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Abstract: Fuzzy graph models enjoy the ubiquity of being present in nature and man-made
structures, such as the dynamic processes in physical, biological, and social systems. As a result of
inconsistent and indeterminate information inherent in real-life problems that are often uncertain,
for an expert, it is highly difficult to demonstrate those problems through a fuzzy graph. Resolving
the uncertainty associated with the inconsistent and indeterminate information of any real-world
problem can be done using a vague graph (VG), with which the fuzzy graphs may not generate
satisfactory results. The limitations of past definitions in fuzzy graphs have led us to present
new definitions in VGs. The objective of this paper is to present certain types of vague graphs
(VGs), including strongly irregular (SI), strongly totally irregular (STI), neighborly edge irregular
(NEI), and neighborly edge totally irregular vague graphs (NETIVGs), which are introduced for
the first time here. Some remarkable properties associated with these new VGs were investigated,
and necessary and sufficient conditions under which strongly irregular vague graphs (SIVGs) and
highly irregular vague graphs (HIVGs) are equivalent were obtained. The relation among strongly,
highly, and neighborly irregular vague graphs was established. A comparative study between
NEI and NETIVGs was performed. Different examples are provided to evaluate the validity of the
new definitions. A new definition of energy called the Laplacian energy (LE) is presented, and its
calculation is shown with some examples. Likewise, we introduce the notions of the adjacency matrix
(AM), degree matrix (DM), and Laplacian matrix (LM) of VGs. The lower and upper bounds for the
Laplacian energy of a VG are derived. Furthermore, this study discusses the VG energy concept by
providing a real-time example. Finally, an application of the proposed concepts is presented to find
the most effective person in a hospital.

Keywords: vague set (VS); vague graph (VG); strongly irregular (SI); highly irregular (HI); neighborly
irregular (NI); dominating set (DS); spectrum

1. Introduction

Graph theory serves as an exceptionally beneficial tool in solving combinatorial problems in
various fields, such as geometry, algebra, number theory, topology, and social systems. A graph
basically holds a model of relations, and it is used to depict the real-life problems encompassing the
relationships among objects. To represent the objects and the relations between objects, the graph
vertices and edges are employed, respectively. In numerous optimization problems, the existing
information is inexact or imprecise for various reasons, such as the loss of information, a lack of
evidence, imperfect statistical data, and insufficient information. Generally, the uncertainty in real-life
problems may be available in the information that outlines the problem. Fuzzy graph (FG) models
are helpful mathematical tools in order to address the combinatorial problems in various fields
incorporating research, optimization, algebra, computing, environmental science, and topology. Due to
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the natural existence of vagueness and ambiguity, fuzzy graphical models are noticeably better than
graphical models. Originally, fuzzy set theory was required to deal with many multifaceted issues,
which are replete with incomplete information. In 1965 [1], fuzzy set theory was first suggested by
Zadeh. Fuzzy set theory is a highly powerful mathematical tool for solving approximate reasoning
related problems. These notions meritoriously illustrate complicated phenomena, which are not
precisely described using classical mathematics. In 1993, Gau and Buehrer [2] organized the fuzzy set
theory by presenting the VS notion by changing the value of an element in a set with a sub-interval
of [0, 1]. Specifically, a true membership function of tν(x) and a false membership function of fν(x)
are used to define the boundaries of the membership degree. The VSs describe more possibilities
than fuzzy sets. A VS is more initiative and helpful due to the existence of the false membership
degree. The first description of FGs was proposed by Kafmann [3] in 1993, taken from Zadeh’s
fuzzy relations [4,5]. However, Rosenfeld [6] described another detailed definition, including fuzzy
vertex and fuzzy edges and various fuzzy analogs of graphical theoretical concepts, including
paths, cycles, connectedness, etc. Ramakrishna [7] recommended the vague graph (VG) notion
and evaluated some of its features. Akram et al. [8–14] presented new definitions of FGs. Borzooei
and Rashmanlou [15–18] investigated different concepts on VG. Gani and Radha [19] recommended
RFGsand TRFGs. Samanta et al. [20–23] introduced fuzzy competition graphs and some properties
of irregular bipolar fuzzy graphs. Shao et al. [24] presented some results for intuitionistic fuzzy
graphs with an application to water supplier systems. Harish Garg et al. [25,26] introduced the
vertex rough graph, and novel concepts in interval-valued fuzzy graphs and neutrosophic graphs.
Kumaravel and Radha described the concepts of the edge degree and the total edge degree in RFGs [27].
Mathew et al. [28] studied the energy of an FG. Rashmanlou et al. [29–32] introduced some properties
of FGs. Sunitha et al. [33–35] presented new concepts for fuzzy graphs. Ghosh et al. [19,36] investigated
new concepts of the signed product and the total signed product on complex graphs. In 2008, Gani and
Latha [37] investigated the properties of NIFGs and HIFGs.

Irregularity definitions serve as highly significant tools in the study of network heterogeneity,
having implications for networks that are present across biology, ecology, technology, and the economy.
Several graph statistics have been proposed so far, many of which are based on the number of vertices
in a graph and their degrees. The irregularity concepts play a crucial role in both graph theory
and application in the vague environment. The highly irregular graph’s characterization has also
been applied to the heterogeneity question, yet all of these fail to shed enough light on real-world
situations. Efforts are being made to find appropriate ways to quantify network heterogeneity.
The graph energy is one of the emerging concepts within graph theory. This concept acts as a
frontier between chemistry and mathematics. Vague sets are considered as higher-order fuzzy sets.
The higher-order fuzzy set’s application complicates the solution procedure, but better results can be
obtained if the complexity regarding computation time, computation volume, and memory space is
not a matter of concern. There are some remarkable features for handling vague data that are exclusive
to vague sets. For example, vague sets allow a more intuitive graphical representation of vague data,
significantly facilitating better analysis in data relationships, incompleteness, and similarity measures.
The vague model is more adaptable and usable than fuzzy and intuitionistic fuzzy models. In many
applications, including urban traffic planning, telecommunication message routing, telemarketing
operator scheduling, VLSI chip optimal pipelining, texture mapping, etc., VGs emerge as mathematical
models of the observed real world systems. Hence, in this paper, we describe new concepts, such as
the energy and Laplacian energy of VGs. We explain these notions with real examples and evaluated
parts of their qualities. Likewise, we present and explore the key properties of strongly irregular (SI),
strongly totally irregular (STI), neighborly edge irregular (NEI), and neighborly edge totally irregular
(NETI) in VGs. The concept of being totally irregular is very important in FG theory and it can be useful
in social networking and communication; however, it has not been much investigated as it should be.
Therefore, in this paper we define certain types of totally irregular vague graphs and explain them with
suitable examples. Dominating sets enjoy real-world interest in several areas. In wireless networking,
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dominating sets are applied to find efficient routes within ad-hoc mobile networks. Thus, a new kind
of domination set in irregular vague graphs (IVGs) was introduced and its properties were studied.

The construction of the paper is as follows: In Section 2 we propose the concepts of highly irregular
(HI), neighborly irregular (NI), strongly irregular (SI), highly totally irregular (HTI) , neighborly totally
irregular (NTI), and STIVG in VGs and study their properties. Section 3 deals with the investigation of
the concepts of energy; spectrum; and out-degree matrix OM, degree matrix (DM), LM, and Laplacian
energy (LE) in VGs, and descriptions of their properties in detail. Section 4 introduces the energy of
a VG through an example. Section 5 highlights the concepts that we used to find the most effective
person in an organization, and finally, we provide the conclusion in Section 6.

2. Preliminaries

In this section, aimed at facilitating the next sections, a brief review of VGs is presented.
By a graph, we mean a pair of G∗ = (V, E), where V is the set and E is a relation on V.

The elements of V are vertices of G∗ and the elements of E are edges of G∗.
A fuzzy subset ψ on a set of X is a map ψ : X → [0, 1]. A fuzzy relation on X is a fuzzy subset of

φ : X× X → [0, 1] on X× X.
A fuzzy graph ζ = (V, ψ, φ) is an algebraic structure of a non-empty set V together with a pair of

mappings ψ : V → [0, 1] and φ : V ×V → [0, 1] and is defined as φ(mn) ≤ ψ(m) ∧ ψ(n), ∀m, n ∈ V,
and φ is a symmetric fuzzy relation on ψ and ∧ denotes the minimum. Here, ψ(m) and φ(mn) represent
the membership values of the vertex m and of the edge (m, n) in ζ, respectively.

The underlying crisp graph G = (V′, E) of FG ζ = (V, ψ, φ) is such that V′ = {m ∈ V|ψ(m) > 0}
and E = {(m, n)|φ(m, n) > 0}.

A vague set (VS) A is a pair of (tA, fA) on set V where tA and fA are taken as real valued functions
which can be defined on V → [0, 1], so that tA(m) + fA(m) ≤ 1 for all m belongs to V. The interval
[tA(m), 1− fA(m)] is known as the vague value of m in A.

tA(m), in this definition, is taken for the membership degree as the lower bound when m in
A and fA(m) is the lower bound for negative membership of m in A. Thus, the interval given by
[tA(m), 1− fA(m)] determines the degree of membership of m in the VS A.

Suppose that X and Y are ordinary, finite, non-empty sets. A vague relation (VR) is a vague subset
of X×Y, that is, an expression R described by

R = {〈(m, n), tR(m, n), fR(m, n)〉|m ∈ X, n ∈ Y}

where tR : X×Y → [0, 1], fR : X×Y → [0, 1], which holds the condition 0 ≤ tR(m, n) + fR(m, n) ≤ 1,
∀(m, n) ∈ X×Y.

G∗ will be a crisp graph (V, E) and G a VG (A, B) throughout this paper. As an edge of xy ∈ E is
identified with an ordered pair of (x, y) ∈ V ×V, a VR on E can be identified with a vague set on E,
giving the possibility of defining a VG as a pair of vague sets.

Definition 1 ([7]). A VR B on a set V is a VR from V to V. If A is a VS on a set V, then a VR B on A is a VR
which holds that tB(mn) ≤ min(tA(m), tA(n)) and fB(mn) ≥ max( fA(m), fA(n)), for all m, n in V.

Definition 2 ([7]). A pair G = (A, B) with V as the set of nodes is said to be a VG, where A = (tA, fA) is a
VS of V and B = (tB, fB) is a VR on V (see Figure 1).

A VG G is called strong if tB(mn) = min(tA(m), tA(n)) and
fB(mn) = max( fA(m), fA(n)), for each edge mn ∈ E. A VG G is called complete if tB(mn) =

min(tA(m), tA(n)) and fB(mn) = max( fA(m), fA(n)), ∀m, n ∈ V.

Definition 3 ([17]). Suppose that G = (A, B) is a VG. Then,
(i) The degree of a node m is defined as dG(m) =

(
dt(m), d f (m)

)
, where dt(m) = ∑m 6=n tB(mn) and

d f (m) = ∑m 6=n fB(mn).
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(ii) The total degree of a node m is defined by tdG(m) =
(
tdt(m), td f (m)

)
, where tdt(m) = ∑m 6=n tB(mn) +

tA(m) and td f (m) = ∑m 6=n fB(mn) + fA(m).

Definition 4 ([18]). The complement of a VG G = (A, B) is a VG G = (A, B) where A = A = (tA, f A) and
B = (tB, f B) are defined by:
(i) V = V
(ii) tA(m) = tA(m), f A(m) = fA(m), ∀m ∈ V,

(iii) tB(mn) =

{
0 i f tB(mn) > 0,
min(tA(m), tA(n)) i f tB(mn) = 0,

f B(mn) =

{
0 i f fB(mn) > 0,
max( fA(m), fA(n)) i f fB(mn) = 0.

Definition 5 ([17]). Let G = (A, B) be a VG.
(i) G is irregular if there is a node neighboring the nodes with distinct degrees.
(ii) G is (TI), if there is a node neighboring the nodes with distinct total degrees.

All the basic notation is shown in Table 1.

Table 1. Some basic notation.

Notation Meaning

ζ Fuzzy Graph

VG Vague Graph

SI Strongly Irregular

HI Highly Irregular

TI Totally Irregular

STI Strongly Total Irregular

NEI Neighborly Edge Irregular

NETI Neighborly Edge Totally Irregular

NIVG Neighborly Irregular Vague Graph

HIVG Highly Irregular Vague Graph

SIVG Strongly Irregular Vague Graph

NTIVG Neighborly Totally Irregular Vague Graph

LE Laplacian Energy

AM Adjacency Matrix

DM Degree Matrix

LM Laplacian Matrix

OM Out-Degree Matrix

DS Dominating Set

4 -DS 4-Dominating Set

VDG Vague digraph G

LS Laplacian Spectrum

IG Influence Graph
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3. New Concepts of IVGs

The irregularity concepts play an important role in both the graph theory application and theory in
the vague environment. The characterizations of highly irregular and neighborly irregular graphs have
also been applied to the question of heterogeneity. One of the most broadly studied classes of FGs is
IFGs. They are being applied in many contexts, for example, the r-irregular FGs, with connectivity and
edge-connectivity equal to r, play a key role in designing reliable communication networks. This idea
inspires us to present different types of IGVs, such as HI, NI, SI, HTI, NTI, and STIVG, and their
related theorems.

Definition 6 ([17]). Let G = (A, B) be a connected vague graph (CVG).
(i) G is said to be a highly irregular vague graph (HIVG) if every node of G is a neighbor to vertices with distinct
neighborhood degrees.
(ii) G is assumed to be a neighborly irregular vague graph (NIVG) if every two neighbor nodes of G have
distinct degrees.
(iii) G is said to be a strongly irregular vague graph (SIVG) if every pair of nodes in G has distinct degrees.

This definition is supported with the help of the following example.

Example 1. Consider the vague graph G as shown in Figure 1.

 

Figure 1. Vague Graph (VG) (G).

By a simple calculation we have:

dG(m) = (0.3, 0.8), dG(n) = (0.2, 0.7), dG(x) = (0.3, 0.9).

Hence, G is a HIVG.

Corollary 1. If G = (A, B) is a SIVG, then it is both HIVG and NIVG.

Proof. It is obvious.

Example 2. We have considered an example of a SIVG-G, presented in Figure 2, that is both HIVG and NIVG.
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Figure 2. Strongly Irregular Vague Graph (SIVG) (G).

It is easy to show that dG(m) = (0.4, 1.2), dG(n) = (0.3, 1.1), dG(z) = (0.6, 1.1), and dG(x) =

(0.7, 1.2). Clearly G is both a HIVG and a NIVG according to Definition 6.

Theorem 1. A HIVG or NIVG G = (A, B) does not need to be a SIVG.

Proof. Assume that m and n are any two nodes of G, which are neither neighbors nor incidental
on the same node and may happen to have the same degrees. Such a condition contradicts the
SIVG definition.

Example 3. Consider Highly irregular vague graph-graph (HIVG-G) in Figure 3.

Figure 3. Highly irregular vague graph (HIVG) (G).

From Figure 3, dG(m) = (0.2, 0.5), dG(n) = (0.5, 1.2), and dG(z) = (0.5, 1.2), dG(x) = (0.2, 0.5).
Clearly, G is a HIVG but it is not a SIVG.

Theorem 2. Let G = (A, B) be a HI and a NIVG. If each pair of nodes in G is either neighbor or incident on
the same vertex, then G is a SIVG.

Proof. It is clear.

Next, a critical theorem that describes a necessary and sufficient condition for a vague graph to be
SIVG is provided.

Theorem 3. A VG G where G∗ is a cycle with nodes 3 is SIVG if and only if the weights of the edges between
each pair of nodes are all distinct.
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Proof. If the weights of any edges are identical, then it violates the SIVGs definition. Conversely,
the weights of edges between each pair of nodes are all distinct. Let m, n, and w be the nodes of
G. Suppose d f (m) = d f (n). Hence, fB(mn) + fB(mw) = fB(mn) + fB(nw). This, fB(mw) = fB(nw),
a contradiction. Similarly, a true membership can be proven. Therefore, G is a SIVG.

Example 4. In this example (Figure 4) G is a NIVG.

Figure 4. Neighborly Irregular Vague Graph (NIVG) (G).

In the following theorem, a strong condition for the complement of an VG to be a SIVG
is presented.

Theorem 4. Let G = (A, B) be a VG where G∗ is regular; tA and fA are constant functions; and ∀m,
n ∈ V(G), tB(mn) ≤ tA(m) ∧ tA(n), and fB(mn) ≥ max( fA(m), fA(n)). Then, G is a SIVG iff G
is a SIVG.

Proof. Let G be a SIVG, fA(m) = c, and tA(m) = d, ∀m ∈ V(G). Since G is a SIVG, by Definition 6
we have:

d f (m) 6= d f (n), ∀m, n ∈ V(G)

If and only if ∑n
i=1 fB(mxi) 6= ∑n

j=1 fB(nyj), for all xi adjoining the m and for all yj adjoining the n.
If and only if ∑n

i=1[c− fB(mxi)] 6= ∑n
j=1[c− fB(nyj)] , since G∗ is regular.

If and only if ∑n
i=1[ fA(m) ∨ fA(xi) − fB(mxi)] 6= ∑n

j=1[ fA(n) ∨ fA(yj) − fB(nyj)], for all xi
adjoining the m and for all yj adjoining the n.

If and only if ∑n
i=1 fB(mxi) 6= ∑n

j=1 fB(nyj), ∀m, n ∈ V(G).
Similarly, we can prove that for the true degree. Hence, G is an SIVG.

Remark 1. Let G = (A, B) be a SIVG; then the partial subgraph H = (A′, B′) need not be a SIVG.

Theorem 5. The vague subgraph H = (A′, B′) of a SIVG G = (A, B) is a SIVG too.

Proof. Let G be a SIVG. Then dt(m) 6= dt(n), ∀m, n ∈ V(G). Thus, ∑ tB(mxi) 6= ∑ tB(nyj), for all xi
adjoining the m and for all yj adjoining the n. Hence, ∑ tB(mxi) 6= ∑ tB(nyj), for all xi adjoining the m
and for all yj adjoining the n. Therefore, dt(m) 6= dt(n), ∀m, n ∈ V(H).

Example 5. Consider the vague graph of G and vague subgraph of H as shown in Figure 5.
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Figure 5. VG (G) and vague subgraph (H).

By a simple calculation it is easy to show that G and H are both SIVGs too.

The first definition of neighborly irregular in fuzzy graph was introduced in [37]. The neighborly
irregular has not been much discussed, although the totally irregular concept is very important and
it can be useful in computer science and for the problem of finding the shortest path in a computer
network. Therefore, the following definition is provided to highlight the issue.

Definition 7. Let G = (A, B) be a CVG. Then
(i) G is called a HTIVG if each node of G is a neighbor to vertices with different neighborhood total degrees.
(ii) G is said to be a neighborly totally irregular vague graph if each two neighbor nodes of G have distinct
total degrees.
(iii) G is said to be a STIVG if each pair of node in G has distinct total degrees.

Example 6. Consider the VG G as in Figure 6.

Figure 6. Neighborly Totally Irregular Vague Graph (NTIVG)(G).

By direct calculations:

tdG(m) = (0.8, 1.6), tdG(z) = (0.4, 1.8), tdG(n) = (0.5, 1.4), and tdG(x) = (0.7, 1.6).

It is clear from the above calculations that G is a neighborly totally irregular vague graph (NTIVG).
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Example 7. In Example 4, we have:
td(m) = (0.7, 2.1), td(n) = (0.6, 1.4), td(x) = (0.7, 1.8), and td(w) = (0.7, 1.4). Thus, G is a STIVG.

Theorem 6. Let G = (A, B) be a VG and tA and fA be constant functions. Then, G is a SIVG if and only if G
is a STIVG.

Proof. Let G be a VG; tA and fA be constant functions; m1, m2, ..., mn be the nodes of G; and dt(mi) = kt
i ,

d f (mi) = k f
i , dt(mj) = kt

j, and d f (mj) = k f
j , where ki 6= k j. Additionally, tA(mi) = c2, fA(mi) = c1,

and ∀mi ∈ V(G) where c1 and c2 are constant functions and ci ∈ [0, 1]. Suppose that G is a SIVG:
If and only if dt(mi) 6= dt(mj), d f (mi) 6= d f (mj), ∀mi, mj ∈ V(G);

If and only if [kt
i , k f

i ] 6= [kt
j, k f

j ];

If and only if [kt
i + c2, k f

i + c1] 6= [kt
j + c2, k f

j + c1];
If and only if td(mi) 6= td(mj), ∀mi, mj ∈ V(G);
If and only if G is STIVG.

Theorem 7. If G = (A, B) is a STIVG then it is both a HTI and a NTIVG.

Proof. It is clear.

Example 8. Consider STIVG-G, as shown in Figure 7.

Figure 7. Strongly Total Irregular Vague Graph (STIVG) (G).

Since tdG(m) = (0.4, 0.8), tdG(n) = (0.6, 1.6), tdG(z) = (0.8, 1.7), and tdG(x) = (0.7, 1.3), G is both
a HTI and a NTIVG.

Theorem 8. Let G = (A, B) be a VG, where G∗ is regular; tA, fA are constant functions; and tB(mn) <

tA(m) ∧ tA(n) and fB(mn) > fA(m) ∨ fA(n), ∀m, n ∈ V(G). Then, G is a STIVG if and only if G is
a STIVG.

Proof. Let G be a STIVG, fA(m) = c, and tA(m) = d, ∀m ∈ V(G). Since G is STIVG, by Definition 7
we have:

td f (m) 6= td f (n), ∀m, n ∈ V(G)

If and only if fA(m) + ∑n
i=1 fB(mxi) 6= fA(n) + ∑n

j=1 fB(nyj), for all xi adjoining the m and for
all yj adjoining the n.

If and only if fA(m) + ∑n
i=1[c− fB(mxi)] 6= fA(n) + ∑n

j=1[c− fB(nyj)], since G∗ is regular.
If and only if fA(m) + ∑n

i=1[ fA(m) ∨ fA(xi) − fB(mxi)] 6= fA(n) + ∑n
j=1[ fA(n) ∨ fA(yj) −

fB(nyj)], for all xi adjoining the m and for all yj adjoining the n.
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If and only if fA(m) + ∑n
i=1 fB(mxi) 6= fA(n) + ∑n

j=1 fB(nyj), ∀m, n ∈ V(G). In the same way,
we can prove that for the true degree.

Dominating sets have practical demand in many subjects. In networking, they are being employed
to find efficient routes within ad-hoc mobile networks. Likewise, they have been involved in designing
secure systems for electrical grids. For the first time, the concept of domination in VGs was defined
in [16]. Now, a new definition of domination set in IGVs is being introduced and its properties
are investigated here.

Definition 8. A set S ⊆ V in an IGV G = (A, B) is called a 4− dominating set (4− DS), if for each
m ∈ V − S ∃n ∈ S so that m and n are neighbors in G and d(n) = 4(G) = [4−,4+]. Note that4− and
4+ are considered for the true membership function and false membership function, respectively.

Example 9. Consider IGV G as follows in Figure 8.

Figure 8. Irregular Vague Graph (IVG)(G).

Here, d(m) = d(n) = [0.3, 1.5] = [4−,4+]. Clearly, S = {m, n} is a (4− DS).

Theorem 9. If G is a NIVG and S is a (4− DS) of G, then V − S is not a dominating set.

Proof. Let S be a dominating set (DS) of G; u and n are neighbors in G; m ∈ S, n ∈ V − S, and d(m) =

4(G). Suppose V− S is a DS; then d(n) = 4(G), n ∈ V− S which contradicts the definition of NI.

Theorem 10. If G is an IGV and S is a (4− DS) of G with |S| > 1, then G is not SI.

Proof. Suppose that S is a (4− DS) of a VG G and |S| > 1. Then, there exists at least two nodes in S
which dominate all the nodes in V − S and d(mi) = 4, ∀mi ∈ S. That is, the number of nodes whose
degrees are equal to4 contradicts the definition of SI which exceeds one.

Theorem 11. Let G be a SIVG with n+ 1 nodes and S ⊆ V is a4-DS. Then, K1,n is an induced subgraph of G∗.

Proof. Let G be a SIVG with n + 1 nodes and S is a (4− DS). Then, |S| = 1 and |V − S| = n. Let
m ∈ S; then u dominates all the n vertices of V − S; that is, m is a neighbor to all the n nodes of V − S.
Hence, K1,n is the induced subgraph of G∗.

Next, different kinds of edge irregularity in VGs are introduced and demonstrated using
two examples.

Definition 9. Suppose G = (A, B) is a CVG on G∗ = (V, E). Then G is said to be:
(i) A NEIVG if each pair of neighbor edges has distinct degrees.
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(ii) A neighborly edge totally irregular vague graph (NETIVG) if each pair of neighbor edges has distinct
total degrees.

Example 10. Consider the VG-G as in Figure 9. Accordingly, it is easy to show that each neighbor edges pair
has distinct degrees. Hence, G is a NEI-VG.

Figure 9. Neighborly Edge Irregular Vague Graph (NEIVG) (G).

dG(mn) = (0.1, 0.7), dG(nx) = (0.5, 1.1), dG(zx) = (0.1, 0.7).

Accordingly, the degree of an edge in IGVs that help us to find the most effective person in terms
of influence in a social group or an organization is introduced.

Definition 10. Let G be a VG on G∗ = (V, E).
(i) The degree of an edge mn is defined as dG(mn) = (dt(mn), d f (mn)) where dt(mn) = dt(m) + dt(n)−
2tB(mn) and d f (mn) = d f (m) + d f (n)− 2 fB(mn).
(ii) The total degree of an edge mn is defined as tdG(mn) = (tdt(mn), td f (mn)) where tdt(mn) = dt(m) +

dt(n)− tB(mn) = dt(mn) + tB(mn) and td f (mn) = d f (m) + d f (n)− fB(mn) = d f (mn) + fB(mn).

Example 11. In this example we consider G∗ = (V, E), as shown in Figure 10, in which V = {m, n, x, w}
and E = {mn, nw, wx, xm}.

Figure 10. Both Neighborly Edge Irregular (NEI) and Neighborly Edge Totally Irregular Vague
Graph (NETIVG.

Considering the Figure 10, in which dG(m) = (0.3, 1.3), dG(n) = (0.3, 1.3), dG(w) = (0.3, 1.3),
and dG(x) = (0.3, 1.3). The calculation of degrees of the edges is as follows:

dG(mn) = (0.4, 1.4), dG(nw) = (0.2, 1.2), dG(wx) = (0.4, 1.4), and dG(xm) = (0.2, 1.2). It is readily
seen that every pair of neighboring edges has distinct degrees. Thus, G is a NEIVG. Total degrees of the edges are
calculated as follows:
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tdG(mn) = (0.5, 0.2), tdG(nw) = (0.4, 1.9), tdG(wx) = (0.5, 2), tdG(xm) = (0.4, 1.9). It is observed
that each pair of neighboring edges has different total degrees. Hence, G is a NETIVG. Therefore, G is both a
NEI and a NETIVG.

Theorem 12. Let G = (A, B) be a CVG on G∗ = (V, E) and (tB, fB) be constant functions. Then, G is a
NEIVG iff G is a NETIVG.

Proof. Suppose that (tB, fB) is a constant function, let tB(mn) = c1 and fB(mn) = c2, ∀mn ∈ E where
c = (c1, c2). Let mn and nw be a pair of neighboring edges in E, then we have dG(mn) 6= dG(nw)

If and only if dG(mn) + c 6= dG(nw) + c;
If and only if

(
dt(mn), d f (mn)

)
+ (c1, c2) 6=

(
dt(nw), d f (nw)

)
+ (c1, c2);

If and only if
(
dt(mn) + c1, d f (mn) + c2

)
6=
(
dt(nw) + c1, d f (nw) + c2

)
;

If and only if
(
dt(mn) + tB(mn), d f (mn) + fB(mn)

)
6=
(
dt(nw) + tB(nw), d f (nw) + fB(nw)

)
;

If and only if
(
tdt(mn), td f (mn)

)
6=
(
tdt(nw), td f (nw)

)
;

If and only if tdG(mn) 6= tdG(nw). Hence, every pair of neighboring edges has distinct degrees if
and only if they have distinct total degrees. Thus, G is a NEIVG iff G is a NETIVG.

Theorem 13. Let G = (A, B) be a CVG on G∗ = (V, E) and (tB, fB) be a constant function. If G is a SIVG,
then G is a NEIVG.

Proof. Suppose that G = (A, B) is a CVG on G∗ = (V, E). Suppose that (tB, fB) is a constant function;
let tB(mn) = c1 and fB(mn) = c2, ∀mn ∈ E where C = (c1, c2) is constant. Let mn and nw be any two
neighboring edges in G. Assume that G is a SIVG. Then, every pair of nodes in G has distinct degrees.
Hence, dG(m) 6= dG(w).(

dt(m), d f (m)
)
6=
(
dt(n), d f (n)

)
6=
(
dt(w), d f (w)

)
⇒

(
dt(m), d f (m)

)
+
(
dt(n), d f (n)

)
− 2(c1, c2) 6=

(
dt(n), d f (n)

)
+
(
dt(w), d f (w)

)
− 2(c1, c2)

⇒
(
dt(m) + dt(n)− 2c1, d f (m) + d f (n)− 2c2

)
6=
(
dt(n) + dt(w)− 2c1, d f (n) + d f (w)− 2c2

)
⇒

(
dt(m) + dt(n)− 2tB(mn), d f (m) + d f (n)− 2 fB(mn)

)
6=
(
dt(n) + dt(w)− 2tB(nw),

d f (n) + d f (w)− 2 fB(nw)
)

⇒
(
dt(mn), d f (mn)

)
6=
(
dt(nw), d f (nw)

)
⇒ dG(mn) 6= dG(nw).

Therefore, every pair of neighbor edges has distinct degrees. Hence, G is a NEIVG.

4. Laplacian Energy of VGs

This section deals with the investigation of the concepts of energy, spectrum, OM, DM, LM,
and LM in VGs and descriptions of their properties in detail.

Definition 11. The energy of VG G is defined as

E(G) =
(
E(tB(vlvm)), E( fB(vlvm))

)
=
( n

∑
l=1
|λl |,

n

∑
l=1
|µl |
)
.

Note that λl and µl (l = 1, 2, · · · , n) are the eigenvalues of Laplacian matrix
(LM) =

(
L(tB(vlvm)), L( fB(vlvm))

)
.
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Definition 12. Let G = (A,
−→
B ) be a vague digraph (VDG) on n vertices. The energy of G is defined as:

E(G) =
(
E(t−→B (vl vm)

), E( f−→B (vl vm)
)
)
=
( n

∑
l=1
|Re(λl)|,

n

∑
l=1
|Re(µl)|

)
.

We now define the LE of a VG and discuss its properties.

Definition 13. Let G = (A, B) be a VG with n nodes and m edges. The DM, DG = [dlm] of G is a square
matrix of order n, where

[dml ] =

{
dG(v1) i f l = m
0 otherwise

Definition 14. Let G = (A, B) be a VG. The adjacency matrix (AM) of G is an n × n matrix defined as
AM = [aij], where aij = (tB(vivj), fB(vivj)).

Definition 15. The LM of a VG is a matrix of the form L(G) = D(G)− A(G), where D(G) is the DM and
A(G) is the AM of a VG G = (A, B).

Remark 2. Here, we can write LM of VG in two different matrices: one containing the entries as true
membership values and the other containing false membership values, i.e., L(G) = (L(tB), L( fB)).

Definition 16. The spectrum of LM of VG G is described as (YL, ZL), where YL and ZL are the sets of
eigenvalues of L(tB(vlvm)) and L( fB(vlvm)), respectively. Note that the MATLAB software has been used to
facilitate the calculation of eigenvalues for the LM.

Example 12. Consider VG G = (A, B), as shown in Table 2 and Figure 11.

Table 2. Weights of nodes and edges.

Nodes (A) v1 v2 v3 v4 v5 v6

tA 0.1 0.2 0.3 0.5 0.5 0.3
fA 0.3 0.3 0.4 0.6 0.5 0.4

Edges (B) v1v2 v1v3 v1v6 v2v3 v3v4 v4v5 v5v6

tB 0.1 0.1 0.1 0.2 0.3 0.4 0.3
fB 0.4 0.5 0.6 0.5 0.7 0.7 0.5

Figure 11. VG (G).
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The AM, DM, and LM of VG G shown in Figure 11 are as follows:

A(G) =



(0, 0) (0.1, 0.4) (0.1, 0.5) (0, 0) (0, 0) (0.1, 0.6)
(0.1, 0.4) (0, 0) (0.2, 0.5) (0, 0) (0, 0) (0, 0)
(0.1, 0.5) (0.2, 0.5) (0, 0) (0.3, 0.7) (0, 0) (0, 0)
(0, 0) (0, 0) (0.3, 0.7) (0, 0) (0.4, 0.7) (0, 0)
(0, 0) (0, 0) (0, 0) (0.4, 0.7) (0, 0) (0.3, 0.5)

(0.1, 0.6) (0, 0) (0, 0) (0, 0) (0.3, 0.5) (0, 0)



D(G) =



(0.3, 1.5) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 0) (0.3, 0.9) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (0.6, 1.7) (0, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0) (0.7, 1.4) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0) (0, 0) (0.7, 1.2) (0, 0)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0.4, 1.1)



L(G) =



(0.3, 1.5) (−0.1,−0.4) (−0.1,−0.5) (0, 0) (0, 0) (−0.1,−0.6)
(−0.1,−0.4) (0.3, 0.9) (−0.2, 0.5) (0, 0) (0, 0) (0, 0)
(−0.1,−0.5) (−0.2,−0.5) (0.6, 1.7) (−0.3,−0.7) (0, 0) (0, 0)

(0, 0) (0, 0) (−0.3,−0.7) (0.7, 1.4) (−0.4,−0.7) (0, 0)
(0, 0) (0, 0) (0, 0) (−0.4,−0.7) (0.7, 1.2) (−0.3,−0.5)

(−0.1,−0.6) (0, 0) (0, 0) (0, 0) (−0.3,−0.5) (0.4, 1.1)


The Laplacian spectrum (LS) on VG G = (A, B), is given below.
LS(tB(vlvm)) = {0, 0.1824, 0.3222, 0.4772, 0.7869, 1.2313}
LS( fB(vlvm)) = {2.4912, 2.2354 + 0i, 0.1457, 0.7902, 1.0688 + 0.1913i, 1.0688− 0.1913i}
LS(G) = {(0, 2.4912), (0.1824, 2.2354), (0.3222, 0.1457), (0.4772, 0.7902), (0.7869, 1.0688 + 0.1913i),

(1.2313, 1.0688− 0.1913i)}.

Theorem 14. Let G = (A, B) be a VG and let L(G) =
(

L(tB(vlvm)), L( fB(vlvm))
)

be a LM of G. If λ1 ≥
λ2 ≥ · · · ≥ λn and µ1 ≥ µ2 ≥ · · · ≥ µn are the eigenvalues of L(tB(vlvm)) and L( fB(vlvm)), respectively,
then

1.
n

∑
l=1

λl = 2 ∑
1≤l<m≤n

tB(vlvm),
n

∑
l=1

µl = 2 ∑
1≤l<m≤n

fB(vlvm)

2.
n

∑
l=1

λ2
l = 2 ∑

1≤l<m≤n
(tB(vlvm))

2 +
n

∑
l=1

d2
tB(vl vm

(vl),
n

∑
l=1

µ2
l = 2 ∑

1≤l<m≤n
( fB(vlvm))

2 +
n

∑
l=1

d2
fB(vl vm

(vl)

Proof. Being a symmetric matrix L(G) has non-negative Laplacian eigenvalues such that

n

∑
l=1

λl = tr(L(G)) =
n

∑
l=1

dtB(vlvm)(vl) = 2 ∑
1≤l<m≤n

dtB(vl vm)(vl).

Similarly, we can show that

n

∑
l=1

µl = 2 ∑
1≤l<m≤n

fB(vlvm).
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The general LM, can be written in this way

L(tB(vlvm)) =


dtB(vlvm)(v1) −tB(v1v2) · · · −tB(v1vn)

−tB(v2v1) dtB(vl vm)(v2) · · · −tB(v2vn)
...

−tB(vnv1) −tB(vnv2) · · · dtB(vlvm)(vn)


Hence, the trace property of a matrix shows that tr

(
(L(tB(vlvm)))2) = ∑n

l=1 λ2
l , where

tr
(
(L(tB(vlvm)))

2) = d2
tB(vlvm)(v1) + (tB(v1v2))

2 + · · ·+ (tB(v1vn))
2

+ (tB(v2v1))
2 + d2

tB(vlvm)(v2) + · · ·+ (tB(v2vn))
2

+ · · ·+ (tB(vnv1))
2 + (tB(vnv2))

2 + · · ·+ d2
tB(vl vm)(vn)

= 2 ∑
1≤l<m≤n

(tB(vlvm))
2 +

n

∑
l=1

d2
tB(vl vm)(vl).

Therefore,
n

∑
l=1

λ2
n = 2 ∑

1≤l<m≤n
(tB(vlvm))

2 +
n

∑
l=1

d2
tB(vlvm)(vl).

In the same way, it is simple to show that

n

∑
l=1

µ2
n = 2 ∑

1≤l<m≤n
( fB(vlvm))

2 +
n

∑
l=1

d2
fB(vlvm)(vl).

Definition 17. The LM of a VG G = (A, B) is defined as

LE(G) =
(

LE(tB(vlvm)), LE( fB(vlvm))
)
=
( n

∑
l=1
|πl |,

n

∑
l=1
|νl |
)
,

where,

πl = λl −
2 ∑1≤l<m≤n tB(vlvm)

n
, νl = µl −

2 ∑1≤l<m≤n fB(vlvm)

n
.

Example 13. The LM of a VG G = (A, B), shown in Figure 11 is:

LE(G) =
(

LE(tB(vlvm)), LE( fB(vlvm))
)
= (2.2001, 6.0421).

Theorem 15. Assume that G = (A, B) is a VG on n nodes and L(G) =
(

L(tB(vlvm)), L( fB(vlvm))
)

is the
LM of G. Then,

1.LE(tB(vlvm)) ≤

√√√√2n ∑
1≤l<m≤n

(tB(vlvm))2 + n
n

∑
l=1

(
dtB(vlvm)(vl)−

2 ∑1≤l<m≤n tB(vlvm)

n

)2

2.LE( fB(vlvm)) ≤

√√√√2n ∑
1≤l<m≤n

( fB(vlvm))2 + n
n

∑
l=1

(
d fB(vlvm)(vl)−

2 ∑1≤l<m≤n fB(vlvm)

n

)2
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Proof. Using the Cauchy–Schwarz inequality on the n numbers 1, 1, · · · , 1 and |π1|, |π2|, · · · , |πn|,
we find:

n

∑
l=1
|πl | ≤

√
n

√
n

∑
l=1
|πl |2

LE(tB(vlvm)) ≤
√

n
√

2ktB =
√

2nktB .

As

ktB = ∑
1≤l<m≤n

(tB(vlvm))
2 +

1
2

n

∑
l=1

(
dtB(vl vm)(vl)−

2 ∑1≤l<m≤n tB(vlvm)

n

)2

,

Thus,

LE(tB(vlvm)) ≤

√√√√2n ∑
1≤l<m≤n

(tB(vlvm))2 + n
n

∑
l=1

(
dtB(vl vm)(vl)−

2 ∑1≤l<m≤n tB(vlvm)

n

)2

.

Similarly, we can show that

LE( fB(vlvm)) ≤

√√√√2n ∑
1≤l<m≤n

( fB(vlvm))2 + n
n

∑
l=1

(
d fB(vlvm)(vl)−

2 ∑1≤l<m≤n fB(vlvm)

n

)2

.

Theorem 16. Suppose that G = (A, B) is a VG on n nodes and L(G) =
(

L(tB(vlvm)), L( fB(vlvm))
)

is the
LM of G. Then,

1.LE(tB(vlvm)) ≥ 2

√√√√ ∑
1≤l<m≤n

(tB(vlvm))2 +
1
2

n

∑
l=1

(
dtB(vlvm)(vl)−

2 ∑1≤l<m≤n tB(vlvm)

n

)2

2.LE( fB(vlvm)) ≥ 2

√√√√ ∑
1≤l<m≤n

( fB(vlvm))2 +
1
2

n

∑
l=1

(
d fB(vlvm)(vl)−

2 ∑1≤l<m≤n fB(vlvm)

n

)2

Proof.

( n

∑
l=1
|πl |

)2
=

n

∑
l=1
|πl |2 + 2 ∑

1≤l<m≤n
|πlπm| ≥ 4ktB

LE(tB(vlvm)) ≥ 2
√

ktB .

As

ktB = ∑
1≤l<m≤n

( fB(vlvm))
2 +

1
2

n

∑
l=1

(
d fB(vlvm)(vl)−

2 ∑1≤l<m≤n fB(vlvm)

n

)2

.

Thus,

LE(tB(vlvm)) ≥ 2

√√√√ ∑
1≤l<m≤n

(tB(vlvm))2 +
1
2

n

∑
l=1

(
dtB(vlvm)(vl)−

2 ∑1≤l<m≤n tB(vlvm)

n

)2

.
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Analogously, we can show that

LE( fB(vlvm)) ≥ 2

√√√√ ∑
1≤l<m≤n

( fB(vlvm))2 +
1
2

n

∑
l=1

(
d fB(vl vm)(vl)−

2 ∑1≤l<m≤n fB(vlvm)

n

)2

Theorem 17. Let G = (A, B) be a VG on n nodes and L(G) =
(

L(tB(vlvm)), L( fB(vlvm))
)

be the LM of
G. Then

LE(tB(vlvm)) ≤ |π1|+√√√√(n− 1)
(

2 ∑
1≤l<m≤n

(tB(vlvm))2 +
n

∑
l=1

(
dtB(vlvm)(vl)−

2 ∑1≤l<m≤n tB(vlvm)

n

)2

− π2
1

)
,

LE( fB(vlvm)) ≤ |ν1|+√√√√(n− 1)
(

2 ∑
1≤l<m≤n

( fB(vlvm))2 +
n

∑
l=1

(
d fB(vlvm)(vl)−

2 ∑1≤l<m≤n fB(vlvm)

n

)2

− ν2
1

)
.

Proof. Using Cauchy-Schwarz inequality, we have

n

∑
l=1
|πl | ≤

√
n

n

∑
l=1
|πl |2

n

∑
l=2
|πl | ≤

√
n

n

∑
l=2
|πl |2

LE(tB(vlvm))− |π1| ≤
√
(n− 1)(2ktB − π2

1)

LE(tB(vlvm)) ≤ |π1|+
√
(n− 1)(2ktB − π2

1)

As

ktB = ∑
1≤l<m≤n

(tB(vlvm))
2 +

1
2

n

∑
l=1

(
dtB(vl vm)(vl)−

2 ∑1≤l<m≤n tB(vlvm)

n

)2

.

Thus,

LE(tB(vlvm)) ≤ |π1|+√√√√(n− 1)
(

2 ∑
1≤l<m≤n

(tB(vlvm))2 +
n

∑
l=1

(
dtB(vlvm)(vl)−

2 ∑1≤l<m≤n tB(vlvm)

n

)2

− π2
1

)
, (1)

Analogously, it is easy to show that

LE( fB(vlvm)) ≤ |ν1|+√√√√(n− 1)
(

2 ∑
1≤l<m≤n

( fB(vlvm))2 +
n

∑
l=1

(
d fB(vlvm)(vl)−

2 ∑1≤l<m≤n fB(vlvm)

n

)2

− ν2
1

)
.
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Theorem 18. If the VG G = (A, B) is regular, then

1.LE(tB(vlvm)) ≤ |π1|+
√
(n− 1)

(
2 ∑

1≤l<m≤n
(tB(vlvm))2 − π2

1
)

2.LE( fB(vlvm)) ≤ |ν1|+
√
(n− 1)

(
2 ∑

1≤l<m≤n
( fB(vlvm))2 − ν2

1
)
.

Proof. Let G be a VG; then

dtB(vlvm)(vl) =
2 ∑1≤l<m≤n tB(vlvm)

n
(2)

By putting (2) in (1), we get

LE(tB(vlvm)) ≤ |π1|+
√
(n− 1)

(
2 ∑

1≤l<m≤n
(tB(vlvm))2 − π2

1
)
.

Similarly we have

LE( fB(vlvm)) ≤ |ν1|+
√
(n− 1)

(
2 ∑

1≤l<m≤n
( fB(vlvm))2 − ν2

1
)
.

We now discuss the concept of LM of VDGs.

Definition 18. Let G = (A,
−→
B ) be a VDG on nodes. The OM

Dout(G) =
(

Dout(t−→B (vl vm)
), Dout( f−→B (vl vm)

)
)

of G is a n× n diagonal matrix defined as

[dlm] =

{
dxt

G (vl), i f l = m
0, otherwise

Definition 19. The LM of a VDG G = (A,
−→
B ) is defined as L(G) =

(
L(t−→B (vlvm)

), L( f−→B (vl vm)
)
)

=

Dout(G)− A(G), where Dout(G) is OM and A(D) is an AM of a VDG G = (A,
−→
B ).

Definition 20. The spectrum of a LM of a VDG L(G) is described as (Ŷl , Ẑl), so that Ŷl and Ẑl are the sets of
Laplacian eigenvalues of L(t−→B (vl vm)

) and L( f−→B (vl vm)
), respectively.

Theorem 19. Let G = (A,
−→
B ) be a VDG and let L(G) be the LM of G. If λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n and

µ̂1 ≥ µ̂2 ≥ · · · ≥ µ̂n are the eigenvalues of L(t−→B (vl vm)
) and L( f−→B (vl vm)

), respectively, then

n

∑
l=1

Re(λ̂l) = ∑
1≤l<m≤n

t−→B (vlvm)
,

n

∑
l=1

Re(µ̂l) = ∑
1≤l<m≤n

f−→B (vl vm)

Definition 21. The (LE of a VDG G = (A,
−→
B ) is defined as

LE(G) =
(

LE(t−→B (vl vm)
), LE( f−→B (vlvm)

)
)
=
( n

∑
l=1
|θl |,

n

∑
l=1
|δl |
)

where θl = Re(λ̂l)−
∑1≤l<m≤n t−→B (vl vm)

n
and δl = Re(µ̂l)−

∑1≤l<m≤n f−→B (vl vm)

n

Example 14. Consider a VDG G = (A,
−→
B ) on V = {v1, v2, v3, v4, v5} as shown in Figure 12.
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Figure 12. VDG (G).

The AM, OM, and LM of VDG G shown in Figure 12 are as follows:

A(G) =


(0, 0) (0.1, 0.5) (0, 0) (0, 0) (0.2, 0.6)
(0, 0) (0, 0) (0, 0) (0, 0) (0.1, 0.5)
(0, 0) (0.1, 0.4) (0, 0) (0, 0) (0, 0)

(0.2, 0.6) (0, 0) (0.2, 0.7) (0, 0) (0, 0)
(0, 0) (0, 0) (0.2, 0.7) (0.1, 0.5) (0, 0)



Dout(G) =


(0.3, 1.1) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 0) (0.1, 0.5) (0, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (0.1, 0.4) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0) (0.4, 1.3) (0, 0)
(0, 0) (0, 0) (0, 0) (0, 0) (0.3, 1.2)



L+(G) =


(0.3, 1.1) (−0.1,−0.5) (0, 0) (0, 0) (−0.2,−0.6)
(0, 0) (0.1, 0.5) (0, 0) (0, 0) (−0.1,−0.5)
(0, 0) (−0.1,−0.4) (0.1, 0.4) (0, 0) (0, 0)

(−0.2,−0.6) (0, 0) (−0.2,−0.7) (0.4, 1.3) (0, 0)
(0, 0) (0, 0) (−0.2,−0.7) (−0.1,−0.5) (0.3, 1.2)



Spec(LE(t−→B (vlvm)
)) = {0.4015 + 0.1234i, 0.4015− 0.1234i, 0, 0.1985 + 0.733i, 0.1985− 0.733i}

Spec(LE( f−→B (vl vm)
)) = {0, 1.3297 + 0.4282i, 1.3297− 0.4282i, 0.9203 + 0.2380i, 0.9203− 0.2380i}

Spec(L(G)) = {(0.4015 + 0.1234i, 0), (0.4015− 0.1234i, 0, 1.3297 + 0.4282i), (0, 1.3297− 0.4282i),

(0.1985 + 0.733i, 0.9203 + 0.2380i), (0.1985− 0.733i, 0.9203− 0.2380i)}

5. Numerical Examples

Here, the theory of energy of a VG is being considered by an actual example.
The http://www.pantechsolutions.net website is considered which is referred to as a VG
model by following the customer’s navigation. The VG in this site is weighed up at different time
intervals. For every period, the energy of a VG is measured. Moreover, the energy is given in a bar
chart format. Four links, (1) microcontroller-boards, (2) /log-inhtml, (3) / and (4) /projectkits for
our calculations are considered. This data being considered are from 7 July 2019 to 8 August 2019 as
follows (see Figure 13):

http:// www.pantechsolutions.net
microcontroller-boards
/log-in html
/ 
/ project kits
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Figure 13. VG (G1).

For this graph we have
Spec

(
tB(vivj)

)
= {0.2818,−0.2355, 0.0221,−0.0683},

Spec
(

fB(vivj)
)
= {−1.0041,−0.6776, 0.0228, 1.6528}.

E
(
tB(vivj)

)
= 0.2818 + 0.2355 + 0.0221 + 0.0683 = 0.6077,

E
(

fB(vivj)
)
= 1.0041 + 0.6776 + 0.0228 + 1.6528 = 3.3633.

Now, we consider the period 9 August 2019 to 8 September 2019 (see Figure 14).

Figure 14. VG (G2).

Here, we have
Spec

(
tB(vivj)

)
= {−0.2425, 0.3758,−0.1410, 0.0078},

Spec
(

fB(vivj)
)
= {−1.1496,−0.6710, 0.0184, 1.8022}.

E
(
tB(vivj)

)
= 0.2425 + 0.3758 + 0.1410 + 0.0078 = 0.7671,

E
(

fB(vivj)
)
= 1.1496 + 0.6710 + 0.0184 + 1.8022 = 3.4612.

For the interval between 9 September 2019 and 8 October 2019 we have (see Figure 15):

Figure 15. VG (G3).
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Spec (tB(vivj)) = {−0.2541,−0.1618, 0.0618, 0.3541},
Spec

(
fB(vivj)

)
= {−1.1656,−0.8618, 0.0121, 1.9653}.

E
(
tB(vivj)

)
= 0.2541 + 0.1618 + 0.0618 + 0.3541 = 0.8318,

E
(

fB(vivj)
)
= 1.1656 + 0.8618 + 0.0121 + 1.9653 = 4.0048.

At the end, for the period of 9 October 2019 to 8 November 2019 we have (see Figure 16):

Figure 16. VG (G4).

Spec
(
tB(vivj)

)
= {−0.2919,−0.1300, 0.2310, 0.4218},

Spec
(

fB(vivj)
)
= {−1.2058,−0.0007,−0.6024, 1.8102}.

E
(
tB(vivj)

)
= 0.2919 + 0.1300 + 0.2310 + 0.4218 = 1.0747,

E
(

fB(vivj)
)
= 1.2058 + 0.0007 + 0.6024 + 1.8102 = 3.6218.

Consider the following bar diagrams for the above four periods as follows (see Figures 17 and 18).

Figure 17. Energy of true membership values.
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Figure 18. Energy of false membership values.

As can be seen in the bar chart above, the true membership energy from October to November is
soaring compared to the other periods. Correspondingly, the false membership energy from September
to October is high. Since the energy amount for the true membership revealed itself to be higher in the
period from October to November, it is concluded that the sales for this store were more than the sales
in previous periods. In a similar way, since the amount of energy for false membership was higher in
September–October than the other periods, it is easy to conclude that the store experienced the lowest
sales in 2019 during this period.

6. Application VG to Find the Most Dominant Person in a Hospital

For this section, a VG model to detect the most important person in a hospital is being considered,
being referred to as the influence graph (abbreviated as IG). In an IG, each node represents an employee
and the edges show each employee’s influence on another employee in a hospital. These kinds
of graphs are used in the social structure communication and distributed computing modeling.
Table 3 shows a module of a hospital with employees and their roles. The employees’ set of
E = {H, D, S, A, F, L, PH} is considered for this hospital. As mentioned, an IG can be improved,
but these graphs cannot exactly characterize the employees’ power in an organization and the
employees’ degrees of influence on each other. As the powers and influence do not have clear-cut
boundaries, using a fuzzy set for their representation would be an appropriate step. The fuzzy digraph
illustrates the employees’ influences on each other. However, there exists a small chance of the
non-null hesitation share at each moment of influence measurement. The VS idea is being applied
which properly points out the influences and contracts among the employees. The employees’ vague
set is given as follows. The influence in the VDG is represented by an edge. The result of VDG is
represented in Figure 19, and the related AM is shown in Table 4.

Being interpreted as percentage, the employee and his/her power in terms of the membership
and non-membership degrees are provided by the VDG nodes in Figure 19; for example, D retains 90%
of power in the organization (Table 5). Correspondingly, a VDG edge signifies the impact of one person
on another person, that is, the edges end node. The positive and negative influence percentages can
be attributed to the membership and non-membership degrees; for example, 40% of the time, D acts
based on A’s attitude, but 30% of the time, D does not conform to A’s ideas. In Figure 19, it can be
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observed that A has impacts on both D and H. As the membership degree in both cases is 0.4, A can
equally have impacts on both of them; that is, 40%. However, considering H as the hesitation degree is
0.4; that is to say, (π = 1− 0.4− 0.2), and for D, it is 0.3—that is, (π = 1− 0.4− 0.3), indicating that
the hesitation for D is more than that of H. However, it is crystal clear that A is the most dominant
employee in the organization. Additionally, take in the fact that no other employees have impacts on
both D and H, enjoying 90% of power within the organization.

Table 3. Employees’ names in a hospital and their designations.

Name Designation

H Head of the hospital

D Doctor

S Supervisor

A Administrative Staff

F Financial Manager

L Laboratory

PH Pharmacy Manager

Table 4. AM corresponding to Figure 19.

D H S A F L PH

D (0.0,1.0) (0.7.0.2) (0.0,1.0) (0.4,0.3) (0.0,1.0) (0.0,1.0) (0.0,1.0)

H (0.0,1.0) (0.0,1.0) (0.5,0.3) (0.0,1.0) (0.0,1.0) (0.0,1.0) (0.1,0.4)

S (0.0,1.0) (0.0,1.0) (0.0,1.0) (0.0,1.0) (0.0,1.0) (0.0,1.0) (0.2,0.3)

A (0.4,0.3) (0.4,0.2) (0.0,1.0) (0.0,1.0) (0.0,1.0) (0.0,1.0) (0.2,0.3)

F (0.0,1.0) (0.0,1.0) (0.0,1.0) (0.0,1.0) (0.0,1.0) (0.3,0.4) (0.2,0.4)

L (0.0,1.0) (0.0,1.0) (0.0,1.0) (0.0,1.0) (0.0,1.0) (0.0,1.0) (0.2,0.4)

PH (0.0,1.0) (0.0,1.0) (0.0,1.0) (0.0,1.0) (0.0,1.0) (0.0,1.0) (0.0,1.0)

Table 5. Power based on membership and non-membership degrees.

H D S A F L PH

tA 0.9 0.9 0.6 0.5 0.4 0.4 0.3

fA 0.0 0.0 0.2 0.2 0.3 0.3 0.2

Figure 19. IVDG.
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7. Conclusions

Graph theory has numerous applications in solving several domains problems, containing
networking, communication, data mining, clustering, image capturing, image segmentation, planning,
and scheduling. However, in some situations, certain aspects related to the graph-theoretical system
may be uncertain. Applying the fuzzy-graphical methods in meeting the ambiguity and vague
demands is very natural. Fuzzy-graph theory has wide-ranging applications in modeling various
real-time systems in which the inherent information levels in the systems vary with different precision
levels. A vague set model is considered appropriate for modeling problems with uncertainty,
indeterminacy, and inconsistent information in which human knowledge is required and human
evaluation is needed. Vague models provide more precision, flexibility, and compatibility to the
system as compared to the classical, fuzzy, and intuitionistic fuzzy models. A VG can comprehensively
describe all kinds of networks’ uncertainties. The main contribution of this manuscript was to
introduce the idea of irregularity in vague graph theory. In this paper, we represented the notions of
the Laplacian energy (LE), adjacency matrix (AM), degree matrix (DM), and Laplacian matrix (LM) of
VGs. Some different types of vague graphs, such as the highly irregular, neighborly irregular, strongly
irregular, neighborly edge irregular, neighborly edge totally irregular, and highly totally irregular
vague graphs were introduced here. The concept of energy of a VG through a real time example
was given. Finally, an application of the proposed concepts was presented to find the most effective
person in a hospital. Throughout this article, all those terms which were not previously defined well
were clearly defined. We are planing to extend our research work to: (1) vague graph structures;
(2) simplified vague graph structures; and (3) cubic vague graph structures.

Author Contributions: Conceptualization, Y.R., S.K. and Z.S.; writing, Y.R., S.K. and Z.S.; review, Y.R., S.K.
and Z.S. All authors have contributed equally to this work. All authors have read and agreed to the possible
publication of the manuscript.

Funding: This work was supported by the National Key R&D Program of China (grant number 2018YFB1005104),
and the Guanzhou Academician and Expert Workstation (number 20200115-9).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
2. Gau, W.L.; Buehrer, D.J. Vague sets. IEEE Trans. Syst. Man Cybern. 1993, 23, 610–614. [CrossRef]
3. Kaufmann, A. Introduction a la Theorie des Sour-Ensembles Flous; Masson et Cie: Paris, France, 1973.
4. Zadeh, L.A. Similarity relations and fuzzy ordering. Inf. Sci. 1971, 3, 177–200. [CrossRef]
5. Zadeh, L.A. Is there a need for fuzzy logical. Inf. Sci. 2008, 178, 2751–2779. [CrossRef]
6. Rosenfeld, A. Fuzzy graphs, Fuzzy Sets and their Applications; Zadeh, L.A., Fu, K.S., Shimura, M., Eds.;

Academic Press: New York, NY, USA, 1975; pp. 77–95.
7. Ramakrishna, N. Vague graphs. Int. J. Comput. Cogn. 2009, 7, 51–58.
8. Akram, M.; Gani, N.; Borumand Saeid, A. Vague hyper graphs. J. Intell. Fuzzy Syst. 2014, 26, 647–653.

[CrossRef]
9. Akram, M.; Naz, S. Energy of pythagorean fuzzy graphs with Applications. Mathematics 2018 6, 136.

[CrossRef]
10. Akram, M.; Sitara, M. Certain concepts in Intuitionistic Neutrosophic Graph Structures. Information 2017, 8,

154. [CrossRef]
11. Akram, M.; Naz, S.; Smarandache, F. Generalization of Maximizing Deviation and TOPSIS Method for

MADM in Simplified Neutrosophic Hesitant Fuzzy Environment. Symmetry 2019, 11, 1058. [CrossRef]
12. Akram, M.; Bashir, A.; Garg, H. Decision making model under complex picture fuzzy Hamacher aggregation

operators. Com. Appl. Math. 2020, 39, 226. [CrossRef]
13. Akram, M.; Garg, H.; Zahid, K. Extensions of ELECTRE-I and TOPSIS methods for group decision-making

under complex Pythagorean fuzzy environment. Iran. J. Fuzzy Syst. 2020, 17, 147–164.

http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1109/21.229476
http://dx.doi.org/10.1016/S0020-0255(71)80005-1
http://dx.doi.org/10.1016/j.ins.2008.02.012
http://dx.doi.org/10.3233/IFS-120756
http://dx.doi.org/10.3390/math6080136
http://dx.doi.org/10.3390/info8040154
http://dx.doi.org/10.3390/sym11081058
http://dx.doi.org/10.1007/s40314-020-01251-2


Mathematics 2020, 8, 1647 25 of 25

14. Asif, M.; Akram, M.; Ali, G. Pythagorean Fuzzy Matroids with Application. Symmetry 2020, 12, 423.
[CrossRef]

15. Borzooei, R.A.; Rashmanlou, H. Ring sum in product intuitionistic fuzzy graphs. J. Adv. Res. Pure Math.
2015, 7, 16–31. [CrossRef]

16. Borzooei, R.A.; Rashmanlou, H. Domination in vague graphs and its applications. J. Intel-Ligent Fuzzy Syst.
2015, 29, 1933–1940. [CrossRef]

17. Borzooei, R.A.; Rashmanlou, H. Degree of vertices in vague graphs. J. Appl. Math. Inform. 2015, 33, 545–557.
[CrossRef]

18. Borzooei, R.A.; Rashmanlou, H.; Samanta, S.; Pal, M. Regularity of vague graphs. J. Intell. Fuzzy Syst. 2016,
30, 3681–3689. [CrossRef]

19. Ghosh, S.; Rashmanlou, H.; Mofidnakhaei, F.; Pal, A. Algorithmic implementation of signed product and
total signed product cordial labeling on complex graph. J. Intell. Fuzzy Syst. 2019, 37, 2435–2442. [CrossRef]

20. Samanta, S.; Pal, M. Fuzzy k-competition graphs and pcompetition fuzzy graphs. Fuzzy Inf. Eng. 2013,
5, 191–204. [CrossRef]

21. Samanta, S.; Akram, M.; Pal, M. m-step fuzzy competition graphs. J. Appl. Math. Comput. 2014. [CrossRef]
22. Samanta, S.; Pal, M. Irregular bipolar fuzzy graphs. Int. J. Appl. Fuzzy Sets 2012, 2, 91–102.
23. Samanta, S.; Pal, M. Some more results on bipolar fuzzy sets and bipolar fuzzy intersection graphs.

J. Fuzzy Math. 2014, 22, 253–262.
24. Shao, Z.; Kosari, S.; Rashmanlou, H.; Shoaib, M. New Concepts in Intuitionistic Fuzzy Graph with

Application in Water Supplier Systems. Mathematics 2020, 8, 1241. [CrossRef]
25. Jan, N.; Ullah, K.; Mahmood, T.; Garg, H.; Davvaz, B.; Saeid, A.B.; Broumi, S. Some Root Level Modifications

in Interval Valued Fuzzy Graphs and Their Generalizations Including Neutrosophic Graphs. Mathematics
2019, 7, 72. [CrossRef]

26. Mathew, B.; John, S.J.; Garg, H. Vertex rough graph. Complex Intell. Syst. 2020, 6, 347–353. [CrossRef]
27. Radha, K.; Kumaravel, N. Some properties of edge regular fuzzy graphs. Jamal Acad. Res. J. 2014, 121–127.
28. Anjali, N.; Mathew, S. Energy of a fuzzy graph. Ann. Fuzzy Math. Inform. 2013, 6, 455–465.
29. Rashmanlou, H.; Borzooei, R.A. Vague graphs with application. J. Intell. Fuzzy Syst. 2016, 30, 3291–3299.

[CrossRef]
30. Rashmanlou, H.; Samanta, S.; Pal, M.; Borzooei, R.A. A study on bipolar fuzzy graphs. J. Intell. Fuzzy Syst.

2015, 28, 571–580. [CrossRef]
31. Rashmanlou, H.; Borzooei, R.A. Product vague graphs and its applications. J. Intell. Fuzzy Syst. 2016,

30, 371–382. [CrossRef]
32. Rashmanlou, H.; Jun, Y.B.; Borzooei, R.A. More results on highly irregular bipolar fuzzy graphs. Ann.

Fuzzy Math. Inform. 2014, 8, 149–168.
33. Sunitha, M.S.; Mathew, S. Fuzzy graph theory: A survey. Ann. Pure Appl. Math. 2013, 4, 92–110.
34. Sunitha, M.S.; Vijayakumar, A. Complement of a fuzzy graph. Indian J. Pure Appl. Math. 2002, 33, 1451–1464.
35. Sunitha, M.S.; Vijayakumar, A. Blocks in fuzzy graphs. J. Fuzzy Math. 2005, 13, 13–23.
36. Ghosh, S.; Pal, A. Exact Algorithm for L(2, 1) Labeling of Cartesian Product Between Complete Bipartite

Graph and Path. In Advanced Computing and Systems for Security; Springer: Singapore, 2018; pp. 15–26.
37. Nagoorgani, A.; Latha, S.R. On irregular fuzzy graphs. Appl. Math. Sci. 2012, 6, 517–523.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/sym12030423
http://dx.doi.org/10.5373/jarpm.1971.021614
http://dx.doi.org/10.3233/IFS-151671
http://dx.doi.org/10.14317/jami.2015.545
http://dx.doi.org/10.3233/IFS-162114
http://dx.doi.org/10.3233/JIFS-182746
http://dx.doi.org/10.1007/s12543-013-0140-6
http://dx.doi.org/10.1007/s12190-014-0785-2
http://dx.doi.org/10.3390/math8081241
http://dx.doi.org/10.3390/math7010072
http://dx.doi.org/10.1007/s40747-020-00133-8
http://dx.doi.org/10.3233/IFS-152077
http://dx.doi.org/10.3233/IFS-141333
http://dx.doi.org/10.3233/IFS-151762
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	New Concepts of IVGs
	Laplacian Energy of VGs
	Numerical Examples
	Application VG to Find the Most Dominant Person in a Hospital
	Conclusions
	References

