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Abstract: In this article, we propose a numerical method based on the fractional Taylor vector for
solving multi-term fractional differential equations. The main idea of this method is to reduce the
given problems to a set of algebraic equations by utilizing the fractional Taylor operational matrix of
fractional integration. This system of equations can be solved efficiently. Some numerical examples
are given to demonstrate the accuracy and applicability. The results show that the presented method
is efficient and applicable.
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1. Introduction

Fractional calculus is an emerging field of mathematics, which is a generalisation of differentiation
and integration to non-integer orders. The history of fractional calculus is almost as long as the
history of classical calculus, beginning with some speculations of Leibniz (1695, 1697) and Euler (1730).
However, fractional calculus and fractional differential equations (FDEs) are increasingly becoming
popular in recent years. The progressively developing history of this old and yet novel topic can be
found in [1–5]. In fact, fractional calculus provides the mathematical modeling of some important
phenomena like social and natural in a more powerful way than the classical calculus. During the last
few decades, many applications were reported in many branches of science and engineering such as
chaotic systems [6,7], fluid mechanics [8], viscoelasticity [9], optimal control problems [10,11], chemical
kinetics [12,13], electrochemistry [14], biology [15], physics [16], bioengineering [17], finance [18], social
sciences [19], economics [20,21], optics [22], chemical reactions [23], rheology [24], and so on. Due to
the importance of FDEs, the solutions of them are attracting widespread interest. On the other hand,
analytical solutions are not always possible for solving them. Therefore, numerical techniques becomes
more important for solving such equations.

There are various numerical methods have been developed for solving FDEs in literature such as
predictor-corrector method [25], Laplace transforms [26], Taylor collocation method [27], variational
iteration method and homotopy perturbation method [8] (Chapter 6), Adomian decomposition
method [28], Tau method [29], inverse Laplace transform [30], Haar wavelet collocation method [31],
generalized block pulse operational matrix [32], shifted Legendre-tau method [33], fractional multi-step
differential transformed method [34], q-homotopy analysis transform method [35], conformable
Laplace transform [36], fractional B-splines collocation method [37], finite difference method [38],
homotopy analysis method [39] and so on.
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Multi-term fractional differential equations are one of the most important type of FDEs, which is
a system of mixed fractional and ordinary differential equations and involving more than one fractional
differential operators. Nowadays, they are widely appearing for modelling of many important
processes, especially for multirate systems. Their numerical solution is then a strong subject that
deserves high attention. In this paper, motivated by the results reported in [40,41] for solving a smaller
class of problems where the highest order of derivative is an integer and involving at most one
noninteger order derivative, we go further and establish a method for numerical solutions for higher
order and arbitrary multi-term fractional differential equations which have a general form

Dαy(t) = f
(

t, y(t), Dβ0 y(t), Dβ1 y(t), ..., Dβk y(t)
)

, t ∈ [0, R] (1)

where Dα representing the Caputo fractional derivative of order α > 0 and we assume that 0 < β0 <

β1 < ... < βk < α, y(p) = Yp, p = 0, 1, ...n where n− 1 < α < n.
Multi-term fractional order differential equations also have useful properties and they can

describe complex multi-rate physical processes in a various way and can be applied in many fields,
see e.g., [2,4,26,42]. Basset [43] and Bagley–Torvik [44] equations can be given as important examples
for smaller class of multi-term fractional differential equations. Existence, uniqueness and stability of
solution for multi-term fractional differential equations are discussed in [45–49]. Because of difficulty of
finding the exact solutions for such equations, many new numerical techniques have been developed to
investigate the numerical solutions such as Adams method [50], Haar wavelet method [51], differential
transform method [52], Adams–Bashforth–Moulton method [53], collocation method based on shifted
Chebyshev polynomials of the first kind [54], Boubaker polynomials method [55], matrix Mittag–Leffler
functions [56], differential transform method [57] and so on.

Our main purpose is to present an effective, reliable method to approximate initial value problem
for the Equation (1). In order to reach this aim, we rewrite and focus the general type of Caputo
multi-term fractional differential equation given in Equation (1) in the following linear form

Dαy(t) =
k

∑
i=0

uiDβi y(t) + uk+1y(t) + f (t), 0 ≤ t ≤ R, (2)

subject to the

y(p)(0) = Yp, p = 0, 1, ..., n− 1 where n− 1 < α < n

ui (i = 0, 1, ..., k) are known coefficients and (3)

0 < β0 < β1 < ... < βk < α

Here, we also state that the highest order α need not to be an integer. This equation is important
in applications due to the fact it can treat the problems with fractional force, therefore it is suitable for
being treated within fractional operators of Caputo type.

In this work, a numerical approach based on fractional Taylor vector is proposed to solve the
initial value problem of general type of multi-term fractional differential equations which is given in
Equations (2) and (3). The core idea of this method is to employ the operational matrix of fractional
integration based on fractional Taylor vector to given problem and reduce it to a set of algebraic
equations which can be efficiently solved.

The structure of the manuscript is organized as follows. In Section 2, we briefly introduce some
preliminary ideas of fractional calculus and necessary definitions. In Section 3, an operational matrix
of fractional integration based on fractional taylor vector is derived. In Section 4, we present the
numerical algorithm to solve the given equation and a pseudo-code for matlab is also provided in
Algorithm 1. In Section 5, the presented method is applied to six examples to demonstrate the efficiency.
A final conclusion is presented in the last section.
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2. Preliminary Knowledge

In this section, we recall some fundamental definitions and preliminary facts of fractional calculus.

2.1. The Fractional Integral and Derivative

Definition 1. The Riemann–Liouville fractional integral to order α of an integrable function y(t) is defined
to be

Iαy(t) =


1

Γ(α)

∫ t

0
(t− s)α−1y(q)ds, α > 0

y(t), α = 0
(4)

When applied to a power function, it yields the following result:

Iα(t)c =
Γ(c + 1)

Γ(c + α + 1)
(t)c+α, α ≥ 0, c > −1 (5)

The operator has a semigroup property, namely

Iα Iβy(t) = Iβ Iαy(t), α, β > 0

and it is linear, namely

Iα(A1y1(t) + A2y2(t)) = A1 Iαy1(t) + A2 Iαy2(t)

for any two functions y1,y2 and constants A1,A2.

Definition 2. The fractional derivative of y(t) of the order α in the Caputo sense is given as

Dαy(t) = I j−α

(
dj

dtj y(t)
)

, j− 1 < α ≤ j, j ∈ N (6)

2.2. Some Properties

1. The Riemann-Liouville fractional integral and Caputo fractional derivative do not usually
commute with each other. The following Newton–Leibniz identity gives an important relation
between them:

Iα(Dαy(t)) = y(t)−
j−1

∑
i=0

y(i)(0)
ti

i!
(7)

2. The Caputo fractional derivative also has the following substitution identity. If we write y1(q) =
y(qR) and q = t/R, then

Dαy(t) =
1

Rα
Dαy1(q) (8)

where j− 1 < α ≤ j, j ∈ N

3. Operational Matrix of Fractional Integration for Fractional Taylor Vector

3.1. Fractional Taylor Basis Vector

We shall make use of the fractional Taylor vector,

Tmδ(t) =
[
1, tδ, t2δ, ..., tmδ

]
(9)

for m ∈ N and δ > 0 in the work of this paper.
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3.2. Approximation of Function

Suppose that Tmδ(t) ⊂ H, where H is the space of all square integrable functions on the interval
[0, 1]. For any y ∈ H, since S = span

{
1, tδ, t2δ, ..., tmδ

}
is a finite dimensional vector space in H, then, y

has a unique best approximation y∗ ∈ S, so that

∀ŷ ∈ S, ‖y− y∗‖ ≤ ‖y− ŷ‖

Therefore, the function y is approximated by fractional Taylor vector as following

y ' y∗ =
m

∑
i=0

citiδ = CTTmδ(t) (10)

where Tmδ(t) denote the fractional Taylor vector and

CT = [c0, c1, c2, ..., cm] (11)

are the unique coefficients.

3.3. Fractional Taylor Operational Matrix of Integration

By using the property of Riemann-Liouville fractional integral given in Equations (5) and (9),
we get

Iα(Tmδ(t)) =
[

1
Γ(α+1) tα, Γ(δ+1)

Γ(δ+α+1) tδ+α, Γ(2δ+1)
Γ(2δ+α+1) t2δ+α, ..., Γ(mδ+1)

Γ(mδ+α+1) tmδ+α
]

= tα MαTmδ(t) (12)

where

Mα = diag
[

1
Γ(α + 1)

,
Γ(δ + 1)

Γ(δ + α + 1)
,

Γ(2δ + 1)
Γ(2δ + α + 1)

, ...,
Γ(mδ + 1)

Γ(mδ + α + 1)

]
denotes the operational matrix of integration.

If we define Gα as

Gα =

[
1

Γ(α + 1)
,

Γ(δ + 1)
Γ(δ + α + 1)

,
Γ(2δ + 1)

Γ(2δ + α + 1)
, ...,

Γ(mδ + 1)
Γ(mδ + α + 1)

]
then, we can rewrite the Equation (10) as

Iα(Tmδ(t)) = tαGα ∗ Tmδ(t) (13)

where ∗ denotes the operation of multiplying matrices term by term.

4. The Numerical Algorithm

In this section, to solve the given multi-term fractional differential equation in Equations (2) and (3),
we employ the fractional Taylor method. The algorithm of method is given below.

Firstly, by using the transformation q = t/R, we replace the variable t ∈ [0, R] with q ∈ [0, 1].
Now, by using Equation (8) in Equation (2), we get

1
Rα

Dαy1(q) =
k

∑
i=0

1
Rβi

uiDβi y1(q) + uk+1y1(q) + f1(q), 0 ≤ s ≤ 1 (14)
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where f1(q) = f (qR) and y1(q) = y(qR). Similar to Equation (10) we approximate the y1(q) as

y1(q) =
m

∑
i=0

ciqiδ = CTTmδ(q) (15)

such that Tmδ(q) = [1, qδ, q2δ, ..., qmδ]T is the fractional Taylor vector and the unique coefficients CT is
given in Equation (11).

Next, applying the Riemann–Liouville fractional integral on both side of (14), we get

1
Rα

[
y1(q)−

n−1

∑
j=0

y(j)
1 (0+)

tj

j!

]
=

k

∑
i=0

1
Rβi

ui Iα−βi

[
y1(q)−

ni−1

∑
j=0

y(j)
1 (0+)

tj

j!

]
+ uk+1 Iαy1(q) + Iα f1(q) (16)

where y(p)(0) = Vp, p = 0, 1, ..., n− 1 where ni − 1 < βi < ni.
Hence, by substituting initial conditions (3), we get

1
Rα

[y1(q)] =
k

∑
i=0

1
Rβi

ui Iα−βi [y1(q)] + uk+1 Iαy1(q) + h1(q) (17)

such that h1(q) = Iα f1(q) + 1
Rα

(
∑n−1

j=0 Vj
tj

j!

)
+ ∑k

i=0
1

Rβi
ui Iα−βi

(
∑ni−1

j=0 Vj
tj

j!

)
.

Now, by using the Equation (12), we approximate the fractional order integrals in Equation (17)
and we have

1
Rα

[
CTTmδ(q)

]
=

k

∑
i=0

1
Rβi

uiCTqα−βi
(
Gα−βi ∗ Tmδ(q)

)
+ uk+1qαCT(Gα ∗ Tmδ(q)) + h1(q) (18)

Finally, by taking the collocation points qj = j/m (j = 0, 1, ..., m) in Equation (18), we get m + 1
linear algebraic equations. This linear system can be solved for the unknown vector CT . Consequently,
y1(q) can be approximated by Equation (15).

4.1. MATLAB Implementation of Method

The pseudocode given in Algorithm 1 below allows us to use proposed method in MATLAB for
obtain a numerical solution of given problem [58].
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Algorithm 1: Fractional Taylor Method
[A, b] = f ractionalTaylor(alpha, beta, Uk, f unc, t0, R, y0, m, delta)
% Input

% alpha is the highest order of fractional derivative of given equation
% beta is the order of fractional derivatives other than alpha. beta must be a vector with
decending ordered values
% Uk is the vector of coefficients
% f unc is defining the right hand side of given problem
% t0 and R denotes the left and right endpoints
% y0 is the initial conditions
% m denotes the number of steps
% delta is a real number greater than zero. We usually take delta = 1 or delta =fractional
part of alpha

% Output

% A is an (m + 1) x (m + 1) matrix
% b is an (m + 1) x 1 matrix

% using f ractionalTaylor.m, where command f ractionalTaylor.m is defined by the
Equation (18), gives us the linear system AC = B which is (m + 1)

% algebraic equations with unknown coefficients CT

% Next step is to use matlab function linsolve(A, b) to solve obtained algebraic equation for
unknown coefficient vector CT with dimension (m + 1).
C = linsolve(A, b)
% Output

% C is an (m + 1) x 1 matrix which is the solution of linear system AC = B

% Next step is substituting obtained coefficients to approxSoln() as input, where the command
approxSoln() defined by Equation (15), we get the approximate solution of given problem
[s, y] = approxSoln(C)
% Input

% C is the vector of coefficients obtained in previous step.

% Output

% s is the nodes on [t0, R] in which the approximate solution calculated
% y is the numerical solution evaluated in the points of s.

5. Illustrative Examples

To illustrate the applicability and effectiveness of the presented method, we give six examples
in this section. In each example, we apply the fractional Taylor operational matrix method which
is presented in previous section and the approximate results compared with analytical solutions.
Obtained results indicate that the proposed technique is very effective for multi-term fractional
differential equations. In order to solve the numerical computations, MATLAB version R2015a has
been used.

For choosing δ, we usually take either δ = 1 or δ = α− bαc, the fractional part of α.
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5.1. Example 1

Consider the following form of multi-order fractional differential equation [59]

Dαy(t) = u0Dβ0 y(t) + u1Dβ1 y(t) + u2Dβ2 y(t) + u3Dβ3 y(t) + f (t), 0 ≤ t ≤ R, (19)

y(0) = V0, y′(0) = V1

We let α = 2, V0 = V1 = 0, R = 1, the coefficients u0 = u2 = −1, u1 = 2, u3 = 0 and
β0 = 0, β1 = 1, β2 = 1

2 and the function f (t) is

f (t) = t7 +
2048

429
√

π
t6.5 − 14t6 + 42t5 − t2 − 8

3
√

π
t1.5 + 4t− 2.

where the exact solution is y(t) = t7 − t2.
We apply the given procedure which is implemented in previous section for solving the

Equation (19) step by step.
Firstly, change variable t ∈ [0, R] to q ∈ [0, 1] by using q = t/R.
Now, we use the Equation (8) and get

1
Rα

Dαy1(q) =
u0

Rβ0
Dβ0 y1(q) +

u1

Rβ1 Dβ1 y1(q) +
u2

Rβ2
Dβ2 y1(q) +

u3

Rβ3
Dβ3 y1(q) + f1(q) (20)

where 0 ≤ q ≤ 1.
Next, using Equation (7) we get

1
Rα

(y1(q)− y1(0)− qy1′(0)) =
u0

Rβ0
Iα−β0(y1(q)− y1(0)− qy1′(0))

+
u1

Rβ1 Iα−β1(y1(q)− y1(0)− qy1′(0))

+
u2

Rβ2
Iα−β2(y1(q)− y1(0)− qy1′(0))

+
u3

Rβ3
Iα−β3(y1(q)− y1(0)− qy1′(0))

+ Iα f1(q). (21)

Now, using Equation (21) and substituting initial conditions y(0) = V0, y′(0) = V1 into equation

1
Rα

(CTTmδ(q)−V0 − RqV1) =
u0

Rβ0
Iα−β0(CTTmδ(q)−V0 − RqV1)

+
u1

Rβ1 Iα−β1(CTTmδ(q)−V0 − RqV1)

+
u2

Rβ2
Iα−β2(CTTmδ(q)−V0 − RqV1)

+
u3

Rβ3
Iα−β3(CTTmδ(q)−V0 − RqV1)

+ Iα f1(q). (22)
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From Equation (12), we have

1
Rα

(CTTmδ(q)−V0 − RqV1)

=
u0

Rβ0
qα−β0 CT(Gα−β0 ∗ Tmδ(q))−

u0qα−β0

Rβ0 Γ(α− β0 + 1)
V0 −

u0qα−β0+1

Rβ0 Γ(α− β0 + 2)
V1

+
u1

Rβ1 qα−β1 CT(Gα−β1 ∗ Tmδ(q))−
u1qα−β1

Rβ1 Γ(α− β1 + 1)
V0 −

u1qα−β1+1

Rβ1Γ(α− β1 + 2)
V1

+
u2

Rβ2
qα−β2 CT(Gα−β2 ∗ Tmδ(q))−

u2qα−β2

Rβ2 Γ(α− β2 + 1)
V0 −

u2qα−β2+1

Rβ2 Γ(α− β2 + 2)
V1

+
u3

Rβ3
qα−β3 CT(Gα−β3 ∗ Tmδ(q))−

u3qα−β3

Rβ3 Γ(α− β3 + 1)
V0 −

u3sα−β3+1

Rβ3 Γ(α− β3 + 2)
V1

+ Iα f1(q). (23)

Now, taking R = 1 in Equation (23) and putting the given values for V0, V1, ui, βi where i = 0, 1, 2, 3
into this equation, we get

CTTmδ = 2q1CT(G1 ∗ Tmδ(q))− q3/2CT(G3/2 ∗ Tmδ(q))− q2CT(G1 ∗ Tmδ(q)) + I2 f1(q) (24)

Finally, taking the collocation points qj = j/m (j = 0, 1, ..., m) generates a linear algebraic system
of dimension m + 1 with unknown vector CT . In order to solve this system by using presented method
and comparing the results, we choose δ = 1 and different values of m.

To show the efficiency, we compared the numerical results with the method given in [59].
Table 1, compares the obtained results for absolute error with m = 4, 6, 7. We observe from Table 1

that, the absolute errors for presented method are smaller and the numerical solution is more accurate
for the same size of m.

Table 1. The comparison absolute errors of the present scheme and method given in [59] with
m = 4, 6, 7.

t
Present Method Method in [59] Present Method Method in [59] Present Method Method in [59]

m = 4 m = 4 m = 6 m = 6 m = 7 m = 7

0.2 0.0116 0.0844 6.81430698097618 × 10−7 0.0044 1.040834086 × 10−16 2.81025203108243 × 10−15

0.4 0.0032 0.3501 1.01100805164899 × 10−4 0.0079 2.498001805 × 10−16 6.63358257213531 × 10−15

0.6 0.0108 0.6734 1.2907314422994 × 10−5 0.0143 1.665334537 × 10−16 3.27515792264421 × 10−15

0.8 0.0037 1.0234 1.16246682382747 × 10−4 0.0214 3.330669074 × 10−16 4.25770529943748 × 10−14

1.0 0.0026 1.6700 1.11299947542775 × 10−5 0.0280 1.110223025 × 10−16 2.43819897540083 × 10−13

In Figures 1–3, we present the graphical representation of comparison between exact solution and
the numerical solutions obtained by proposed method and the method of [59] for the problem (19)
with m = 4, 6, 7 respectively. From these results, we can conclude that m = 4 and m = 6 give larger
absolute error, while m = 7 gives smaller absolute error (10−16) and more precise numerical solution.
These comparisons also shows that the results obtained by proposed method is closer to the exact
solution than the results of [59].
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Figure 1. The comparison between exact solution and the numerical solutions obtained by proposed
method and the method of [59] with m, n = 4.

Figure 2. The comparison between exact solution and the numerical solutions obtained by proposed
method and the method of [59] with m, n = 6.
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Figure 3. The comparison between exact solution and the numerical solutions obtained by proposed
method and the method of [59] with m, n = 7.

In Figure 4, we show the graphical representation of absolute errors obtained by using proposed
method and the method of [59] with m, n = 6.

Figure 4. The behaviour of absolute errors obtained by using proposed method and the method of [59]
with m, n = 6.
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From Figure 4, we can conclude that the absolute error obtained by our method is remaining
smaller and stable while the absolute error of other method is increasing in the interval [0, 1].

In Figures 5 and 6, we give the graphical representation of absolute errors obtained by using
proposed method with m = 4, 7 respectively.

Figure 5. The absolute error with m = 4.

Figure 6. The absolute error with m = 7.

A pseudo-code for MATLAB implementation of Example 1 is given in Algorithm 2 below :
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Algorithm 2: Fractional Taylor Method
alpha = 2;
beta = [1, 1/2, 0];
Uk = [2,−1,−1];
f unc =@(t) t7 + 2048/(429 ∗ sqrt(pi)) ∗ t6.5 − 14 ∗ t6 + 42 ∗ t5 − t2 − ...

8/(3 ∗ sqrt(pi)) ∗ t1.5 + 4 ∗ t− 2;
t0 = 0 ; R = 1;
y0 = [0; 0];
m = 4;
delta = 1;
[A, b] = f ractionalTaylor(alpha, beta, Uk, f unc, t0, R, y0, m, delta)
C = linsolve(A, b)
[s, y] = approxSoln(C)

5.2. Example 2

In this example, we consider the Equation (19) with α = 2, V0 = V1 = 0, the coefficients u0 =

u2 = −1, u1 = 0, u3 = 2 and β0 = 0, β2 = 2
3 , β3 = 5

3 and the function is

f (t) = t3 + 6t− 12
Γ( 7

3 )
t

4
3 +

6
Γ( 10

3 )
t

7
3 .

The exact solution of this equation is y(t) = t3 [59].
Applying the same procedure to given problem as presented in Example 1, we get the

following equation

CTTmδ = 2q1/3CT(G1/3 ∗ Tmδ(q))− q4/3CT(G4/3 ∗ Tmδ(q))− q2CT(G2 ∗ Tmδ(q)) + I2 f1(q) (25)

As we stated in previous example, collocating this equation at the nodes qj = j/m (j = 0, 1, ..., m)
generates a system of algebraic equations. In this example, to solve this sysem for CT , we choose
δ = 1, 1.5 and different values of m.

Table 2 shows the results for obtained absolute errors by using presented method with m = 2, 3.
From these results, we can see that, there is satisfactory agreement between the exact solution and
numerical solutions. The absolute error is achieved about 10−15. We also note that, the proposed
method gives better results for m = 2 by taking δ = 1.5.

Table 2. The absolute errors with m = 2, 3.

t δ = 1, m = 2 δ = 1.5, m = 2 δ = 1, m = 3

0 0 0 0
0.1 0.010209105 1.3 × 10−17 7.42 × 10−17

0.2 0.008778787 4.68 × 10−17 1.232 × 10−16

0.3 0.001709047 1.11 × 10−16 1.769 × 10−16

0.4 0.005000117 2.082 × 10−16 2.637 × 10−16

0.5 0.005348703 3.608 × 10−16 4.163 × 10−16

0.6 0.006663287 5.829 × 10−16 6.661 × 10−16

0.7 0.037035855 8.882 × 10−16 9.992 × 10−16

0.8 0.091769001 1.2212 × 10−15 1.5543 × 10−15

0.9 0.176862723 1.6653 × 10−15 1.9984 × 10−15

1.0 0.2983170221 2.2204 × 10−15 2.8866 × 10−15
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In Figure 7a, we show the graphical representation of obtained numerical solution and the exact
solution of the given problem. Figure 7b presents the obtained absolute error by using proposed
method with m = 3.

Figure 7. (a) The numerical and the exact solutions with m = 3. (b) The absolute error with m = 3.

5.3. Example 3

Consider the multi-term fractional order initial value problem [54]

D(2.2)y(t) + 1.3D(1.5)y(t) + 2.6y(t) = sin(2t), (26)

with initial conditions
y(0) = y′(0) = y′′(0) = 0,

where the equation have the series solution given by [52]

ys(t) =
28561

3600000
t6 +

2
Γ(4.2)

t3.2 − 13
5Γ(4.9)

t3.9 +
169

50Γ(5.6)
t4.6

− 8
Γ(6.2)

t5.2 − 2197
500Γ(6.3)

t5.3 − 26
5Γ(6.4)

t5.4 +
52

5Γ(6.9)
t5.9. (27)

In order to solve this problem, we choose δ = 1, and m = 10.
We give the comparison of series solution and the numerical solution obtained by presented

method in Table 3. Table 4 compares the obtained absolute errors by using presented method with the
results of [54]. From this compared results, it can be seen that the approximate solution is very close to
series solution for a small number of m for the given method.

From the compared results of Table 4, we can conclude that the proposed method has better
approach to series solution with a smaller m.
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Table 3. Comparison of numerical solution with series solution for Example 3.

t Series Solution [52] Present Method m = 10

0.0 0 0
0.1 0.000147766 0.000147731
0.2 0.001274983 0.001275552
0.3 0.00439917 0.00440567
0.4 0.010405758 0.010441315
0.5 0.019962077 0.020094648
0.6 0.033452511 0.033841301
0.7 0.050923716 0.051890573
0.8 0.0720381 0.074169634
0.9 0.096035415 0.100321388

Table 4. Comparison of absolute errors for Example 3.

t Present Method m = 10 Method in [54] m = 20

0.0 0 0
0.1 3.47449 × 10−8 5.2560 × 10−7

0.2 5.69366 × 10−7 1.7150 × 10−6

0.3 6.49968 × 10−6 8.2260 × 10−6

0.4 3.55576 × 10−5 3.7820 × 10−5

0.5 0.000132571 0.0001353
0.6 0.00038879 0.000392
0.7 0.000966858 0.0009704
0.8 0.002131534 0.002135
0.9 0.004285973 0.00429

The graphical representation of comparison between series solution and numerical solutions
obtained by presented method and the method of [54] in the interval [0, 1] is illustrated in Figure 8.

Figure 8. The comparison between series solution and numerical solutions obtained by proposed
method and the method of [54] with m = 10.
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In Figure 9, we show present graphical representation of absolute errors obtained by using
proposed method and the method of [54] with m = 10.

Figure 9. The behaviour of absolute errors obtained by using proposed method and the method of [54].

In Figure 10, we show the graphical representation for series solution and the numerical results
of presented method for the interval [0, 10]. The results plotted in Figure 10 are in a very good and
satisfactory agreement with the series solution given in [52] and the results of [60].

Figure 10. The behaviour of series solution and the numerical solution obtained by proposed method
for the interval [0, 10].
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5.4. Example 4

Motivated by [50], we consider the following form of fractional differential equation,

Dαy(t) + y(t) =


2

Γ(3− α)
t2−α + t2 − t, α > 1

2
Γ(3− α)

t2−α − 1
Γ(2− α)

t1−α + t2 − t, α ≤ 1
(28)

with initial conditions
y(0) = 0, y′(0) = −1

whose exact solution is y(t) = t2 − t.
In order to apply the presented method to Equation (28) and compare the results with methods

of [54,61,62], we solve this problem with α = 0.3, 0.5, 0.7, 1.25, 1.5, 1.85, and different values for δ and
m. The obtained results are presented as below.

In Table 5, we list the results of obtained absolute errors for α = 0.3, 0.5, 0.7 by use of presented
method. Also, the results for α = 1.25, 1.5, 1.85 are given in Table 6.

Table 5. The absolute errors with m = 3 and α < 1 for Example 4.

t α = 0.3 α = 0.5 α = 0.7

0 0 0 0
0.1 4.16 × 10−17 8.33 × 10−17 1.94 × 10−16

0.2 8.33 × 10−17 5.55 × 10−17 2.78 × 10−16

0.3 1.11 × 10−16 2.78 × 10−17 2.50 × 10−16

0.4 1.67 × 10−16 1.39 × 10−16 2.50 × 10−16

0.5 1.67 × 10−16 1.11 × 10−16 1.67 × 10−16

0.6 1.67 × 10−16 5.55 × 10−17 2.78 × 10−17

0.7 1.67 × 10−16 8.33 × 10−17 8.33 × 10−17

0.8 3.05 × 10−16 5.55 × 10−17 1.11 × 10−16

0.9 2.08 × 10−16 1.25 × 10−16 1.39 × 10−16

1.0 1.91 × 10−16 1.26 × 10−16 8.91 × 10−17

Table 6. The absolute errors with m = 3 and α > 1 for Example 4.

t α = 1.25 α = 1.5 α = 1.85

0.0 0 0 0
0.1 1.39 × 10−17 2.78 × 10−17 1.25 × 10−16

0.2 5.55 × 10−17 5.55 × 10−17 1.94 × 10−16

0.3 5.55 × 10−17 5.55 × 10−17 2.22 × 10−16

0.4 5.55 × 10−17 2.78 × 10−17 2.50 × 10−16

0.5 1.11 × 10−16 0 2.22 × 10−16

0.6 1.67 × 10−16 5.55 × 10−17 1.67 × 10−16

0.7 1.94 × 10−16 5.55 × 10−17 5.55 × 10−17

0.8 3.05 × 10−16 1.39 × 10−16 5.55 × 10−17

0.9 1.11 × 10−16 8.33 × 10−17 1.39 × 10−17

1.0 8.21 × 10−17 1.97 × 10−16 1.06 × 10−16

In Figure 11a,b, we present the graphical representation of obtained results for numerical and
exact solution of the given problem and absolute error for α = 1.5 in the interval [0, 1].
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Figure 11. (a) The numerical and exact solutions for α = 1.5. (b) The absolute error for α = 1.5.

In Figure 12, we plot the graphical representation for behavior of the obtained numerical solution
by use of the presented method and the exact solution of the given problem for α = 1.5 in the interval
[0, 15].

Figure 12. The behaviour of the obtained numerical and exact solutions with α = 1.5 for the interval
t ∈ [0, 15].

Table 7 lists the obtained absolute errors for the given problem (28) at t = 1, 5, 10, 50 and α = 1.5 by
use of presented method and some other methods in literature [54,61,62]. From this compared results,
we can say that the numerical solution obtained by use of proposed method is in better agreement
with the exact solution and obtained absolute error is smaller.
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Table 7. Comparison of absolute errors between proposed method and some other numerical methods
in literature at t = 1, 5, 10, 50 for α = 1.5.

t
Presented Method Method of [63] Method of [50] Method of [64]

δ = 1/2, m = 4 n = 20 h = 1/320 p = 1, T = 1

1 7.99361 × 10−14 9.10 × 10−5 3.42 × 10−3 -
5 2.55795 × 10−13 2.42 × 10−3 - -
10 1.42109 × 10−13 5.50 × 10−3 - -
50 3.63798 × 10−12 3.74 × 10−2 - 1.2

In Figure 13, the behaviour of absolute error for α = 1.5 with m = 4 and δ = 1/2, 1 at t ∈ [0, 50] is
presented. From this graph, it can be seen that we get better results by taking δ = 1/2 for this example
and the numerical solution is very close to exact solution for a small number of m.

Figure 13. The behaviour of the absolute errors for proposed method where α = 1.5, t ∈ [0, 50] with
m = 4 and δ = 1/2, 1.

5.5. Example 5

In this example, we consider the following form of linear multi-term fractional differential
equation with variable coefficients [65]

aD2y(t) + b(t)Dβ1 y(t) + c(t)Dy(t) + e(t)Dβ2 y(t) + k(t)y(t) = f (t), (29)

with,
y(0) = 2, y′(0) = 0

where 0 < β2 < 1, 1 < β1 < 2 and

f (t) = −a− b(t)
Γ(3− β1)

t2−β1 − c(t)t− e(t)
Γ(3− β2)

t2−β2 + k(t)
(

2− t2

2

)

whose the exact solution is given by y(t) = 2− t2

2 .
We give the numerical solution for the given problem by proposed method for a = 1, b(t) =√

t, c(t) = t
1
3 , e(t) = t

1
4 , k(t) = t

1
5 , β2 = 0.333, β1 = 1.234 with δ = 1.

In Table 8, we give the results for maximum errors obtained by use of proposed method and
comparison with the results of [65,66]. From this compared results, we can see that the numerical
solution obtained by use of proposed method is closer to the exact solution.
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Table 8. Maximum errors of Example 5 for R = 1 with m = 3, 4, 5, 6, 10, 20, 40.

m Present Method Method Given in [66] Method Given in [65]

3 4.44089 × 10−16 4.4409 × 10−16 -
4 6.66134 × 10−16 1.4633 × 10−13 -
5 4.44089 × 10−16 3.2743 × 10−12 6.88384 × 10−5

6 4.44089 × 10−16 1.0725 × 10−13 -
10 2.22045 × 10−15 - 3.00351 × 10−6

20 3.47278 × 10−13 - 1.67837 × 10−7

40 1.46549 × 10−13 - 1.02241 × 10−8

Figure 14 presents the graphical representation for behaviour of numerical and exact solutions
with m = 6. From this representation, we can see that the numerical solution is in a very good
agreement with exact solution.

Figure 14. The behaviour of the numerical and exact solutions with m = 6.

5.6. Example 6

For the last example, let us consider the below fractional differential equation [63]

y′(t) + D1/2y(t)− 2y(t) = 0, t ∈ (0, R], (30)

y(0) = 1

which arises, for example, in the study of generalized Basset force occuring when a spherical object
sinks in a (relatively dense) incompressible viscous fluid; see [43,67]. By use of Laplace transformation
of Caputo derivatives, we get the analytical solution as following

y(t) =
2

3
√

t
E1/2,1/2(

√
t)− 1

6
√

t
E1/2,1/2(−2

√
t)− 1

2
√

πt
,

where the Mittag–Leffler function Eλ,µ(t) with parameters λ, µ > 0 is given as

Eλ,µ(t) =
∞

∑
k=0

tk

Γ(λk + µ)
.

This Mittag–Leffler function and its variations are very significant in fractional calculus and
fractional differential equations [68].
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In order to solve given problem by use of proposed method and compare the results, we take
t ∈ (0, 5] and use different values of δ and m.

Table 9 lists the exact and obtained numerical solutions by use of presented method and method
of [63] for the given problem for m = 5, 10, 15, 20. Comparison of this results shows that, even for small
values of m, the numerical solution obtained by use of presented method is in a better agreement with
exact solution.

Table 9. The resulting values for Example 6, with R = 5 in some values of t.

t Exact
Proposed Method Given Proposed Method Given Proposed Method Given Proposed Method Given
Method in [63] Method in [63] Method in [63] Method in [63]
m = 5 m = 5 m = 10 m = 10 m = 15 m = 15 m = 20 m = 20

1 3.42445 3.42415 2.714336 3.425121 3.426525 3.42376044 3.42496 3.424563 3.424807
2 9.69088 9.670891 8.922571 9.692732 9.696794 9.68896761 9.692754 9.691185 9.691706
3 26.6414 26.60757 24.59981 26.64646 26.65929 26.6362145 26.64683 26.64225 26.64381
4 72.6729 72.53849 65.78029 72.68665 72.72038 72.6587861 72.68787 72.6752 72.67936
5 197.77 197.5757 180.1481 197.8077 197.8994 197.731934 197.8112 197.7766 197.7879

In Figures 15a, 16a and 17a, we present the graphical representation of comparison between exact
solution and the numerical solutions obtained by using proposed method and the method of [63] with
taking m = 5, 10, 20 respectively. Also in Figures 15b, 16b and 17b we show the behaviour of absolute
errors obtained by proposed method and the method of [63] in the interval [0, 1] with m = 5, 10, 20.

Figure 15. (a) The comparison of analytical solution and numerical solutions obtained by the proposed
method and the method of [63] with m = 5. (b) The behaviour of the absolute errors between the exact
solution and numerical solutions obtained by our method and the method given in [63] with m = 5.
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Figure 16. (a) The comparison of analytical solution and numerical solutions obtained by the proposed
method and the method of [63] with m = 10. (b) The behaviour of the absolute errors between the
exact solution and numerical solutions obtained by our method and the method given in [63] with
m = 10.

Figure 17. (a) The comparison of analytical solution and numerical solutions obtained by the proposed
method and the method of [63] with m = 20. (b) The behaviour of the absolute errors between the
exact solution and numerical solutions obtained by our method and the method given in [63] with
m = 20.

From these graphical results represented in Figures 15–17, we can conclude that the absolute error
obtained by our method is remaining smaller when compared the absolute error of method given in
Reference [63].

6. Conclusions

In this work, an operational matrix based on the fractional Taylor vector is used to numerically
solve the multi-term fractional differential equations by reducing them to a set of linear algebraic
equations, which simplifies the problem. From comparison of the obtained results with exact solutions
and also with results of other methods in the literature, we conclude that the proposed method
provides the solution with high accuracy. The findings also show that, even for the small number
of steps, we can get satisfactory results by using presented method. All computational results are
obtained by using MATLAB.
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13. Stoenoiu, C.E.; Bolboacă, S.D.; Jäntschi, L. Model formulation and interpretation–from experiment to theory.

Int. J. Pure Appl. Math. 2008, 47, 9–16.
14. Oldham, K.B. Fractional differential equations in electrochemistry. Adv. Eng. Softw. 2010, 41, 9–12.
15. Ertürk, V.S.; Odibat, Z.M.; Momani, S. An approximate solution of a fractional order differential equation

model of human T-cell lymphotropic virus I (HTLV-I) infection of CD4+ T-cells. Comput. Math. Appl. 2011,
62, 996–1002.

16. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific Press: Singapore, 2000.
17. Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publishers: Redding, CA, USA, 2006.
18. Fallahgoul, H.; Focardi, S.; Fabozzi, F. Fractional Calculus and Fractional Processes With Applications to Financial

Economics: Theory and Application; AP: Cambridge, MA, USA, 2016.
19. Baleanu, D.; Lopes, A.M. (Eds.) Handbook of Fractional Calculus with Applications, Volume 8: Applications in

Engineering, Life and Social Sciences, Part B; De Gruyter: Berlin, Germany, 2019.
20. Tarasov, V.E. On history of mathematical economics: Application of fractional calculus. Mathematics 2019,

7, 509.
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