
mathematics

Article

Opposition-Based Ant Colony Optimization
Algorithm for the Traveling Salesman Problem

Zhaojun Zhang 1,† , Zhaoxiong Xu 1,†, Shengyang Luan 1,† , Xuanyu Li 1 and Yifei Sun 2,*
1 School of Electrical Engineering and Automation, Jiangsu Normal University, Xuzhou 221116, China;

zzj921@163.com (Z.Z.); xzx94819@163.com (Z.X.); luan@jsnu.edu.cn (S.L.); lixuanyu5705@163.com (X.L.)
2 School of Computer Science & School of Physics and Information Technology, Shaanxi Normal University,

Xi’an 710119, China
* Correspondence: yifeis@snnu.edu.cn; Tel.: +86-157-0521-5977
† These authors contributed equally to this work.

Received: 18 August 2020; Accepted: 22 September 2020 ; Published: 24 September 2020 ����������
�������

Abstract: Opposition-based learning (OBL) has been widely used to improve many swarm
intelligent optimization (SI) algorithms for continuous problems during the past few decades.
When the SI optimization algorithms apply OBL to solve discrete problems, the construction and
utilization of the opposite solution is the key issue. Ant colony optimization (ACO) generally
used to solve combinatorial optimization problems is a kind of classical SI optimization algorithm.
Opposition-based ACO which is combined in OBL is proposed to solve the symmetric traveling
salesman problem (TSP) in this paper. Two strategies for constructing opposite path by OBL based on
solution characteristics of TSP are also proposed. Then, in order to use information of opposite path
to improve the performance of ACO, three different strategies, direction, indirection, and random
methods, mentioned for pheromone update rules are discussed individually. According to the
construction of the inverse solution and the way of using it in pheromone updating, three kinds of
improved ant colony algorithms are proposed. To verify the feasibility and effectiveness of strategies,
two kinds of ACO algorithms are employed to solve TSP instances. The results demonstrate that the
performance of opposition-based ACO is better than that of ACO without OBL.

Keywords: opposition-based learning; ant colony optimization; opposite path; traveling salesman problems

1. Introduction

As an important branch of computational intelligence, swarm intelligence (SI) [1] provides a
competitive solution for dealing with large-scale, nonlinear, and complex problems, and has become
an important research direction of artificial intelligence. In the SI model, each individual constitutes
an organic whole by simulating the behavior of natural biological groups. Although each individual
is very simple, the group shows complex emergent behavior. In particular, it does not require prior
knowledge of the problem and has the characteristics of parallelism, so it has significant advantages
in dealing with problems that are difficult to solve by traditional optimization algorithms. With the
deepening of research, more and more swarm intelligence algorithms have been proposed, such as ant
colony optimization algorithm (ACO) [2], particle swarm optimization (PSO) [3], artificial bee colony
algorithm (ABC) [4], firefly algorithm (FA) [5], cuckoo algorithm (CA) [6], krill herd algorithm [7],
monarch butterfly optimization (MBO) [8], and moth search algorithm [9], etc.

ACO as one of the typical SI is first proposed by Macro Dorigo [2] based on the observation of
group behaviors of ants in nature. During the process of food searching, ants will release pheromones
in the path when they pass through. Pheromones can be detected by other ants and can affect their
further path choices. Generally, the shorter the path is, the more intense the pheromones will be,

Mathematics 2020, 8, 1650; doi:10.3390/math8101650 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0001-6518-0207
https://orcid.org/0000-0002-3252-6854
https://orcid.org/0000-0002-5346-5341
http://dx.doi.org/10.3390/math8101650
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/10/1650?type=check_update&version=2


Mathematics 2020, 8, 1650 2 of 16

which means the shortest path will be chosen with the highest probability. The pheromone in other
paths will disappear with time. Therefore, given enough time, the optimal path will have the most
condensed pheromone. In this way, ants will find the shortest path from their nest to the food source
in the end.

ACO has advantages in reasonable robustness, distributed parallel computing, and easy
combination with other algorithms. It has been successfully applied in many fields, including
traveling salesman problem (TSP) [10,11], satellite control resource scheduling problem [12], knapsack
problem [13,14], vehicle routing problem [15,16], and continuous function optimization [17–19].
However, conventional ACO is still far from perfect due to issues like premature convergence and
long search time [20].

Many scholars have made substantial contributions to improve ACO, mainly focusing on two
perspectives, including model modification and algorithms combination. For example, in the line
of model improvement, an ant colony system (ACS) [21] employs a pseudo-random proportional
rule, which leads to faster convergence. In ACS, only the pheromone of the optimal path will be
increased after each iteration. To prevent premature convergence caused by excessive pheromones
concentration in some paths, the max-min ant system (MMAS) modifies AS with three main strategies
for pheromone [22], including limitation, maximum initialization, and updating rules. To avoid
the early planning of the blind search, an improved ACO algorithm by constructing the unequal
allocation initial pheromones is proposed in [23]. Path selecting is based on the pseudo-random rule
for state transition. The probability is decided by the number of iterations, and the optimal solution.
Introducing a penalty function to the pheromone updating, a novel ACO algorithm is addressed in [24]
to improve the solution accuracy.

Considering the other primary kind of modification to the original ACO, algorithm combination,
several approaches are proposed as well. A multi-type ant system (MTAS) [25] is proposed combining
ACS and MMAS, inheriting advantages from both of these algorithms. Combining particle swarm
algorithm (PSO) with ACO, a new ant colony algorithm was proposed in [26] and named PS-ACO.
PS-ACO employs pheromones updating rules of ACO and searches mechanisms of PSO simultaneously
to keep the trade-off between the exploitation and exploration. A multi-objective evolutionary
algorithm via decomposition is combined with ACO, an algorithm, termed MOEA/D-ACO [27],
which proposes a series of single-objective optimization problems to solve multi-objective optimization
problems. Executing ACO in combination with a genetic algorithm (GA), a new hybrid algorithm is
proposed in [28]. Embedding GA into ACO, this method improves ACO in convergence speed and
GA in searching ability.

Besides the above primary improvement strategies considering model modification and algorithm
combination, approaches based on machine learning are also proposed in recent decades [29]. On the
one hand, swarm intelligence can be used to solve the optimization problems in deep learning.
In deep neural networks, for example, convolutional neural network (CNN), the optimization of
hyperparameters is an NP hard problem. Using the SI method can solve this kind of problem better.
PSO, CS, and FA were employed to properly select dropout parameters concerning CNN in [30].
The hybridized algorithm [31] based on original MBO with ABC and FAs was proposed to solve
CNN hyperparameters optimization. On the other hand, we can learn from machine learning to
improve performance of SI. For example, information feedback models are used to enhance the ability
of algorithms [32–34]. In addition, opposition-based learning (OBL) [35], which was first proposed by
Tizhoosh, is a famous algorithm. Its main idea is to calculate all the opposite solutions after current
iteration, and then optimal solutions are selected among the generated solutions and their opposite
solutions for the next round of iteration. OBL has been widely accepted in SI, including ABC [36],
differential evolution (DE) [37–39], and PSO [40,41], leading to reasonable performances.

Since opposite solutions to continuous problems are convenient to construct, OBL has been used
to solve continuous problems more commonly as above, compared with discrete problems. OBL is
combined with ACS and applied to solve the TSP as an example for discrete problems in [42] to acquire



Mathematics 2020, 8, 1650 3 of 16

the better solution. The solution construction phase and the pheromone updating phase of ACS are
the primary foci of this hybrid approach. Besides TSP, the graph coloring problem is also employed as
a discrete optimization problem in [43], and an improved DE algorithm based on OBL is proposed,
which introduces two different methods of opposition. In [44], a pretreatment step was added in
the initial stage when the two-membered evolution strategy was used to solve the total rotation
minimization problem. The opposite solutions generated by OBL is compared with the initial solutions
randomly generated, and a better solution is selected for the subsequent optimization process.

Inspired by the idea of OBL, in this paper, a series of methods, focusing on the opposite solution
construction and the pheromone updating rule, are proposed. Aiming to solve TSP, our proposed
methods introduce OBL to ACO and enable ACO no longer limited to the local optimal solutions,
avoid premature convergence, and improve its performances.

The rest of this paper is organized as follows. In Section 2, the background knowledge of ACO
and OBL are briefly reviewed. In Section 3, the opposition-based extensions to ACO are presented.
In Section 4, the effectiveness of the improvement is verified through experiments. Section 5 presents
the conclusions of this paper.

2. Background

In this section, we will take AS as an example to introduce the main process of ACO algorithm.
At the same time, some necessary explanations of OBL will also be given.

2.1. Ant System

TSP can be described as finding the shortest route for a salesman who needs to visit each city at
least once and no more than once [45]. TSP is a classical combination optimization problem which is
employed to test ACO algorithms, and, therefore, TSP is used here as an example as well. The TSP
includes symmetric TSP and asymmetric TSP. We only discuss symmetric TSP in this paper.

There are two primary steps in the AS algorithm, path construction, and pheromone updating [2].
During the first step, a solution is established according to the random proportion rule, and it can be
described in detail as follows.

In the beginning, m ants are randomly assigned to n cities. At the t-th iteration, the probability,
called the state transition probability, for the k-th ant to travel from the city i to j is

pk
ij (t) =


[τij(t)]

α
[ηij(t)]

β

∑
s∈Jk(i)

[τis(t)]
α [ηis(t)]

β , if j ∈ Jk (i)

0, otherwise

(1)

where τij is the pheromone trail and ηij is the heuristic information, accordingly, while α and β are
parameters deciding their relative influences, respectively. Generally, ηij = 1/dij and dij is the distance
of the path (i, j). Jk (i) is the feasible neighborhood of k-th ant at the i-th city.

When all the ants finish touring around each city, pheromone updating is as follows:

τij (t + 1) = (1− ρ) τij (t) +
m

∑
k=1

∆τk
ij (2)

where ρ (0 < ρ ≤ 1) is the evaporation rate, ∆τk
ij represents the extra pheromone left in the path (i, j)

by the k-th ant. ∆τk
ij could be decided through

∆τk
ij (t) =

{
Q
Lk

, if ant k passes the path (i, j)
0, otherwise

(3)

where Q is the pheromone enhancement coefficient and Lk is the total path length for the k-th ant.



Mathematics 2020, 8, 1650 4 of 16

2.2. Opposition-Based Learning

In the continuous domain, OBL is employed to evaluate the current solutions and their
opposite solutions. Among these solutions, optimal ones are selected to boost the searchability [46].
Relative definitions are given as follows.

Definition 1. Let x ∈ R be a real number defined on a specific interval x ∈ [a, b]. The opposite number x̃ is
defined according to the following formula

x̃ = a + b− x (4)

Definition 2. Let Xi = (xi1, xi2, · · · , xiD) be a point in D dimensional space, xij ∈
[
aij, bij

]
, j = 1, 2, · · · , D.

The opposite point X̃i = (x̃i1, x̃i2, · · · , x̃iD) is defined by

x̃ij = aij + bij − xij (5)

Experiments show that, if there is no prior knowledge of optimization problem, the probability
that the opposite solution can reach the global optimum is higher than that of the random solution [47].
Based on the OBL, quasi-opposition based learning [48] and quasi-reflective based learning [49] are
proposed later. In this paper, we only consider OBL.

Taking TSP as an example, its solution is a sequence of numbers as the indices of cities. In addition,
according to the opposite solutions for a continuous domain, it is challenging to construct opposite
solutions for TSP due to the features of a discrete domain. Therefore, only a few scholars have made
contributions towards this topic, and Ergeze is one of them. In [43], Ergeze addresses the definition of
opposite paths according to the moving direction. For example, the initial path for n cities is given by

P = [1, 2, · · · , n] (6)

where the entries stand for the order of the cities that a salesman travels through. Then, the
corresponding opposite path in a clockwise (CW) direction could be given by

PCW =
[
1, 1 +

n
2

, 2, 2 +
n
2

, · · · ,
n
2
− 1, n− 1,

n
2

, n
]

(7)

where n is even.
In the case when n is odd, append an auxiliary city and make n even. In the end, find opposite

solutions according to Equation (7) and then remove this city. Since different moving directions may
lead to different opposite paths or solutions, moving in a counterclockwise (CCW) will result in
different opposite solutions compared with PCW.

When the number of cities is odd, one way of implementing CW opposition is to add an auxiliary
city to the end of the path. After the opposite path is found, remove the auxiliary city.

3. Opposition-Based ACO

The method of construction opposite path based on OBL is given in this section. At the same
time, in order to use the opposite path information, three kinds of frameworks of opposite-based ACO
algorithms including ACO-Index, ACO-MaxIt, and ACO-Rand will also be proposed. In order to unify
the content, the construction method of the opposite path will be combined with the specific algorithm.
Details will be given in the following subsections.

3.1. ACO-Index

According to the definition given in Equation (7), the same route may lead to different opposite
paths. Taking a TSP of six cities as an example, path (1, 2, 3, 4, 5, 6) and path (2, 3, 4, 5, 6, 1) are the same
path; however, their opposite paths, (1, 4, 2, 5, 3, 6) and (2, 5, 3, 6, 4, 1), are different.



Mathematics 2020, 8, 1650 5 of 16

In addition, the initialization procedure of ACO is not random compared with DE, but more
similar to the greedy algorithm, which selects a closer according to the rule of state transition.
Therefore, opposite paths are always longer than the original ones generally and cannot be used
pheromone updating. Aiming to solve the shortcomings, a novel ACO algorithm, namely ACO-Index,
is proposed based on a modified strategy of opposite path construction.

Opposite path construction is mainly composed of two steps. The first step is the path sorting,
and the second is the decision of opposite path. Suppose the number of cities n is even, then, during
path sorting, put the path P back into a cycle and appoint a particular city A as the starting city with
index 1. In addition, the rest of the cities will be given indices according to their position in this cycle.
In this way, we could get the indices Pind= [1, 2, ..., n].

During the second step, indices of the opposite path PCW
ind should be found through Equation (7)

and the opposite path PCW can be found based on the indices PCW
ind appointed previously.

Moreover, when the number of cities n is odd, an auxiliary index should be added to the end of
the indices Pind, and we could get Paux. According to Equation (7), we could get the opposite indices
PCW

aux , and its last index is the auxiliary index itself. Remove the latest index, and we can get PCW
ind .

In addition, then, decide the opposite path PCW according to the opposite indices PCW
ind .

In this way, opposite paths for different paths that share the same cycle route are the same.
Pseudocode for opposite path construction is addressed in Algorithm 1.

Algorithm 1 Constructing the opposite path

Input: original path P
1: Put the path back into a circle
2: Appoint a specific city A with index 1
3: Appoint other cities in this circle with indices 2, 3, · · · , and get the indices Pind= [1, 2, · · · , n]
4: if n is even
5: Calculate the opposite indices PCW

ind according to Equation (7)
6: else
7: Add an auxiliary index at the end of Pind and get Paux
8: Calculate the opposite indices PCW

aux according to Equation (7)
9: Delete the final index from PCW

aux and get PCW
ind

10: endif
11: Calculate the PCW based on PCW

ind
Output: opposite path PCW

Although some paths may be longer than the optimal path, they still contain useful information
within themselves, which inspires us to apply them to reasonably modifying pheromone. For ACO
algorithms, if the number of ants is m, the number of paths should also be m for pheromone updating.
In the proposed ACO-Index, the top m1 shortest original paths and the top m2 shortest opposite
paths will be chosen to form the m = m1 + m2 paths. Algorithm 2 presents the pseudocode for
pheromone updating.

Algorithm 2 Updating pheromone

Input: original paths and opposite paths
1: Sort original paths and opposite paths by length
2: Select the top m1 shortest paths and the top m2 shortest opposite paths
3: Construct m = m1 + m2 new paths
4: Update pheromone according to Equation (2)

Output: Pheromone trail in each path



Mathematics 2020, 8, 1650 6 of 16

Algorithm 3 shows the pseudocode for the primary steps of ACO-Index for total iterations Nmax.

Algorithm 3 ACO-Index algorithm

Input: parameters: m, n, α, β, ρ, Q, m1, m2, Nmax
1: Initialize pheromone and heuristic information
2: for iteration index Nc ≤ Nmax do
3: for k = 1 to m do
4: Construct paths according to Equation (1)
5: Construct opposite paths through Algorithm 1
6: endfor
7: Update pheromone according to Algorithm 2
8: endfor

Output: the optimal path

3.2. ACO-MaxIt

Although ACO-Index modifies ACO with a better path construction strategy, it inherits a similar
opposite path generation method from [43]. In this section, a novel opposite path generation method,
together with a novel pheromone updating rule, is proposed as an improved ACO algorithm, named
ACO-MaxIt, which will be described in detail as follows.

The mirror point M is defined by

M =

⌈
1 + n

2

⌉
(8)

where d·e denotes the ceiling operator.
Considering the case when n is odd, the opposite city C̃ for the current city C could be defined

as follows:

C̃ =


C,
C + M,
C−M,

if C = M
if C < M
if C > M

(9)

Considering the case when n is even, the opposite city C̃ for the current city C could be defined
as follows

C̃ =


C,
C + M,
C−M,

if C =n/2 or (n/2 + 1)
else if C < M
else if C > M

(10)

The pseudocode for opposite path construction is shown in Algorithm 4.

Algorithm 4 Constructing the opposite path based on the mirror point

Input: original path
1: Decide mirror point M, according to Equation (8)
2: for C = 1 to n do
3: Calculate C̃ through Equation (9) or Equation (10) according to the parity of n
4: endfor

Output: opposite path

The pheromone update process consists of two stages. For the first stage, when Nc ≤ gNmax and
0 < g < 1, opposite paths will be decided through Algorithm 4. Meanwhile, the pheromone will be
updated according to Algorithm 2. In the later stage, when Nc > gNmax, no more opposite paths could
be calculated, and pheromones will still be updated according to Equation (2).

The pseudocode of ACO-MaxIt is presented in Algorithm 5.



Mathematics 2020, 8, 1650 7 of 16

Algorithm 5 ACO-MaxIt algorithm

Input: parameters: m, n, α, β, ρ, Q, g, m1, m2, Nmax
1: Initialize pheromone and heuristic information
2: for iteration index Nc ≤ Nmax do
3: for k = 1 to m do
4: Construct paths according to Equation (1)
5: endfor
6: if Nc ≤ gNmax then
7: Construct opposite paths according to Algorithm 4
8: Update pheromone according to Algorithm 2
9: else

10: Update pheromone according to Equation (2)
11: endif
12: endfor
Output: the optimal solution

3.3. ACO-Rand

In the pheromone updating stage of ACO-Index or ACO-MaxIt, it is decided based on experiences
of when to calculate the opposite paths. Therefore, in this section, another strategy to update
pheromones is addressed, and the novel ACO algorithm is named ACO-Rand since whether or
not to construct the opposite path is decided by two random variables.

The whole procedure of ACO-Rand is much like that of ACO-MaxIt; however, two random
variables R0 and R are introduced. R0 is chosen randomly but fixed after generated, and R is randomly
selected during each iteration. The pseudocode of ACO-Rand is given in Algorithm 6.

Algorithm 6 ACO-Rand algorithm

Input: parameters: m, n, α, β, ρ, Q, m1, m2, Nmax, R0
1: Initialize pheromone and heuristic information
2: for iteration index Nc ≤ Nmax do
3: for k = 1 to m do
4: Construct paths according to Equation (1)
5: endfor
6: Generate a random variable R
7: if R < R0 then
8: Construct opposite paths according to Algorithm 4
9: Update pheromone according to Algorithm 2

10: else
11: Update pheromone according to Equation (2)
12: endif
13: endfor
Output: the optimal solution

3.4. Time Complexity Analysis

The main steps of the three improved ant colony algorithms include initialization, solution
construction and pheromone updating. The time complexity of initialization is O(n2 + m). The time
complexity of constructing the solution is O(mn2). The time complexity of pheromone updating is
O(n2). In addition, the time complexity of constructing and sorting the inverse solutions is O(n2).
Therefore, the complexity of the final algorithm is O(Nmaxmn2). It is the same time complexity as the
basic ant colony algorithm. Therefore, the improved algorithm does not increase significantly in time.



Mathematics 2020, 8, 1650 8 of 16

4. Experiments and Results

AS and PS-ACO are employed as ACO algorithms to verify the feasibility of three opposition-based
ACO algorithms. The experiments were performed in the following hardware and software environments.
CPU is Core i5@2.9 GB, and RAM is 16 GB. The operating system is Windows 10. TSP examples are
exported from TSPLIB (http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/).

4.1. Parameter Setting

In the following experiments, the parameters are setting as m = 50, m1 = 40, m2 = 10, α = 1,
β = 2, ρ=0.05, Q=1, Nmax = 2000, g = 0.5 for ACO-MaxIt, R0 = 0.6 while R ∈ (0, 1) for ACO-Rand.
Twenty cycles of experiments are carried out for each example independently. Then, minimum
solution Smin, maximum solution Smax, average solution Savg, standard deviation Std, and average
runtime Tavg for different examples of 20 times are given in the tables, where minimum solution Smin,
maximum solution Smax, and average solution Savg are the percentage value deviation against the
known optimal solution. The minimum value in each result is bolded in the tables.

4.2. Experimental Results Comparison Based on AS

First, we employ AS to three kinds of opposite based ACO, called AS-Index, AS-MaxIt, and
AS-Rand, to verify the effectiveness of the improved algorithm. Twenty-six TSP examples are divided
into three main categories, the small-scale, the medium-scale, and the large-scale according to the
number of cities, respectively.

Small-scale city example sets are selected from TSPLIB, including eil51, st70, pr76, kroA100, eil101,
bier127, pr136, pr152, u159, and rat195. The results are shown in Table 1.

From Table 1, the proposed AS-Index, AS-MaxIt, and AS-Rand show superior performances over
AS for the examples, st70, kroA100, eil101, bier127, pr136, and u159. For other examples, the proposed
algorithms outperform AS in general, except eil51. Meanwhile, stability by standard deviation is the
not the primary concern when evaluating an algorithm. Compared among three proposed algorithms,
AS-MaxIt illustrates superior performances for most cases.

To show more details in the process of evolutionary, curves for different stages are given in
Figure 1 based on the case of kroA100.

According to Figure 1, AS shows faster convergence speed than the other three proposed methods
in early iterations, while AS-Index, AS-MaxIt, and AS-Rand all surpass AS in average path length in
later iterations. Meanwhile, AS-MaxIt performs best among all these algorithms, which also verifies
the results in Table 1.

In the early stage, opposite path information introduced by OBL has negative impact on the
convergence speed for all three proposed algorithms; however, it can provide extra information which
guarantees the boost in accuracy for the later stage. The results lie in the fact that introducing extra
information of opposite paths help to increase the diversity of the population, which balances the
exploration and exploitation of solution space.

Medium-scale city example sets are selected from TSPLIB, including kroA200, ts225, tsp225, pr226,
pr299, lin318, fl417, pr439, pcb442, and d493. The results are shown in Table 2.

From Table 2, it can be found that the proposed algorithms outperform AS in all the cases except
ts225. Among all three algorithms, AS-Index and AS-MaxIt perform similarly, but better than AS-Rand
generally. From these results, it can be seen that, with the help of extra information from opposite
paths, three proposed methods all improve the original AS in solution accuracy.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/


Mathematics 2020, 8, 1650 9 of 16

Table 1. Results comparison for small-scale example sets.

Instance Algorithm Smin(%) Smax(%) Savg(%) Std Tavg

eil51

AS 2.58 6.1 3.56 4.94 65.21
AS-Index 2.81 7.51 4.27 5.26 64.73
AS-MaxIt 2.58 7.04 4.25 6.66 63.1
AS-Rand 2.82 5.63 3.86 4.67 63.76

st70

AS 5.03 7.41 6.22 5.16 90.38
AS-Index 3.85 7.56 6.03 7.05 104.02
AS-MaxIt 4.59 6.81 5.83 4.63 89.87
AS-Rand 4.59 8.15 6.25 5.45 85.29

pr76

AS 6.03 9.11 7.49 897.25 101.6
AS-Index 6.22 9.83 7.81 926.53 118.32
AS-MaxIt 5.04 8.46 6.66 1151.2 95.9
AS-Rand 4.71 8.78 7.18 1336 95.72

kroA100

AS 4.86 6.78 5.32 94.22 146.29
AS-Index 4.29 6.36 4.93 111.14 163.71
AS-MaxIt 4.35 5.66 4.79 80.21 123.84
AS-Rand 4.53 5.8 5.11 56.40 124.99

eil101

AS 8.11 12.1 9.99 5.78 140.25
AS-Index 6.2 10.81 8.55 9.55 140.2
AS-MaxIt 7.15 11.8 9.3 6.86 128.16
AS-Rand 7.15 12.4 9.96 8.23 145.56

bier127

AS 4.75 7.15 6.05 828.19 195.33
AS-Index 4.07 6.75 5.32 870.88 176.32
AS-MaxIt 3.34 6.82 5.03 904.32 173.58
AS-Rand 3.52 6.8 5.05 961.25 175.14

pr136

AS 9.83 13.5 11.82 924.44 189.68
AS-Index 9.64 12.47 11.47 832.93 209.51
AS-MaxIt 8.13 12.34 10.73 976.21 190.95
AS-Rand 10.68 12.62 10.95 890.29 191.23

pr152

AS 4.3 7.34 5.79 552.91 214.30
AS-Index 3.56 8.03 6.25 804.54 238.72
AS-MaxIt 3.49 6.83 5.33 739.76 1982
AS-Rand 4.16 6.95 5.14 537.49 220.52

u159

AS 7.67 10.3 6.86 348.22 219.92
AS-Index 6.31 8.97 7.44 349.95 223.39
AS-MaxIt 3.85 8.32 6.28 479.93 206.23
AS-Rand 4.88 8.55 7.25 412.44 229.64

rat195

AS 3.92 9.38 7.43 35.28 286.38
AS-Index 3.49 8.52 6.47 37.02 283.31
AS-MaxIt 3.83 7.58 5.59 37.69 278.63
AS-Rand 4.00 6.54 5.31 17.01 280.39

Taking fl417 as the example, evolutionary curves in detail for different iteration stages are given in
Figure 2, accordingly. According to Figure 2, AS also converges faster than the other three proposed methods
in early iterations—for example before 1000 iterations. In addition, in later iterations, the other three proposed
methods all exceed AS in average path length. This further validates the conclusions obtained from the
analysis of Figure 1.



Mathematics 2020, 8, 1650 10 of 16

0 50 100 150 200

Iteration Number

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

A
v

er
a

g
e 

p
a

th
 l

en
g

th

×10
4

AS

AS-Index

AS-MaxIt

AS-Rand

200 400 600 800 1000 1200 1400 1600 1800 2000

Iteration Number

2.23

2.24

2.25

2.26

2.27

2.28

2.29

2.3

2.31

2.32

A
v

er
a

g
e 

p
a

th
 l

en
g

th

×10
4

AS

AS-Index

AS-MaxIt

AS-Rand

Figure 1. Evolutionary curves for different iteration periods based on kroA100.

Table 2. Results comparison for medium-scale example sets.

Instance Algorithm Smin(%) Smax(%) Savg(%) Std Tavg

kroA200

AS 10.33 16.54 12.36 454.71 330.43
AS-Index 10.17 13.06 11.12 243.66 324.495
AS-MaxIt 8.09 13.48 11.27 367.58 270.07
AS-Rand 6.69 13.01 10.66 485.83 292.98

ts225

AS 3.53 4.27 3.89 275.55 345.62
AS-Index 3.13 4.74 3.91 488.06 329.03
AS-MaxIt 3.35 4.94 4.01 560.16 329.35
AS-Rand 3.63 5.52 4.23 607.16 325.54

tsp225

AS 9.4 12.03 10.37 30.67 346.81
AS-Index 8.02 12.16 9.9 38.02 345.35
AS-MaxIt 7.51 12.87 10.91 46.8 319.75
AS-Rand 9.5 12.39 10.88 36.13 355.0

pr226

AS 5.5 7.94 6.76 632.0 327.3
AS-Index 4.96 7.28 6.47 458.47 348.97
AS-MaxIt 4.29 7.24 6.34 631.53 335.54
AS-Rand 4.39 7.5 5.92 578.15 325.31

pr299

AS 13.31 19.48 17.03 732.30 512.6
AS-Index 9.43 17.41 14.95 1193.8 495.6
AS-MaxIt 15.53 18.24 16.91 419.72 487.8
AS-Rand 11.35 18.73 16.41 836.03 500.35

lin318

AS 12.57 17.15 15.33 517.72 508.6
AS-Index 11.8 17.16 14.97 544.18 554.6
AS-MaxIt 13.93 16.89 15.59 376.06 542.2
AS-Rand 14.28 17.74 16.22 415.81 542.55

fl417

AS 8.16 12.55 10.61 132.22 811.45
AS-Index 7.79 12.57 9.91 141.28 804.6
AS-MaxIt 8.35 11.55 10.3 108.13 773
AS-Rand 8.67 13.24 10.39 146.72 795.35

pr439

AS 9.5 13.74 11.56 1410.4 881.25
AS-Index 8.38 11.75 10.22 1010.9 845.75
AS-MaxIt 9.34 15.96 11.8 1555.1 841.9
AS-Rand 11.73 15.91 13.76 1205.6 859.8

pcb442

AS 13.57 18.87 16.84 610.98 933.5
AS-Index 11.62 16.37 14.22 640.69 930.7
AS-MaxIt 13.68 19.27 16.66 656.89 899.35
AS-Rand 14.54 18.85 16.68 644.38 888.45

d493

AS 13.4 19.18 16.26 459.03 1032.25
AS-Index 12.23 16.31 14.71 412.28 1043.25
AS-MaxIt 14.08 17.01 15.7 280.32 969.5
AS-Rand 13.46 19.21 16.4 449.97 1063.8



Mathematics 2020, 8, 1650 11 of 16

0 50 100 150 200

Iteration Number

1.45

1.5

1.55

1.6

1.65

1.7

A
v
er

a
g
e 

p
a
th

 l
en

g
th

×10
4

AS

AS-Index

AS-MaxIt

AS-Rand

200 400 600 800 1000 1200 1400 1600 1800 2000

Iteration Number

1.3

1.32

1.34

1.36

1.38

1.4

1.42

1.44

1.46

1.48

A
v
er

a
g
e 

p
a
th

 l
en

g
th

×10
4

AS

AS-Index

AS-MaxIt

AS-Rand

Figure 2. Evolutionary curves for different iteration periods based on fl417.

Large-scale city example sets are selected from TSPLIB, including att532, rat575, d657, u724,
vm1084, and rl1304. The results are shown in Table 3.

From Table 3, it can be discovered that the AS-Index shows the obvious superior performance
over all the other algorithms, which reveals a fact that the advantages of AS-Index appears as the scale
of the example increases based on these results.

Taking vm1084 as the example, evolutionary curves in detail for different iteration stages are
given in Figure 3, accordingly. According to Figure 3, AS still shows faster convergence speed than the
other three proposed methods in early iterations, but AS-Index outperforms all the others in the end.

Based on all the tables and figures, it can be found that, in most scenarios, at least one of AS-Index,
AS-MaxIt, and AS-Rand outperforms AS in average path length. For small-scale examples, AS-MaxIt
shows better performance, while, for medium-scale cases, AS-Index and AS-MaxIt perform similarly
better than the others. For large-scale city sets, AS-Index is the best algorithm, while AS-Rand
ranks in the middle for most cases regarding figures, and it illustrates its stability to some extent.
Therefore, it can be drawn that the strategy to introduce OBL into AS provides more information,
namely better exploration capability, which explains the superiority of these proposed methods over
the original AS. By comparing the results of the running time from Tables 1–3, we can also find that
the running time of the three improved algorithms is not significantly increased compared with AS.
It also validates our previous discussion on time complexity.

4.3. Experimental Results Comparison Based on PS-ACO

To further verify the effectiveness of the proposed algorithm, we employed another PS-ACO to
three kinds of opposite based ACO, PS-ACO-Index, PS-ACO-MaxIt, and PS-ACO-Rand to verify the
effectiveness of the improved algorithm. The number of ants is 50, and the other parameters are the
same as in [26]. Twelve sets of TSP examples are eil51, st70, kroA100, pr136, u159, rat195, tsp225, pr299,
lin318, fl417, att532, and d657. The results are given in Table 4.

From Table 4, the proposed PS-ACO-Index, PS-ACO-MaxIt, and PS-ACO-Rand show superior
performances over PS-ACO for the examples, eil51, st70, rat195, tsp225, and pr299. For other
examples, the proposed algorithms outperform PS-ACO in general, except lin318 and fl417. Compared
among three proposed algorithms, PS-ACO-Rand illustrates superior performances for most cases.
By comparing the results of the running time, we can also find that the running time of the three
improved algorithms is not significantly increased compared with PS-ACO.



Mathematics 2020, 8, 1650 12 of 16

Table 3. Results comparison for large-scale example sets.

Instance Algorithm Smin(%) Smax(%) Savg(%) Std Tavg

att532

AS 13.79 20.21 17.3 1415.4 1407.05
AS-Index 13.37 19.49 15.64 1203.4 1436.4
AS-MaxIt 14.33 18 16.15 766.9 1384.65
AS-Rand 14.63 17.98 16.34 803.93 1460.35

rat575

AS 18.69 22.52 20.5.3 75.22 1651.5
AS-Index 16.31 20.71 18.94 61.3 1661.7
AS-MaxIt 20.24 24.32 22.23 80.88 1602.55
AS-Rand 22.88 26.93 25.36 86.12 1598

d657

AS 17.6 23.88 21.97 823.36 2685.45
AS-Index 16.32 21.5 19.7 636.0 2673.65
AS-MaxIt 19.4 24.09 21.69 526.44 2114.15
AS-Rand 18.21 23.82 21.24 615.17 2138.1

u724

AS 20.9 26.43 24.19 625.6 2630.95
AS-Index 15.53 23.45 20.46 871.17 2624.7
AS-MaxIt 21.6 26.72 24.05 469.3 2651.65
AS-Rand 19.74 27.13 24.3 825.26 2609.7

vm1084

AS 22.65 27.78 25.76 3490.5 6722
AS-Index 17.69 24.73 21.1 4700 6726.5
AS-MaxIt 19.91 26.59 23.29 4476.6 6594
AS-Rand 20.72 25.71 23.04 3111 6695.5

rl1304

AS 19.51 24.37 21.76 3633.6 7436.5
AS-Index 16.65 21.63 18.95 3632.3 7383
AS-MaxIt 18.45 24.19 20.63 3709.8 8767.5
AS-Rand 17.09 22.82 20.12 4359.2 8652.5

0 50 100 150 200

Iteration Number

3.2

3.3

3.4

3.5

3.6

3.7

3.8

A
v
er

a
g
e 

p
a
th

 l
en

g
th

×10
5

AS

AS-Index

AS-MaxIt

AS-Rand

200 400 600 800 1000 1200 1400 1600 1800 2000

Iteration Number

2.85

2.9

2.95

3

3.05

3.1

3.15

3.2

3.25

3.3

A
v
er

a
g
e 

p
a
th

 l
en

g
th

×10
5

AS

AS-Index

AS-MaxIt

AS-Rand

Figure 3. Evolutionary curves for different iteration periods based on vm1084.



Mathematics 2020, 8, 1650 13 of 16

Table 4. Comparisons of PS-ACO, PS-ACO-Index, PS-ACO-MaxIt, and PS-ACO-Rand.

Instance PS-ACO PS-ACO-Index PS-ACO-MaxIt PS-ACO-Rand

Smin(%) Smax(%) Savg(%) Std Tavg Smin(%) Smax(%) Savg(%) Std Tavg Smin(%) Smax(%) Savg(%) Std Tavg Smin(%) Smax(%) Savg(%) Std Tavg

eil51 0 0.7 0.52 0.89 77.4 0 0.7 0.42 1.15 81.59 0 0.7 0.46 1.15 78.06 0 0.7 0.46 0.94 78.58
st70 0.15 2.67 1.07 5.84 99.35 0 2.67 0.88 4.67 121.44 0.15 2.96 0.93 5.61 99.31 0.15 692 2.52 3.79 99.02

kroA100 0.06 1.16 0.54 58.85 163.6 0.12 2.2 0.72 107.74 176.34 0.06 1 0.55 59.94 151.06 0 1.11 0.54 79.47 146.32
pr136 7.64 12.2 10.08 1200 206.41 7.98 13.12 10.19 1452.7 230.68 8.03 11.97 9.96 1116.4 203.95 7.48 12.51 9.81 1274.4 204.24
u159 0 0.88 0.12 112.74 886.25 0 0.88 0.17 117.7 875.5 0 0.22 0.02 28.93 860.8 0 0.75 0.09 98.07 868.45

rat195 0.43 1.33 0.7 5.86 882.25 0.43 1.21 0.6 4.24 875.65 0.43 1.33 0.6 6.45 907.85 0.43 0.99 0.57 3.88 906.4
tsp225 3.7 5.98 4.93 23.78 1087.35 3.5 5.36 4.21 21.14 1140.75 3.73 5.87 4.66 25.18 1158.85 3.52 5.57 4.76 20.51 1150.8
pr299 9.78 14.08 11.68 605.79 1927.8 9.03 12.78 10.63 450.92 1919.15 7.8 14.74 11.14 885.13 1882.4 9.17 14.49 11.6 792.39 1881.45
lin318 10.29 15.59 12.53 523.89 571.9 11.42 15.14 13.16 417.59 651.4 9.66 15.64 12.85 600.33 608.75 10.64 15.71 13.52 498.17 607.8
fl417 10.51 14.56 12.43 155.86 782.6 11.1 17.45 14.7 226.592 778.95 11.45 17.77 14.17 216.73 714.3 10.35 17.56 14.45 232.11 724.6

att532 19.9 25.06 22.82 1106.8 1518.45 19.58 25.26 22.42 1372.8 1529.25 20.02 25.3 22.3 1113.1 1342.4 20.59 26.17 23.25 1114 1363.95
d657 22.67 27.06 24.66 534.7 2247.4 21.04 27.91 24.57 780.93 2202.4 22.08 25.74 24.32 547.2 2002.5 23.17 28.16 25.31 697.21 2175.95



Mathematics 2020, 8, 1650 14 of 16

5. Conclusions

The performances of swarm optimization algorithms based on OBL present advantages when
handling problems of continuous optimization. However, there are only a few approaches proposed
to solve problems of discrete optimization. The difficulty in opposite solution construction is
considered as one top reason. To solve this problem, two different strategies, direction and indirection,
of constructing opposite paths are presented individually in this paper. For indirection strategy,
other than using the order of cities from the current solution directly, it studies the positions, noted as
indices, of the cities rearranged in a circle, and then calculates the opposite indices. While for direction
strategy, opposite operations are carried out directly to the cities in each path.

To use the information of the opposite path, three different frameworks of opposite-based ACO,
called ACO-Index, ACO-MaxIt, and ACO-Rand, are also proposed. All ants need to get the increment
of pheromone in three improved frameworks. Among three proposed algorithms, ACO-Index employs
the strategy of indirection to construct the opposite path and introduces it to pheromone updating.
ACO-MaxIt also employs direction strategy to obtain opposite path but only adopts it in the early
updating period. Similar to ACO-MaxIt in opposite path construction, ACO-Rand employs this
opposite path throughout the stage of pheromone updating. In order to verify the effectiveness of
the improvement strategy, AS and PS-ACO are used in three frameworks, respectively. Experiments
demonstrate that all three methods, As-Index, As-MaxIt, and AS-Rand, outperform original AS in the
cases of small-scale and medium-scale cities while AS-Index performs best when facing large-scale
cities. The three improved PS-ACO also showed good performance.

Constructing the opposite path mentioned in this paper is only suitable for symmetric TSP. This is
mainly because the path (solution) of the problem is an arrangement without considering the direction.
However, if it is replaced by the asymmetric TSP, this method needs to be modified. In addition, if it
is replaced by a more general combinatorial optimization problem, it is necessary to restudy how to
construct the opposite solution according to the characteristics of the problem. Therefore, our current
method of constructing opposite solution is not universal. This is one of the limitations of this study.
At the same time, the improved algorithm requires all ants to participate in pheromone updating in
order to use the information of opposite path. However, now many algorithms use the best ant to
update pheromone, so the method in this paper will have some limitations when it is extended to
more ant colony algorithm. However, we also find that it is effective to apply reverse learning to
combinatorial optimization problems. Therefore, we will carry out our future research work from
two aspects. On the one hand, we plan to continue to study the construction method of more general
opposite solution for combinatorial optimization problems, so as to improve its generality. In addition,
it will be applied to practical problems such as path optimization to further expand the scope of
application. Meanwhile, applying OBL to more widely used algorithms is also one interesting and
promising topic. Therefore, on the other hand, we plan to study more effective use of the reverse
solution and extend it to the more wildly used ACO, such as MMAS and ACS, and even some other
optimization algorithms such as PSO and ABC, to solve more combinatorial optimization problems
more effectively.

Author Contributions: Conceptualization, Z.Z.; methodology, Z.Z.and Z.X.; software, Z.X. and X.L.; formal analysis,
Z.Z.and Z.X.; resources, Z.Z.; writing—original draft preparation, Z.X.; writing—review and editing, Z.Z.and S.L.;
supervision, Z.Z.and Y.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant No. 61703256,
61801197), Jiangsu Natural Science Foundation (Grant No. BK20181004), Natural Science Basic Research Plan
In Shaanxi Province of China (Program No. 2017JQ6070), and the Fundamental Research Funds for the Central
Universities (Grant No. GK201603014, GK201803020).

Acknowledgments: The authors are grateful to the anonymous reviewers and the editor for the constructive
comments and valuable suggestions.

Conflicts of Interest: The authors declare no conflict of interest.The funders had no role in the design of the study;
in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish
the results.



Mathematics 2020, 8, 1650 15 of 16

References

1. Karaboga, D.; Akay, B. A survey: Algorithms simulating bee swarm intelligence. Artif. Intell. Rev. 2009, 31,
61–85.

2. Dorigo,M.; Maniezzo,V.; Colorni,A. The ant system: Optimization by a colony of cooperating agents.
IEEE Trans. Syst. Man Cybern. Part B 1996, 26, 29–41. [CrossRef]

3. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International
Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948.

4. Karaboga, D.; Akay, B. A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 2009,
214, 108–132. [CrossRef]

5. Yang, X.S. Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput.
2010, 2, 78–84. [CrossRef]

6. Gandomi, A.H.; Yang, X.S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve
structural optimization problems. Eng. Comput. 2013, 29, 17–35. [CrossRef]

7. Wang, G.G.; Guo, L.G.; omi, A.H.; Hao, G.S.; Wang, H. Chaotic krill herd algorithm. Inf. Sci. 2014, 274, 17–34.
[CrossRef]

8. Wang, G.G.; Deb, S.; Cui, Z. Monarch butterfly optimization. Neural Comput. Appl. 2019, 31, 1995–2014.
[CrossRef]

9. Wang, G.G. Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems.
Memet. Comput. 2018, 10, 151–164.

10. Mollajafari, M.; Shahhoseini, H.S. An efficient ACO-based algorithm for scheduling tasks onto dynamically
reconfigurable hardware using TSP-likened construction graph. Appl. Intell. 2016, 45, 695–712. [CrossRef]

11. Elloumi, W.; El Abed, H.; Abraham, A.; Alimi, A.M. A comparative study of the improvement of performance
using a PSO modified by ACO applied to TSP. Appl. Soft Comput. 2014, 25, 234–241. [CrossRef]

12. Zhang, Z.Z.; Hu, F.N.; Zhang, N.; Ant colony algorithm for satellite control resource scheduling problem.
Appl. Intell. 2018, 48, 3295–3305. [CrossRef]

13. Rahim, S.; Javaid, N.; Ahmad, A.; Khan, S.A.; Khan, Z.A.; Alrajeh, N.; Qasim, U. Exploiting heuristic
algorithms to efficiently utilize energy management controllers with renewable energy sources. Energy Build.
2016, 129, 452–470. [CrossRef]

14. Bhattacharjee, K.K.; Sarmah, S.P. Modified swarm intelligence based techniques for the knapsack problem.
Appl. Intell. 2017, 46, 158–179. [CrossRef]

15. Huang, S.H.; Huang, Y.H.; Blazquez, C.A.; Paredes-Belmar, G. Application of the ant colony optimization in
the resolution of the bridge inspection routing problem. Appl. Soft Comput. 2018, 65, 443–461. [CrossRef]

16. Lee, C.Y.; Lee, Z.J.; Lin, S.W.; Ying, K.C. An enhanced ant colony optimization (EACO) applied to capacitated
vehicle routing problem. Appl. Intell. 2010, 32, 88–95. [CrossRef]

17. Kumar, A.; Thakur, M.; Mittal, G. A new ants interaction scheme for continuous optimization problems.
Int. J. Syst. Assur. Eng. Manag. 2018, 9, 784–801. [CrossRef]

18. Yang, Q.; Chen, W.N.; Yu, Z.; Gu, T.; Li, Y.; Zhang, H.; Zhang, J. Adaptive multimodal continuous ant colony
optimization. IEEE Trans. Evol. Comput. 2017, 21, 191–205. [CrossRef]

19. Liao, T.J.; Stützle, T.; Oca, M.A.M.; Dorigo, M. A unified ant colony optimization algorithm for continuous
optimization. Eur. J. Oper. Res. 2014, 234, 597–609. [CrossRef]

20. Dorigo, M.; Blum, C. Ant colony optimization theory: A survey. Theor. Comput. Sci. 2005, 344, 243–278.
[CrossRef]

21. Dorigo, M.; Gambardella, L.M. Ant colony system: A cooperative learning approach to the traveling
salesman problem. IEEE Trans. Evol. Comput. 1997, 1, 53–66. [CrossRef]

22. Stützle, T.; Hoos, H.H. Max-min ant system. Future Gener. Comput. Syst. 2000, 16, 889–914.
23. Luo, Q.; Wang, H.; Zheng, Y.; He, J. Research on path planning of mobile robot based on improved ant

colony algorithm. Future Gener. Comput. Syst. 2020, 32, 1555–1566. [CrossRef]
24. Huang, M.; Ding, P. An improved ant colony algorithm and its application in vehicle routing problem.

Future Gener. Comput. Syst. 2013, 2013, 1–9.
25. Deng, Y.; Zhu, W.; Li, H.; Zheng, Y.H. Multi-type ant system algorithm for the time dependent vehicle

routing problem with time windows. J. Syst. Eng. Electron. 2018, 29, 625–638.
26. Shuang, B.; Chen, J.; Li, Z. Study on hybrid PS-ACO algorithm. Appl. Intell. 2011, 34, 64–73. [CrossRef]

http://dx.doi.org/10.1109/3477.484436
http://dx.doi.org/10.1016/j.amc.2009.03.090
http://dx.doi.org/10.1504/IJBIC.2010.032124
http://dx.doi.org/10.1007/s00366-011-0241-y
http://dx.doi.org/10.1016/j.ins.2014.02.123
http://dx.doi.org/10.1007/s00521-015-1923-y
http://dx.doi.org/10.1007/s10489-016-0782-2
http://dx.doi.org/10.1016/j.asoc.2014.09.031
http://dx.doi.org/10.1007/s10489-018-1144-z
http://dx.doi.org/10.1016/j.enbuild.2016.08.008
http://dx.doi.org/10.1007/s10489-016-0822-y
http://dx.doi.org/10.1016/j.asoc.2018.01.034
http://dx.doi.org/10.1007/s10489-008-0136-9
http://dx.doi.org/10.1007/s13198-017-0651-3
http://dx.doi.org/10.1109/TEVC.2016.2591064
http://dx.doi.org/10.1016/j.ejor.2013.10.024
http://dx.doi.org/10.1016/j.tcs.2005.05.020
http://dx.doi.org/10.1109/4235.585892
http://dx.doi.org/10.1007/s00521-019-04172-2
http://dx.doi.org/10.1007/s10489-009-0179-6


Mathematics 2020, 8, 1650 16 of 16

27. Ke, L.J.; Zhang, Q.F.; Battiti, R. MOEA/D-ACO: A multiobjective evolutionary algorithm using
decomposition and ant colony. IEEE Trans. Cybern. 2013, 43, 1845–1859.

28. Akpınar, S.; Bayhan, G.M.; Baykasoglu, A. Hybridizing ant colony optimization via genetic algorithm
for mixed-model assembly line balancing problem with sequence dependent setup times between tasks.
Appl. Soft Comput. 2013, 13, 574–589.

29. Ting, T.O.; Yang, X.S.; Cheng, S.; Huang, K. Hybrid metaheuristic algorithms: past, present, and future.
In Recent Advances in Swarm Intelligence and Evolutionary Computation; Yang, X.S., Ed.; Springer International
Publishing: Cham, Switzerland, 2015; pp. 71–83.

30. Rosa, G.H.D.; Papa, J.P.; Yang, X.S. Handling dropout probability estimation in convolution neural networks
using meta-heuristics. Soft Comput. 2018, 22, 6147–6156. [CrossRef]

31. Bacanin, N.; Bezdan, T.; Tuba, E.; Strumberger, I.; Tuba, M. Monarch butterfly optimization based
convolutional neural network design. Mathematics 2020, 8, 936. [CrossRef]

32. Wang, G.G.; Tan, Y. Improving metaheuristic algorithms with information feedback models.
IEEE Trans. Cybern. 2019, 49, 542–555. [CrossRef]

33. Gao, D.; Wang, G.G.; Pedrycz, W. Solving fuzzy job-shop scheduling problem using DE algorithm improved
by a selection mechanism. IEEE Trans. Fuzzy Syst. 2020. [CrossRef]

34. Li, W.; Wang, G.G.; Alavi, A.H. Learning-based elephant herding optimization algorithm for solving
numerical optimization problems. Knowl. Based Syst. 2020, 195, 105675. [CrossRef]

35. Mahdavi, S.; Rahnamayan, S.; Deb, K. Opposition based learning: A literature review. Swarm Evol. Comput.
2017, 39, 1–23. [CrossRef]

36. Wang, B. A novel artificial bee colony algorithm based on modified search strategy and generalized
opposition-based learning. J. Intell. Fuzzy Syst. 2015, 28, 1023–1037. [CrossRef]

37. Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M.A. Opposition-based differential evolution. IEEE Trans.
Evol. Comput. 2008, 12, 64–79. [CrossRef]

38. Chen, J.; Cui, G.; Duan, H. Multipopulation differential evolution algorithm based on the opposition-based
learning for heat exchanger network synthesis. Numer. Heat Transf. Part A Appl. 2017, 72, 126–140. [CrossRef]

39. Park, S.Y.; Lee, J.J. Stochastic opposition-based learning using a beta distribution in differential evolution.
IEEE Trans. Cybern. 2016, 46, 2184–2194. [CrossRef] [PubMed]

40. Dong, W.; Kang, L.; Zhang, W. Opposition-based particle swarm optimization with adaptive mutation
strategy. Soft Comput. 2017, 21, 5081–5090. [CrossRef]

41. Kang, Q.; Xiong, C.; Zhou, M.; Meng, L. Opposition-based hybrid strategy for particle swarm optimization
in noisy environments. IEEE Access 2018, 6, 21888–21900. [CrossRef]

42. Malisia, A.R.; Tizhoosh, H.R. Applying opposition-based ideas to the ant colony system. In Proceedings of
the 2007 IEEE Swarm Intelligence Symposium (SIS), Honolulu, HI, USA, 1–5 April 2007; pp. 182–189.

43. Ergezer, M.; Simon, D. Oppositional biogeography-based optimization for combinatorial problems.
In Proceedings of the 2011 IEEE Congress of Evolutionary Computation (CEC), New Orleans, LA, USA,
5–8 June 2011; pp. 1496–1503.

44. Srivastava, G.;Singh, A. Boosting an evolution strategy with a preprocessing step: Application to group
scheduling problem in directional sensor networks. Appl. Intell. 2018, 48, 4760-4774. [CrossRef]

45. Venkatesh, P.; Alok, S. A swarm intelligence approach for the colored traveling salesman problem. Appl. Intell.
2018, 48, 4412–4428.

46. Sarkhel, R.; Das, N.; Saha, A.K.; Nasipuri, M. An improved harmony search algorithm embedded with a
novel piecewise opposition based learning algorithm. Eng. Appl. Artif. Intell. 2018, 67, 317–330. [CrossRef]

47. Wang, H.; Wu, Z.; Rahnamayan, S. Enhanced opposition-based differential evolution for solving
high-dimensional continuous optimization problems. Soft Comput. 2011, 15, 2127–2140. [CrossRef]

48. Guha, D.; Roy, P.K.; Banerjee, S. Load frequency control of large scale power system using quasi-oppositional
grey wolf optimization algorithm. Eng. Sci. Technol. Int. J. 2016, 19, 1693–1713. [CrossRef]

49. Ewees, A.A.; Elaziz, M.A.; Houssein, E.H. Improved grasshopper optimization algorithm using
opposition-based learning. Expert Syst. Appl. 2018, 112, 156–172. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00500-017-2678-4
http://dx.doi.org/10.3390/math8060936
http://dx.doi.org/10.1109/TCYB.2017.2780274
http://dx.doi.org/10.1109/TFUZZ.2020.3003506
http://dx.doi.org/10.1016/j.knosys.2020.105675
http://dx.doi.org/10.1016/j.swevo.2017.09.010
http://dx.doi.org/10.3233/IFS-141386
http://dx.doi.org/10.1109/TEVC.2007.894200
http://dx.doi.org/10.1080/10407782.2017.1358991
http://dx.doi.org/10.1109/TCYB.2015.2469722
http://www.ncbi.nlm.nih.gov/pubmed/26390506
http://dx.doi.org/10.1007/s00500-016-2102-5
http://dx.doi.org/10.1109/ACCESS.2018.2809457
http://dx.doi.org/10.1007/s10489-018-1252-9
http://dx.doi.org/10.1016/j.engappai.2017.09.020
http://dx.doi.org/10.1007/s00500-010-0642-7
http://dx.doi.org/10.1016/j.jestch.2016.07.004
http://dx.doi.org/10.1016/j.eswa.2018.06.023
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Ant System
	Opposition-Based Learning

	Opposition-Based ACO
	ACO-Index
	ACO-MaxIt
	ACO-Rand
	Time Complexity Analysis

	Experiments and Results
	Parameter Setting
	Experimental Results Comparison Based on AS
	Experimental Results Comparison Based on PS-ACO

	Conclusions
	References

