ<(gi)|+
|η=(gi)− η<(gi)|+
|υ=(gi)− υ<(gi)|


 (4)

Definition 9. For any two PFNs = = (σ=, η=, υ=) and < = (σ<, η<, υ<) on X, based on the cotangent
function, then SM is defined as [40]

PFCT1(=,<) = 1
m

m

∑
i=1

cot

π

4
+

π

4

 |σ=(gi)− σ<(gi)| ∨
|η=(gi)− η<(gi)| ∨
|υ=(gi)− υ<(gi)|


 (5)

PFCT2(=,<) = 1
m

m

∑
i=1

cot

π

4
+

π

4


|σ=(gi)− σ<(gi)| ∨
|η=(gi)− η<(gi)| ∨
|υ=(gi)− υ<(gi)| ∨
|γ=(gi)− γ<(gi)|


 (6)

Definition 10. For any two PyFNs = = (σ=, υ=) and < = (σ<, υ<) on X, a cosine SM is defined as [42]

PyFC1 (=,<) = 1
m

m

∑
i=1

σ2
=(gi)σ

2
<(gi) + υ2

=(gi)υ
2
<(gi)√

σ4
=(gi) + υ4

=(gi)
√

σ4
<(gi) + υ4

<(gi)
(7)

Definition 11. For any two PyFNs = = (σ=, υ=) and < = (σ<, υ<) on X based on the cosine function, then
SM is defined as [42]

PyFC1 (=,<) = 1
m

m

∑
i=1

cos
[π

2

(∣∣∣σ2
=(gi)− σ2

<(gi)
∣∣∣ ∨ ∣∣∣υ2

=(gi)− υ2
<(gi)

∣∣∣)] (8)

Definition 12. For any two PyFNs = = (σ=, υ=) and < = (σ<, υ<) on X based on the cotangent function,
then SM is defined as [42]

PyFC1 (=,<) = 1
m

m

∑
i=1

cot
[π

4
+

π

4

(∣∣∣σ2
=(gi)− σ2

<(gi)
∣∣∣ ∨ ∣∣∣υ2

=(gi)− υ2
<(gi)

∣∣∣)] (9)

Definition 13. For any two SFNs = = (σ=, η=, υ=) and < = (σ<, η<, υ<) on X, a cosine SM is defined
as [42]

SFC1 (=,<) = 1
m

m

∑
i=1

σ2
=(gi)σ

2
<(gi) + η2

=(gi)η
2
<(gi) + υ2

=(gi)υ
2
<(gi)√

σ4
=(gi) + η4

=(gi) + υ4
=(gi)

√
σ4
<(gi) + η4

=(gi) + υ4
<(gi)

(10)

Definition 14. For any two SFNs = = (σ=, η=, υ=) and< = (σ<, η<, υ<) on X, based on the cosine function,
then SM is defined as [45]

SFCS1(=,<) = 1
m

m

∑
i=1

cos

π

2


∣∣σ2
=(gi)− σ2

<(gi)
∣∣∨∣∣η2

=(gi)− η2
<(gi)

∣∣∨∣∣υ2
=(gi)− υ2

<(gi)
∣∣

 (11)
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Definition 15. For any two SFNs = = (σ=, η=, υ=) and < = (σ<, η<, υ<) on X, based on the cotangent
function, then SM is defined as [45]

SFCT1(=,<) = 1
m

m

∑
i=1

cot

π

4
+

π

4


∣∣σ2
=(gi)− σ2

<(gi)
∣∣∨∣∣η2

=(gi)− η2
<(gi)

∣∣∨∣∣υ2
=(gi)− υ2

<(gi)
∣∣

 (12)

3. Some SMs Using the Cosine and Cotangent Functions for FOFSs

In this section, the authors utilized some new SMs in the environment of FOFSs including cosine
SM for FOFSs, SMs for FOFSs using the cosine function, and SMs for FOFSs using the cotangent
function. Further, we introduced some WSMs so far in this section. Moreover, the SMs defined in
Equations (7)–(12) will become the special case of the proposed new SMs.

3.1. Cosine SMs for FOFSs

In this subsection, we proposed cosine SM for FOFSs and weighted cosine SM for FOFSs. Further,
the authors claim that the proposed SMs are generalizations of the SMs discussed in References [42,43,46].

Definition 16. For any two FOFNs = = (σ=, η=, υ=) and < = (σ<, η<, υ<) on X, a cosine SM is defined as

FOFC1 (=,<) = 1
m

m

∑
i=1

σ
f
=(gi)σ

f
<(gi) + η

f
=(gi)η

f
<(gi) + υ

f
=(gi)υ

f
<(gi)√(

σ
f
=(gi)

)2
+
(

η
f
=(gi)

)2
+
(

υ
f
=(gi)

)2√(
σ

f
<(gi)

)2
+
(

η
f
<(gi)

)2
+
(

υ
f
<(gi)

)2

(13)

The cosine SM for FOFNs =,< and ℵ satisfy the below properties:

1. 0 ≤ FOFC1(=,<) ≤ 1;
2. FOFC1(=,<) = FOFC1(<,=);
3. FOFC1(=,<) = 1⇔ = = <;
4. If = ⊆ < ⊆ ℵ, then FOFC1(=,ℵ) ≤ FOFC1(=,<) and FOFC1(=,ℵ) ≤ FOFC1(<,ℵ).

Proof. We know that the proofs of (1) and (2) conditions are obvious.
To prove the (3) condition, if we take = = < that is σ

f
=(gi) = σ

f
<(gi), η

f
=(gi) = η

f
<(gi) and

υ
f
=(gi) = υ

f
<(gi) for i = 1, 2, 3, ..., m. Therefore, Equation (13) implies

FOFC1 (=,<) =
1
m

m

∑
i=1

σ
f
=(gi)σ

f
=(gi) + η

f
=(gi)η

f
=(gi) + υ

f
=(gi)υ

f
=(gi)√(

σ
f
=(gi)

)2
+
(

η
f
=(gi)

)2
+
(

υ
f
=(gi)

)2√(
σ

f
=(gi)

)2
+
(

η
f
=(gi)

)2
+
(

υ
f
=(gi)

)2

=
1
m

m

∑
i=1

(
σ

f
=(gi)

)2
+
(

η
f
=(gi)

)2
+
(

υ
f
=(gi)

)2

(
σ

f
=(gi)

)2
+
(

η
f
=(gi)

)2
+
(

υ
f
=(gi)

)2

= 1

To prove the fourth condition, if we take= ⊆ < ⊆ ℵ. Then the angle of=,ℵ is larger than the angle
of=,< and<,ℵ. Therefore, we get that Equation (13) can be obtained as FOFC1(=,ℵ) ≤ FOFC1(=,<)
and FOFC1(=,ℵ) ≤ FOFC1(<,ℵ).
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Definition 17. In this definition, we shall investigate that the distance measure of the two FOFNs =,< and
defined as;

d(=,<) = arccos FOFC1(=,<)

It satisfies the following conditions of distance measures;

1. 0 ≤ FOFC1(=,<) ≤ 1, then d(=,<) ≥ 0;
2. FOFC1(=,<) = FOFC1(<,=), then d(=,<) = D(=,<);
3. FOFC1(=,<) = 1⇔ = = <, then d(=,<) = 0;
4. If = ⊆ < ⊆ ℵ, then d(=,ℵ) ≤ d(=,<) + d(<,ℵ).

Proof. The proof of first three conditions is obvious. To prove the fourth condition, let = ⊆ < ⊆ ℵ.
Then, the distance measure of =,< and ℵ as:

d (=(gi),<(gi)) = arccos FOFC1 (=(gi),<(gi))

d (<(gi),ℵ(gi)) = arccos FOFC1 (<(gi),ℵ(gi))

d (=(gi),ℵ(gi)) = arccos FOFC1 (=(gi),ℵ(gi))

where, i = 1, 2, 3, ..., m and

d (=(gi),<(gi)) =
1
m

m

∑
i=1

σ
f
=(gi)σ

f
<(gi) + η

f
=(gi)η

f
<(gi) + υ

f
=(gi)υ

f
<(gi)√(

σ
f
=(gi)

)2
+
(

η
f
=(gi)

)2
+
(

υ
f
=(gi)

)2√(
σ

f
<(gi)

)2
+
(

η
f
<(gi)

)2
+
(

υ
f
<(gi)

)2

d (<(gi),ℵ(gi)) =
1
m

m

∑
i=1

σ
f
<(gi)σ

f
ℵ(gi) + η

f
<(gi)η

f
ℵ(gi) + υ

f
<(gi)υ

f
ℵ(gi)√(

σ
f
<(gi)

)2
+
(

η
f
<(gi)

)2
+
(

υ
f
<(gi)

)2√(
σ

f
ℵ(gi)

)2
+
(

η
f
ℵ(gi)

)2
+
(

υ
f
ℵ(gi)

)2

d (=(gi),ℵ(gi)) =
1
m

m

∑
i=1

σ
f
=(gi)σ

f
ℵ(gi) + η

f
=(gi)η

f
ℵ(gi) + υ

f
=(gi)υ

f
ℵ(gi)√(

σ
f
=(gi)

)2
+
(

η
f
=(gi)

)2
+
(

υ
f
=(gi)

)2√(
σ

f
ℵ(gi)

)2
+
(

η
f
ℵ(gi)

)2
+
(

υ
f
ℵ(gi)

)2

If = =
(

σ
f
=(gi) + η

f
=(gi) + υ

f
=(gi)

)
,< =

(
σ

f
<(gi) + η

f
<(gi) + υ

f
<(gi)

)
and ℵ =(

σ
f
ℵ(gi) + η

f
ℵ(gi) + υ

f
ℵ(gi)

)
are considered three vector in a plane such as =(gi) ⊆ <(gi) ⊆ ℵ(gi)

and utilizing triangular inequality, we get d (=(gi),ℵ(gi)) ≤ d (=(gi),<(gi)) + d (<(gi),ℵ(gi)),
and hence the fourth condition holds.

Definition 18. For any two FOFNs = = (σ=, η=, υ=) and < = (σ<, η<, υ<) on X, a weighted cosine SM is
defined as;

WFOFC1 (=,<) = 1
m

m

∑
i=1

ωi
σ

f
=(gi)σ

f
<(gi) + η

f
=(gi)η

f
<(gi) + υ

f
=(gi)υ

f
<(gi)√(

σ
f
=(gi)

)2
+
(

η
f
=(gi)

)2
+
(

υ
f
=(gi)

)2√(
σ

f
<(gi)

)2
+
(

η
f
<(gi)

)2
+
(

υ
f
<(gi)

)2

(14)
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In the following ω = (ω1, ω2, ..., ωm)
T denotes a weighted vector were ωi must belong on the closed

interval [0, 1] and the sum of ωi is equal to 1. By taking ωi =
1
m then the Equation (14) reduced to Equation (13).

The weighted cosine SM for FOFNs = and < satisfies following results;

1. 0 ≤WFOFC1(=,<) ≤ 1;
2. WFOFC1(=,<) = WFOFC1(<,=);
3. WFOFC1(=,<) = 1⇔ = = <.

Proof. The proof is straightforward.

Remark 2. In Definition (16), if
◦We put f = 2, then FOFC1 reduced to SFC1 i.e., Equation (13) reduced to Equation (10).
◦We put f = 2 and η= = 0, then FOFC1 reduced to PyFC1 i.e., Equation (13) reduced to Equation (7).

3.2. SMs for FOFSs Using the Cosine Function

In this subsection, we shall propose SMs for FOFSs using the cosine function and WSMs for FOFSs
using the cosine function. Further, the authors claim that the proposed work is the generalization of
the SMs defined in Equations (8) and (11).

Definition 19. For any two FOFNs = = (σ=, η=, υ=) and < = (σ<, η<, υ<) on X, based on the cosine
function, then SMs is defined as;

FOFCS1(=,<) = 1
m

m

∑
i=1

cos

π

2


∣∣∣σ f
=(gi)− σ

f
<(gi)

∣∣∣∨∣∣∣η f
=(gi)− η

f
<(gi)

∣∣∣∨∣∣∣υ f
=(gi)− υ

f
<(gi)

∣∣∣


 (15)

FOFCS2(=,<) = 1
m

m

∑
i=1

cos

π

4


∣∣∣σ f
=(gi)− σ

f
<(gi)

∣∣∣+∣∣∣η f
=(gi)− η

f
<(gi)

∣∣∣+∣∣∣υ f
=(gi)− υ

f
<(gi)

∣∣∣


 (16)

The SMs for FOFNs =,< and ℵ based on cosine function satisfy the following results:

1. 0 ≤ FOFCS1,2(=,<) ≤ 1;
2. FOFCS1,2(=,<) = FOFCS1,2(<,=);
3. FOFCS1,2(=,<) = 1⇔ = = <.
4. If = ⊆ < ⊆ ℵ, then FOFCS1.2(=,ℵ) ≤ FOFCS1,2(=,<) and FOFCS1,2(=,ℵ) ≤ FOFCS1,2(<,ℵ).

Proof.

1. The first result is obvious because the value of the cosine function is within closed-interval
[0, 1] and also the SM based on the cosine function is within closed-interval [0, 1]. Hence,
0 ≤ FOFCS1,2(=,<) ≤ 1.

2. The proof is straightforward.

3. To prove the third result, for two FOFNs = and < on X, if = = <, then σ
f
=(gi) =

σ
f
<(gi), η

f
=(gi) = η

f
<(gi) and υ

f
=(gi) = υ

f
<(gi) for i = 1, 2, 3, ..., m. Therefore,∣∣∣σ f

=(gi)− σ
f
=(gi)

∣∣∣ = 0,
∣∣∣η f
=(gi)− η

f
=(gi)

∣∣∣ = 0 and
∣∣∣υ f
=(gi)− υ

f
=(gi)

∣∣∣ = 0. Hence,

FOFCS1,2(=,<) = 1.
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4. If = ⊆ < ⊆ ℵ, then σ=(gi) ≤ σ<(gi) ≤ σℵ(gi), η=(gi) ≤ η<(gi) ≤ ηℵ(gi) and υ=(gi) ≥
υ<(gi) ≥ υℵ(gi) for i = 1, 2, 3, ..., m. Then,

σ
f
=(gi) ≤ σ

f
<(gi) ≤ σ

f
ℵ(gi), η

f
=(gi) ≤ η

f
<(gi) ≤ η

f
ℵ(gi) and υ

f
=(gi) ≥ υ

f
<(gi) ≥ υ

f
ℵ(gi)

Thus, we have ∣∣∣σ f
=(gi)− σ

f
<(gi)

∣∣∣ ≤ ∣∣∣σ f
=(gi)− σ

f
ℵ(gi)

∣∣∣ ,∣∣∣σ f
<(gi)− σ

f
ℵ(gi)

∣∣∣ ≤ ∣∣∣σ f
=(gi)− σ

f
ℵ(gi)

∣∣∣ ,∣∣∣η f
=(gi)− η

f
<(gi)

∣∣∣ ≤ ∣∣∣η f
=(gi)− η

f
ℵ(gi)

∣∣∣ ,∣∣∣η f
<(gi)− η

f
ℵ(gi)

∣∣∣ ≤ ∣∣∣η f
=(gi)− η

f
ℵ(gi)

∣∣∣ ,∣∣∣υ f
=(gi)− υ

f
<(gi)

∣∣∣ ≤ ∣∣∣υ f
=(gi)− υ

f
ℵ(gi)

∣∣∣ ,∣∣∣υ f
<(gi)− υ

f
ℵ(gi)

∣∣∣ ≤ ∣∣∣υ f
=(gi)− υ

f
ℵ(gi)

∣∣∣ .

Hence, FOFCS1.2(=,ℵ) ≤ FOFCS1,2(=,<) and FOFCS1,2(=,ℵ) ≤ FOFCS1,2(<,ℵ). Therefore,
the cosine function is a decreasing function with the interval

[
0, π

2
]

.

Definition 20. For any two FOFNs = = (σ=, η=, υ=) and < = (σ<, η<, υ<) on X, based on the cosine
function, then WSMs is defined as

WFOFCS1(=,<) = 1
m

m

∑
i=1

ωi cos

π

2


∣∣∣σ f
=(gi)− σ

f
<(gi)

∣∣∣∨∣∣∣η f
=(gi)− η

f
<(gi)

∣∣∣∨∣∣∣υ f
=(gi)− υ

f
<(gi)

∣∣∣


 (17)

WFOFCS2(=,<) = 1
m

m

∑
i=1

ωi cos

π

4


∣∣∣σ f
=(gi)− σ

f
<(gi)

∣∣∣+∣∣∣η f
=(gi)− η

f
<(gi)

∣∣∣+∣∣∣υ f
=(gi)− υ

f
<(gi)

∣∣∣


 (18)

In the following ω = (ω1, ω2, ..., ωm)
T denotes a weighted vector were ωi must belong on the closed

interval [0, 1] and the sum of ωi is equal to 1. By taking ωi =
1
m , then the Equations (17) and (18) reduced to

Equations (15) and (16). The weighted cosine SM for FOFNs = and < satisfies the following results

1. 0 ≤WFOFCS1,2(=,<) ≤ 1;
2. WFOFCS1,2(=,<) = WFOFCS1,2(<,=);
3. WFOFCS1,2(=,<) = 1⇔ = = <.

Proof. The proof is straight forward.

Remark 3. In Definition (19), if
◦We put f = 2, then FOFCS1 reduced to SFCS1 i.e., Equation (15) reduced to Equation (11).
◦ We put f = 2 and η= = 0, then FOFCS1 reduced to PyFCS1 i.e., Equation (15) reduced to

Equation (8).
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3.3. SMs for FOFSs Using the Cotangent Function

In this subsection, we shall propose SMs for FOFSs based on cotangent function and WSMs
for FOFSs using the cotangent function. Further, this work are the generalizations of the work of
PyFSs [42] and SFSs [45].

Definition 21. For any two FOFNs = = (σ=, η=, υ=) and < = (σ<, η<, υ<) on X, based on the cotangent
function, then SMs are defined as

FOFCT1(=,<) = 1
m

m

∑
i=1

cot

π

4
+

π

4


∣∣∣σ f
=(gi)− σ

f
<(gi)

∣∣∣∨∣∣∣η f
=(gi)− η

f
<(gi)

∣∣∣∨∣∣∣υ f
=(gi)− υ

f
<(gi)

∣∣∣


 (19)

FOFCT2(=,<) = 1
m

m

∑
i=1

cot


π

4
+

π

4



∣∣∣σ f
=(gi)− σ

f
<(gi)

∣∣∣∨∣∣∣η f
=(gi)− η

f
<(gi)

∣∣∣∨∣∣∣υ f
=(gi)− υ

f
<(gi)

∣∣∣∨∣∣∣γ f
=(gi)− γ

f
<(gi)

∣∣∣



 (20)

The SMs for FOFNs =,< and ℵ based on cotangent function satisfy the following results:

1. 0 ≤ FOFCT1,2(=,<) ≤ 1;
2. FOFCT1,2(=,<) = FOFCT1,2(<,=);
3. FOFCT1,2(=,<) = 1⇔ = = <.
4. If = ⊆ < ⊆ ℵ, then FOFCT1.2(=,ℵ) ≤ FOFCT1,2(=,<) and FOFCT1,2(=,ℵ) ≤ FOFCT1,2(<,ℵ).

Proof.

1. The first result is obvious because the value of the cotangent function is within closed interval
[0, 1] and also the SM based on the cotangent function is within closed interval [0, 1]. Hence,
0 ≤ FOFCT1,2(=,<) ≤ 1.

2. The proof is straightforward.

3. To prove the third result, for two FOFNs = and < on X, if = = <, then σ
f
=(gi) =

σ
f
<(gi), η

f
=(gi) = η

f
<(gi), υ

f
=(gi) = υ

f
<(gi) and γ

f
=(gi) = γ

f
<(gi) for i = 1, 2, 3, ..., m. Therefore,∣∣∣σ f

=(gi)− σ
f
=(gi)

∣∣∣ = 0,
∣∣∣η f
=(gi)− η

f
=(gi)

∣∣∣ = 0,
∣∣∣υ f
=(gi)− υ

f
=(gi)

∣∣∣ = 0 and
∣∣∣γ f
=(gi)− γ

f
=(gi)

∣∣∣
Hence, FOFCT1,2(=,<) = 1.

4. If = ⊆ < ⊆ ℵ, then σ=(gi) ≤ σ<(gi) ≤ σℵ(gi), η=(gi) ≤ η<(gi) ≤ ηℵ(gi), υ=(gi) ≥ υ<(gi) ≥
υℵ(gi) and γ=(gi) ≥ γ<(gi) ≥ γℵ(gi) for i = 1, 2, 3, ..., m. Then,

σ
f
=(gi) ≤ σ

f
<(gi) ≤ σ

f
ℵ(gi), η

f
=(gi) ≤ η

f
<(gi) ≤ η

f
ℵ(gi),

υ
f
=(gi) ≥ υ

f
<(gi) ≥ υ

f
ℵ(gi) and γ

f
=(gi) ≥ γ

f
<(gi) ≥ γ

f
ℵ(gi)
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Thus, we have ∣∣∣σ f
=(gi)− σ

f
<(gi)

∣∣∣ ≤ ∣∣∣σ f
=(gi)− σ

f
ℵ(gi)

∣∣∣ ,∣∣∣σ f
<(gi)− σ

f
ℵ(gi)

∣∣∣ ≤ ∣∣∣σ f
=(gi)− σ

f
ℵ(gi)

∣∣∣ ,∣∣∣η f
=(gi)− η

f
<(gi)

∣∣∣ ≤ ∣∣∣η f
=(gi)− η

f
ℵ(gi)

∣∣∣ ,∣∣∣η f
<(gi)− η

f
ℵ(gi)

∣∣∣ ≤ ∣∣∣η f
=(gi)− η

f
ℵ(gi)

∣∣∣ ,∣∣∣υ f
=(gi)− υ

f
<(gi)

∣∣∣ ≤ ∣∣∣υ f
=(gi)− υ

f
ℵ(gi)

∣∣∣ ,∣∣∣υ f
<(gi)− υ

f
ℵ(gi)

∣∣∣ ≤ ∣∣∣υ f
=(gi)− υ

f
ℵ(gi)

∣∣∣ ,∣∣∣γ f
<(gi)− γ

f
ℵ(gi)

∣∣∣ ≤ ∣∣∣γ f
=(gi)− γ

f
ℵ(gi)

∣∣∣ ,∣∣∣γ f
<(gi)− γ

f
ℵ(gi)

∣∣∣ ≤ ∣∣∣γ f
=(gi)− γ

f
ℵ(gi)

∣∣∣ .

Hence, FOFCT1.2(=,ℵ) ≤ FOFCT1,2(=,<) and FOFCT1,2(=,ℵ) ≤ FOFCT1,2(<,ℵ). Therefore,
the cotangent function is a decreasing function with the interval

[
0, π

4
]

.

Definition 22. For any two FOFNs = = (σ=, η=, υ=) and < = (σ<, η<, υ<) on X, based on the cotangent
function, then WSMs is defined as;

WFOFCT1(=,<) = 1
m

m

∑
i=1

ωi cot

π

4
+

π

4


∣∣∣σ f
=(gi)− σ

f
<(gi)

∣∣∣∨∣∣∣η f
=(gi)− η

f
<(gi)

∣∣∣∨∣∣∣υ f
=(gi)− υ

f
<(gi)

∣∣∣


 (21)

WFOFCT2(=,<) = 1
m

m

∑
i=1

ωi cot


π

4
+

π

4



∣∣∣σ f
=(gi)− σ

f
<(gi)

∣∣∣∨∣∣∣η f
=(gi)− η

f
<(gi)

∣∣∣∨∣∣∣υ f
=(gi)− υ

f
<(gi)

∣∣∣∨∣∣∣γ f
=(gi)− γ

f
<(gi)

∣∣∣



 (22)

In the following ω = (ω1, ω2, ..., ωm)
T denotes a weighted vector were ωi must belong on the closed

interval [0, 1] and the sum of ωi is equal to 1. By taking ωi =
1
m , then the Equations (21) and (22)reduced to

Equations (19) and (20). The weighted cotangent SM for FOFNs = and < satisfy following results;

1. 0 ≤WFOFCT1,2(=,<) ≤ 1;
2. WFOFCT1,2(=,<) = WFOFCT1,2(<,=);
3. WFOFCT1,2(=,<) = 1⇔ = = <.

Proof. The proof is straight forward.

Remark 4. In Definition , if
◦We put f = 2, then FOFCT1 reduced to SFCT1 i.e., Equation (19) reduced to Equation (12).
◦ We put f = 2 and η= = 0, then FOFCT1 reduced to PyFCT1 i.e., Equation (19) reduced to

Equation (9).

4. Decision Making Algorithm

This section addresses an implementation of novel similarity measures to the real life problems.
Suppose that n alternatives represented by ℵ = {ℵ1, ...,ℵn} and m criteria represented by = =
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{=1, ...,=m} to be evaluated with weight vector w = (w1, ..., wm)
T such that Σm

j=1wj = 1 and
each wj ∈ [0, 1]. Let the rating of alternatives ℵi on criteria =j, given by experts be in the

form of FOFNs Eij =
(

σEij , ηEij , υEij

)
∈ FOFN(i = 1, ..., n; j = 1, ..., m). Thus, a MCDM

problems are shortly represented in a fractional orthotriple fuzzy (FOF) decision-matrix D = Eij =(
σEij , ηEij , υEij

)
n×m

, (i = 1, ..., n; j = 1, ..., m) . Further, the decision making algorithm has the following

steps for MCDM process

1. In this step, we take the classes about the known and unknown information in the form of
fractional orthotriple fuzzy numbers.

2. In this step, we compute some SM of each known fractional orthotriple fuzzy numbers with
unknown fractional orthotriple fuzzy numbers by using the similarity measures FOFC1, FOFCS1,
FOFCS2, FOFCT1, and FOFCT2.

3. In this step, we compute some weighted similarity measure of each known fractional orthotriple
fuzzy numbers with unknown fractional orthotriple fuzzy numbers by using the similarity
measures WFOFC1, WFOFCS1, WFOFCS2, WFOFCT1, and WFOFCT2.

4. In this step, we classify the unknown alternative based on ranking.

Application

Example 1. An accident occurred in Mecca on 11 September 2015. A crane fell in the third floor of Al-Safa
and Al-Marwah. A lot of people were injured and died in this accident. The people had 10 different nationalities
which suffered injuries and fatalities in which 25 were of Bangladesh and 23 were Egyptians. A further 51
Pakistani and 42 Indonesians were injured in this accident.

The factors affecting for the need of emergency response numbered five.

1. =1: Control the crowds: the police team control the crowd so that no more casualties will happen
and rescue steps can take place.

2. =2: To organized the rescue injured: when the accident occurred the first step is to save the lives
of the injured. However, the other people should be shifted to a safe place.

3. =3: Quick observation of the situation: when the situation seemed to be going bad the rescue
team immediately took steps.

4. =4: Removal of dead and injured bodies: the emergency team remove the dead bodies as well as
the injured for treatment from the Mosque.

5. =5: To remove the crane and wash the floor of the Mosque.

Suppose we have four alternatives which are mentioned by ℵi(1 ≤ i ≤ 4).
The experts are present who have full command on the given situation. That which one emergency

team have taken the best steps in the given critical situation. For dealing the emergency decision
making problems the given steps are taken in this method.

For analysis of the four alternatives ℵi(1 ≤ i ≤ 4) the following steps were applicable.
ℵ1: The authorized persons will send a short message to the people that no one will enter

the Mosque.
ℵ2: The team will notify the government to provide the first aid i.e., medicines, ambulance, etc.

for the affected peoples.
ℵ3: The experts checked the facilities provided by the five companies.
ℵ4: The experts will give the reason for the accident occurring, as well as information about

services to the injured and dead bodies and by which company they were given, to the government.
Step 1. Class about the unknown and known FOFNs are given in Table 1.
Step 2. Comparison of some SMs
Step 3. Comparison of some WSMs
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Step 4: Analyzing Table 2, it seems that the SM of (ℵ,ℵ1) is greater among all the other SMs by
using FOFC1, FOFCT1 and FOFCT2. In the case of FOFCS1 and FOFCS2, we get that (ℵ,ℵ2) have a
greater value of SMs.

Further, we consider the weights of criteria (=j) are 0.20, 0.12, 0.10, 0.33 and 0.25 respectively. Then,
we apply the define WSMs, which have been computed in Table 3.

Table 1. Data in the form of FOFNs.

ℵ ℵ1 ℵ2 ℵ3 ℵ4

=1 (0.39, 0.65, 0.81) (0.61, 0.15, 0.92) (0.83, 0.57, 0.35) (0.44, 0.41, 0.57) (0.93, 0.07, 0.29)
=2 (0.49, 0.41, 0.82) (0.36, 0.54, 0.74) (0.58, 0.86, 0.67) (0.93, 0.33, 0.69) (0.20, 0.77, 0.46)
=3 (0.53, 0.47, 0.91) (0.96, 0.04, 0.11) (0.43, 0.58, 0.70) (0.26, 0.74, 0.42) (0.56, 0.32, 0.73)
=4 (0.79, 0.42, 0.84) (0.47, 0.73, 0.82) (0.59, 0.73, 0.46) (0.43, 0.51, 0.81) (0.44, 0.58, 0.47)
=5 (0.91, 0.52, 0.09) (0.37, 0.77, 0.61) (0.45, 0.72, 0.35) (0.57, 0.43, 0.79) (0.55, 0.67, 0.91)

Table 2. Similarity measures of ℵi with ℵ.

SMs (ℵ,ℵ1) (ℵ,ℵ2) (ℵ,ℵ3) (ℵ,ℵ4)

FOFC1 (ℵ,ℵi) (0.5826) (0.5219) (0.4964) (0.3672)
FOFCS1 (ℵ,ℵi) (0.7183) (0.7251) (0.7125) (0.6689)
FOFCS2 (ℵ,ℵi) (0.7927) (0.8428) (0.8214) (0.7615)
FOFCT1 (ℵ,ℵi) (0.4825) (0.4163) (0.4416) (0.4042)
FOFCT2 (ℵ,ℵi) (0.4721) (0.4478) (0.4171) (0.3752)

Table 3. Weighted similarity measures of ℵi with ℵ.

WSMs (ℵ,ℵ1) (ℵ,ℵ2) (ℵ,ℵ3) (ℵ,ℵ4)

WFOFC1 (ℵ,ℵi) (0.6162) (0.4783) (0.5841) (0.3326)
WFOFCS1 (ℵ,ℵi) (0.7367) (0.6946) (0.7559) (0.6689)
WFOFCS2 (ℵ,ℵi) (0.8628) (0.8749) (0.8414) (0.8853)
WFOFCT1 (ℵ,ℵi) (0.4924) (0.4332) (0.5163) (0.3947)
WFOFCT2 (ℵ,ℵi) (0.5041) (0.4283) (0.4371) (0.3461)

Now, by analyzing Table 3, we see that the SM of (ℵ,ℵ1) is greater than all other SMs by using
WFOFC1 and WFOFCT2. In case of WFOFCS1 and WFOFCT1, we get that (ℵ,ℵ3) have a larger
value of SMs. In case of (ℵ,ℵ4) has greater value among all other SMs by taking WFOFCS2. Hence,
these results show that the results of SMs using different approaches are different, but the best
alternative are ℵ1 and see the Figure 1.

Figure 1. Ranking of the alternatives.
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5. Comparative Study

The comparison of the developed measures with the other existing measures to examine the
reliability and effectiveness of the explored measures. The established similarity measures are
compared with the some other similarity measures based on PFS was established by Wei [39], cosine
similarity measures based on PFS was established by Wei [40], dice similarity measures based on
PFS was established by Wei and Gao [46], and similarity measures based on SFS was established by
Wei et al. [45].

Example 2. In this example, we choose the picture fuzzy types of information and examine the comparison
of the defined measures with the existing measures. For this, we considered five different types of criteria
=i(i = 1, ..., 5) with the weights are w = (0.20, 0.12, 0.10, 0.33, 0.25)T by the known alternative denoted by
ℵi(1 ≤ i ≤ 4). Table 4 identify that the information about the unknown and known alternatives. For more
information, we suggest the Example 1.

Step 1. Class about unknown and known FOFNs
The comparison of the established work with other existing work is discussed for Example 2,

is express in Table 5. Graphical presentation is given in Figure 2.

Table 4. Given data in the form of FOFNs.

ℵ ℵ1 ℵ2 ℵ3 ℵ4

=1 (0.33, 0.29, 0.25) (0.41, 0.37, 0.1) (0.60, 0.19, 0.11) (0.33, 0.31, 0.28) (0.43, 0.38, 0.13)
=2 (0.29, 0.33, 0.25) (0.39, 0.33, 0.14) (0.53, 0.23, 0.09) (0.32, 0.36, 0.21) (0.41, 0.37, 0.15)
=3 (0.31, 0.28, 0.28) (0.43, 0.35, 0.13) (0.57, 0.25, 0.05) (0.34, 0.33, 0.26) (0.33, 0.23, 0.17)
=4 (0.37, 0.31, 0.23) (0.40, 0.37, 0.17) (0.52, 0.27, 0.08) (0.37, 0.29, 0.22) (0.38, 0.31, 0.12)
=5 (0.32, 0.33, 0.31) (0.47, 0.34, 0.11) (0.51, 0.31, 0.04) (0.31, 0.33, 0.29) (0.42, 0.37, 0.14)

Table 5. Comparison of the defined work with the existing drawbacks.

Methods Similarity Measure Ranking

Wei [39]
SPFS(ℵ,ℵ1) = 0.492, SPFS(ℵ,ℵ2) = 0.529
SPFS(ℵ,ℵ3) = 0.814, SPFS(ℵ,ℵ4) = 0.421 ℵ3 ≥ ℵ2 ≥ ℵ1 ≥ ℵ4

Wei [40]
SPFS(ℵ,ℵ1) = 0.442, SPFS(ℵ,ℵ2) = 0.492
SPFS(ℵ,ℵ3) = 0.734, SPFS(ℵ,ℵ4) = 0.327 ℵ3 ≥ ℵ2 ≥ ℵ1 ≥ ℵ4

Wei and Gao [46]
SPFS(ℵ,ℵ1) = 0.542, SPFS(ℵ,ℵ2) = 0.629
SPFS(ℵ,ℵ3) = 0.885, SPFS(ℵ,ℵ4) = 0.518 ℵ3 ≥ ℵ2 ≥ ℵ1 ≥ ℵ4

Wei et al. [45]
SPFS(ℵ,ℵ1) = 0.341, SPFS(ℵ,ℵ2) = 0.396
SPFS(ℵ,ℵ3) = 0.462, SPFS(ℵ,ℵ4) = 0.273 ℵ3 ≥ ℵ2 ≥ ℵ1 ≥ ℵ4

FOFCS2(ℵ,ℵi)
SPFS(ℵ,ℵ1) = 0.331, SPFS(ℵ,ℵ2) = 0.395
SPFS(ℵ,ℵ3) = 0.443, SPFS(ℵ,ℵ4) = 0.118 ℵ3 ≥ ℵ2 ≥ ℵ1 ≥ ℵ4

WFOFCS2(ℵ,ℵi)
SPFS(ℵ,ℵ1) = 0.473, SPFS(ℵ,ℵ2) = 0.547
SPFS(ℵ,ℵ3) = 0.638, SPFS(ℵ,ℵ4) = 0.362 ℵ3 ≥ ℵ2 ≥ ℵ1 ≥ ℵ4

Analyzing Table 5, it seems that the SM of (ℵ,ℵ3) is greatest among all other SMs.
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Figure 2. Comparative Study of the alternatives.

Sensitivity Analysis

The SMs proposed in this article are generalization of existing SMs for SFSs, PyFSs, PFSs and IFSs.
The following remarks show that the SMs defined in Equations (13)–(22) are generalization of SMs for
SFSs, PyFSs, PFSs and IFSs. From Tables 4 and 5, we obtain that the established measures on the based
of FOFS is more reliable and more general than the existing concepts due to its limit condition. When,
we choose the fractional orthotriple fuzzy types of information, the existing drawbacks is not able to
solve it, but when we choose the existing types of data like in Example 2, then the developed method
can be solve it easily.

Remark 5. In Definition (18), if
◦We put f = 2, then Equation (14) reduced to WSM of SFS such as;

WSFC1 (=,<) = 1
m

m

∑
i=1

ωi
σ2
=(gi)σ

2
<(gi) + η2

=(gi)η
2
<(gi) + υ2

=(gi)υ
2
<(gi)√

σ4
=(gi) + η4

=(gi) + υ4
=(gi)

√
σ4
<(gi) + η4

<(gi) + υ2
<(gi)

◦We put f = 2 and η = 0, then Equation (14) reduces to WSM of PyFS such as;

WPyFC1 (=,<) = 1
m

m

∑
i=1

ωi
σ2
=(gi)σ

2
<(gi) + υ2

=(gi)υ
2
<(gi)√

σ4
=(gi) + υ4

=(gi)
√

σ4
<(gi) + υ4

<(gi)

◦We put f = 1, then Equation (14) reduces to WSM of PFS such as:

WPFC1 (=,<) = 1
m

m

∑
i=1

ωi
σ=(gi)σ<(gi) + η=(gi)η<(gi) + υ=(gi)υ<(gi)√

σ2
=(gi) + η2

=(gi) + υ2
=(gi)

√
σ2
<(gi) + η2

<(gi) + υ2
<(gi)

◦We put f = 1, and η = 0, then Equation (14) reduces to WSM of IFS such as:

WIFC1 (=,<) = 1
m

m

∑
i=1

ωi
σ=(gi)σ<(gi) + υ=(gi)υ<(gi)√

σ4
=(gi) + υ4

=(gi)
√

σ4
<(gi) + υ2

<(gi)

Remark 6. In Definition (20), if
◦We put f = 2, then Equation (17) reduces to WSM of SFS such that
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WSFCS1(=,<) = 1
m

m

∑
i=1

ωi cos

[
π

2

( ∣∣σ2
=(gi)− σ2

<(gi)
∣∣ ∨ ∣∣η2

=(gi)− η2
<(gi)

∣∣∨∣∣υ2
=(gi)− υ2

<(gi)
∣∣

)]

◦We put f = 2 and η = 0, then Equation (17) reduces to WSM of PyFS such that

WPyFCS1(=,<) = 1
m

m

∑
i=1

ωi cos
[π

2

(∣∣∣σ2
=(gi)− σ2

<(gi)
∣∣∣ ∨ ∣∣∣υ2

=(gi)− υ2
<(gi)

∣∣∣)]
◦We put f = 1, then Equation (17) reduces to WSM of PFS such that

WPFCS1(=,<) = 1
m

m

∑
i=1

ωi cos

[
π

2

(
|σ=(gi)− σ<(gi)| ∨ |η=(gi)− η<(gi)| ∨

|υ=(gi)− υ<(gi)|

)]

◦We put f = 1 and η = 0, then Equation (17) reduces to WSM of IFS such that

WIFCS1(=,<) = 1
m

m

∑
i=1

ωi cos
[π

2
(|σ=(gi)− σ<(gi)| ∨ |υ=(gi)− υ<(gi)|)

]
Remark 7. In the Definition (22), if

◦We put f = 2, then Equation (22) reduces to WSM of SFS such that

WSFCT1(=,<) = 1
m

m

∑
i=1

ωi cot

[
π

4
+

π

4

( ∣∣σ2
=(gi)− σ2

<(gi)
∣∣ ∨ ∣∣η2

=(gi)− η2
<(gi)

∣∣∨∣∣υ2
=(gi)− υ2

<(gi)
∣∣

)]

◦We put f = 2 and η = 0, then Equation (22) reduces to WSM of PyFS such that

WPyFCT1(=,<) = 1
m

m

∑
i=1

ωi cot
[π

4
+

π

4

(∣∣∣σ2
=(gi)− σ2

<(gi)
∣∣∣ ∨ ∣∣∣υ2

=(gi)− υ2
<(gi)

∣∣∣)]
◦We put f = 1, then Equation (17) reduces to WSM of PFS such that

WPFCT1(=,<) = 1
m

m

∑
i=1

ωi cot

[
π

4
+

π

4

(
|σ=(gi)− σ<(gi)| ∨ |η=(gi)− η<(gi)| ∨

|υ=(gi)− υ<(gi)|

)]

◦We put f = 1 and η = 0, then Equation (22) reduces to WSM of IFS such that

WIFCT1(=,<) = 1
m

m

∑
i=1

ωi cot
[π

4
+

π

4
(|σ=(gi)− σ<(gi)| ∨ |υ=(gi)− υ<(gi)|)

]
6. Conclusions

Similarity measures of FSs are important topic in fuzzy mathematics and have gained some serious
attention from researchers due to its successful applications in real life. In this article, we discussed the
basic notions of IFSs, PyFSs, PFSs, SFSs and FOFSs are analyzed along with their SMs. We observed that
the concept of SM for FOFS has not define in past. Therefore, we defined concept of SM for the FOFSs.
Some new SMs and weighted SMs (WSMs) have been developed so far in Section 3. The characteristics
of these similarity measures have been investigated and some results are proved. These SMs resolve
the limitations of some of the current SMs of the spherical fuzzy sets. Further, the developed SMs
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and WSMs are applied to pattern recognition problem of crane accident. In addition, the proposed
approach is compared to the existing approaches and discussed the conditions under which the
proposed approach reduced to existing approaches. The sensitive analysis of proposed new work
over the existing work have also been studied. In future, the proposed results can be utilized in DM
problem and can be extended to (1) generalized dice similarity measures for picture fuzzy sets and
their applications; (2) similarity and inclusion measures between type-2 fuzzy sets with an application
to clustering; (3) MAGDM problem with complex q-Rung orthopair linguistic information based on
Heronian mean operators; (4) covering-based Spherical fuzzy Rough set model Hybrid with TOPSIS
for MADM; (5) some distance measures of complex PyFSs and their applications in pattern recognition.
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