
mathematics

Article

Comultiplications on the Localized Spheres and
Moore Spaces

Dae-Woong Lee

Department of Mathematics, and Institute of Pure and Applied Mathematics, Jeonbuk National University,
567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Korea; dwlee@jbnu.ac.kr

Received: 2 December 2019; Accepted: 30 December 2019; Published: 5 January 2020
����������
�������

Abstract: Any nilpotent CW-space can be localized at primes in a similar way to the localization of a
ring at a prime number. For a collection P of prime numbers which may be empty and a localization
XP of a nilpotent CW-space X at P , we let |C(X)| and |C(XP )| be the cardinalities of the sets of all
homotopy comultiplications on X and XP , respectively. In this paper, we show that if |C(X)| is finite,
then |C(X)| ≥ |C(XP )|, and if |C(X)| is infinite, then |C(X)| = |C(XP )|, where X is the k-fold wedge
sum

∨k
i=1 Sni or Moore spaces M(G, n). Moreover, we provide examples to concretely determine the

cardinality of homotopy comultiplications on the k-fold wedge sum of spheres, Moore spaces, and
their localizations.

Keywords: comultiplications; localized spheres; basic Whitehead products; Hilton formula;
Moore space
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1. Introduction

Homotopy comultiplications, one of the Eckmann–Hilton dual notions of homotopy
multiplications, play a fundamental role in classical and rational homotopy theories. One reason for
this is that the set of pointed homotopy classes of base point preserving continuous maps from a
co-H-space X to a space Y has a canonical binary operation with identity induced by the homotopy
comultiplication on a co-H-space. The calculation of homotopy comultiplications is very complicated
in that there are usually many homotopy comultiplications on a given co-H-space with many different
homotopy properties.

Localization theories in the pointed homotopy category of simply connected (or nilpotent)
CW-complexes have been developed in algebraic or topological forms. Moreover, the study of
homotopy comultiplications, binary operations for homotopy groups with coefficients and the same
n-type structures of co-H-spaces has been carried out by several authors; see [1–8]. For example,
homotopy comultiplications on the wedge sum of circles were developed by using methods of group
theory in [9]. The techniques of rational homotopy were applied to obtain some rational results for
finite 1-connected co-H-spaces in [10,11]. The homotopy comultiplications on the wedge sum of
two Moore spaces were investigated using homological algebra in [12]. The cardinality of homotopy
comultiplications on a suspension has been determined in [13]. A topological transversality theorem for
multivalued maps with continuous, compact selections was developed in [14]. From the equivariant
homotopy theoretic point of view, an explicit expression of the behavior of the local cohomology
spectral sequence graded on the representation ring was presented with many pictures in [15].

In this paper, we study the cardinality of the set of all homotopy comultiplications on a wedge
of (localized) spheres or (localized) Moore spaces, and develop the properties of the homotopy
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comultiplications of those CW-spaces. Our methods can be used to study homotopy comultiplications
on a wedge of any number of spheres.

The paper is organized as follows: In Section 2, we describe the fundamental notions of homotopy
comultiplications and introduce the localized version of Hilton’s formula. In Section 3, we establish
basic facts regarding the types of homotopy comultiplications on the k-fold wedge sum of localized
spheres and define certain homotopy comultiplications on the k-fold wedge sum of localized spheres
and Moore spaces. In Section 4, we describe the main result of this paper and give an example to
illustrate it.

Convention. In this paper, we work in the pointed homotopy category C of connected nilpotent
CW-complexes and homotopy classes of base point preserving continuous maps. We mostly use ‘=’
for the homotopy ‘'’ unless we emphasize the homotopy. We also do not distinguish notationally
between a continuous map and its homotopy class.

2. Preliminaries

Let {Xγ|γ ∈ Γ} be a family of pointed topological spaces whose base points are xγ for each γ ∈ Γ.
The wedge sum

∨
γ∈Γ Xγ of {Xγ|γ ∈ Γ} is defined as the quotient space

∨
γ∈Γ

Xγ = ä
γ∈Γ

Xγ/{xγ|γ ∈ Γ},

where äγ∈Γ Xγ is the topological sum of {Xγ|γ ∈ Γ}.
For any abelian group G and a positive integer n ≥ 2, there exists a 1-connected CW-complex X

such that

Hi(X) =

{
G if i = n;

0 if i 6= n.

The homotopy type of X is uniquely determined up to homotopy and it is said to be a Moore
space of type (G, n). We denote the Moore space of type (G, n) (or any CW-space which has the same
homotopy type to it) by M(G, n).

Localization plays a pivotal role in both algebra and algebraic topology, especially in homotopy
theory. For a collection P of prime numbers which may be empty, a group G is called a P-local group if
the map

q : G → G

given by
q(g) = g + g + . . . + g︸ ︷︷ ︸

(q−times)

is bijective for all q ∈ P c. A nilpotent CW-complex X is said to be P-local if πn(X) is P-local for all
n ≥ 1. Any nilpotent CW-space can be localized at primes in the sense of Sullivan [16] and Bousfield
and Kan [17] in a similar way to the localization of a ring at a prime number. As usual, the localization
of a nilpotent CW-space X at P is denoted as XP which is unique up to homotopy.

A pair (X, ψ) consisting of a space X and a base point preserving continuous map ψ : X → X ∨ X
is said to be a co-Hopf space, or co-H-space for short, if π1ψ ' 1X and π2ψ ' 1X , where 1X is the identity
map of X and π1, π2 : X ∨ X → X are the first and second projections, respectively. In this case,
the map ψ : X → X ∨X is said to be a homotopy comultiplication, or comultiplication for short. Homotopy
comultiplication is an Eckmann–Hilton dual notion of homotopy multiplication; see [18–20]. It can be
seen that (X, ψ) is a co-H-space if

jψ ' ∆ : X → X× X,

where j : X ∨ X → X× X is the inclusion map and ∆ is the diagonal map.
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We now consider the k-fold wedge sum of spheres X := Sn1 ∨Sn2 ∨ · · · ∨Snk . Let ξi : Sni → X, i =
1, 2, . . . , k be the canonical inclusion maps. We now construct the so-called basic Whitehead products
(see also [21–24]) by using the homotopy classes of those canonical inclusion maps by induction on n.
We denote the basic Whitehead products of weight 1 by ξ1, ξ2, . . . , ξk that are ordered by the canonical
inclusion maps in the way so that ξ1 < ξ2 < · · · < ξk. Assume that the basic Whitehead products
of weight less than or equal to n− 1 have been already defined and ordered so that if r < s < n, all
basic Whitehead products of weight r are less than all of the basic Whitehead products of weight s.
Then a basic Whitehead product of weight n is a basic Whitehead product [a, b], where a and b are
basic Whitehead products of weights p and q, respectively, with p + q = n and a < b. If b is a basic
Whitehead product [c, d] consisting of basic Whitehead products c and d, then the condition c ≤ a
is necessary. Then the basic Whitehead products of weight n are greater than any basic Whitehead
product of weight less than n and are ordered among themselves arbitrarily.

For a basic Whitehead product of weight n, we associate to it a string of canonical inclusion maps
ξ1, ξ2, . . . , ξk that appear in the basic Whitehead products. The height hs of the basic Whitehead product
ws is defined as

hs = ∑
i

ti(ni − 1),

where ti is the number of the canonical inclusion map ξi that appears in the basic Whitehead product
ws for s = 1, 2, 3, . . . .

We are interested in the cardinality of the set of homotopy comultiplications on a co-H-space.
In the case of a wedge of two spheres, we obtain the following.

Lemma 1. The cardinality of homotopy comultiplications of Sn ∨ Sm is

∞

∏
s=3
|πm(Shs+1)|,

where 2 ≤ n < m and |X| denotes the cardinality of a set X.

Proof. See ([22], Corollary 2.9) and ([24], Corollary 2.15) for the more general case.

One of the most important theorems in algebraic topology is the Hilton’s formula [25], which is
described as follows.

Theorem 1. Let w1, w2, . . . , ws, . . . be the basic Whitehead products of the k-fold wedge sum of spheres

X = Sn1 ∨ Sn2 ∨ · · · ∨ Snk .

Then for all m, we have

πm(X) ∼=
∞⊕

s=1

πm(Shs+1).

Here,

• hs is the height of ws; and
• the isomorphism θ :

⊕∞
s=1 πm(Shs+1)→ πm(X) is given by

θ|πm(Shs+1) = ws∗ : πm(Shs+1)→ πm(X).

The direct sum is finite for each positive integer m since the height hs goes to infinity as s→ ∞.
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3. Comultiplications on a Wedge of (Localized) Spheres and Moore Spaces

In this section, we investigate the cardinality of the set of all homotopy comultiplications on the
k-fold wedge sum of localized spheres and Moore spaces. In particular, we are interested in determining
inequalities and relationships between the cardinalities of the sets of homotopy comultiplications on
the wedge sum of spheres, Moore spaces and their localizations.

3.1. The Localized Version of Hilton’s Formula

Let P be a collection of prime numbers and let GP denote the P-localization of a nilpotent group
G. It is well known that if h : G → H is any homomorphism in the category of nilpotent groups,
then we have a unique map hP : GP → HP such that the diagram

G

e

��

h // H

e

��
GP

hP // HP

is strictly commutative, where e : G → GP is a P-localizing map; similarly, for the nilpotent CW-spaces.

Lemma 2. Let ψ : X → X ∨ X be a comultiplication on a nilpotent CW-space X. Then the localization
ψP : XP → XP ∨ XP at a set P of primes is a comultiplication.

Proof. Since the localization of a nilpotent CW-space has the functorial property, all the faces including
the bottom triangle colored in blue of the following triangular prism are strictly commutative.

Here (in Figure 1),

• π1 : X ∨ X → X is the first projection;
• π1

P : XP ∨ XP → XP is the first projection (obtained by π1 by taking the P-localization);
• 1Y is the identity map of Y; and
• e : X → XP is a P-localizing map.

Similarly, we obtain the same result for the second projection π2 : X ∨ X → X. This implies that
if ψ : X → X ∨ X is a comultiplication on X, then its localization ψP : XP → XP ∨ XP also has the
comultiplication structure on the localization XP of X.

X - X ∨ X

XP - XP ∨ XP

PPPPPPPPq X

PPPPPPPq
XP

�������)

������)

?

?

?

ψ

ψP

1X

1XP

π1

π1
P

e

e

e ∨ e

Figure 1. The triangular prism.

We now consider the localized version of the Hilton’s formula described in Theorem 1 of Section 2
as follows.
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Theorem 2. Let XP be the localization of the k-fold wedge sum of spheres X := Sn1 ∨ Sn2 ∨ · · · ∨ Snk .
Then we have

πm(XP ) ∼=
∞⊕

s=1

πm(Shs+1
P )

for all m.

Proof. We note that localization preserves the Cartesian product, the smash product and the wedge
sum in the pointed homotopy category of pointed nilpotent CW-complexes; that is,

• (X×Y)P ' XP ×YP ;
• (X ∧Y)P ' XP ∧YP ; and
• (X ∨Y)P ' XP ∨YP .

Since the localizations of nilpotent CW-complexes are unique up to homotopy equivalence and
the localizations of nilpotent groups commute with finite direct sums, we have

πm(XP ) ∼= πm(X)⊗ZP
∼=
( ∞⊕

s=1

πm(Shs+1)

)
⊗ZP

∼=
∞⊕

s=1

(
πm(Shs+1)⊗ZP

)
∼=

∞⊕
s=1

πm(Shs+1
P ),

as required.

3.2. The 2-Fold Wedge of (Localized) Spheres

We begin with the 2-fold wedge sum of (localized) spheres to illustrate our methods. The results
will be applied to the k-fold wedge sum of (localized) spheres for k ≥ 3.
Notation. Throughout this (sub)section, we will make use of the following notations.

• X := Sn ∨ Sm is the wedge sum of spheres, where 2 ≤ n < m.
• k1 : Sn → X and k2 : Sm → X are the inclusion maps.
• i1, i2 : Sn → Sn ∨ Sn are the first and second inclusion maps, respectively.
• p1, p2 : Sn ∨ Sn → Sn are the first and second projections, respectively.
• ι1, ι2 : X → X ∨ X are the first and second inclusion maps, respectively.
• π1, π2 : X ∨ X → X are the first and second projections, respectively.
• P is a collection of prime numbers.
• fP : AP → BP is the P-localization of a map f : A→ B, where A and B are object classes in the

pointed homotopy category C of connected nilpotent CW-spaces.
• C(X) ⊆ [X; X ∨ X] is the set of all homotopy classes of comultiplications on a nilpotent CW-space

X, e.g., X := ∨k
i=1S

ni , Moore spaces, or their localizations.

Lemma 3. Let XP = Sn
P ∨Sm

P be a wedge sum of localized spheres with 2 ≤ n < m. Then any comultiplication
ψ : XP → XP ∨ XP has the following type{

ψk1
P = ι1P k1

P + ι2P k1
P

ψk2
P = ι1P k2

P + ι2P k2
P + Q

(1)

for some homotopy class Q : Sm
P → XP ∨ XP satisfying π1

PQ = 0 = π2
PQ, where the additions are the

homotopy additions in the homotopy groups.
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We note that if Y is a CW-complex which is filtered by its n-skeletons Yn for n ≥ 0, then its
localization YP of Y at P is filtered by Yn

P . Moreover, the two CW-spaces Yn+1
P /Yn

P and (Yn+1/Yn)P
have the same homotopy type, and each is a wedge sum of the localized spheres Sn+1

P .

Proof. We observe that XP is a localized CW-complex and thus there is a cellular map ([19] p. 77)

ψ′ : XP → XP ∨ XP

such that
ψ ' ψ′ : XP → XP ∨ XP .

Therefore, we have
ψ′(Xn

P ) ⊂ (XP ∨ XP )n.

We note that Xn
P = Sn

P and that the localized sphere Sn
P has a CW-decomposition that consists of

one localized zero cell and one localized n-cell. Therefore, we obtain

(XP ∨ XP )n = Sn
P ∨ Sn

P

and observe that ψ′ gives a base point preserving continuous map η : Sn
P → Sn

P ∨ Sn
P such that the

following diagram

Sn
P

η //

k1
P
��

Sn
P ∨ Sn

P
I //

k1
P∨k1

P
��

Sn
P × Sn

P

k1
P×k1

P
��

XP
ψ∼=ψ′ // XP ∨ XP

J // XP × XP

(2)

is commutative up to homotopy, where I and J are the inclusion maps. We also note that the
following triangle

XP
ψ //

∆ ''

XP ∨ XP

J
��

XP × XP

(3)

is homotopy commutative, where ∆ : XP → XP × XP is the diagonal map. From the homotopy
commutative diagrams (2) and (3), we obtain

(k1
P × k1

P )Iη ' Jψk1
P ' ∆k1

P = (k1
P × k1

P )∆̄, (4)

where ∆̄ : Sn
P → Sn

P × Sn
P is the diagonal map. Since

(k1
P × k1

P )∗ : [Sn
P ;Sn

P × Sn
P ]→ [Sn

P ; XP × XP ]

is a monomorphism of homotopy groups, from (4) we have

Iη ' ∆̄;

that is, the following triangle

Sn
P

η //

∆̄ &&

Sn
P ∨ Sn

P

I
��

Sn
P × Sn

P

(5)

is also commutative up to homotopy, where ∆̄ : Sn
P → Sn

P × Sn
P is the diagonal map. This implies that

the map η : Sn
P → Sn

P ∨ Sn
P is also a comultiplication. Since the localized sphere Sn

P is 1-connected for
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n ≥ 2, we see that the comultiplication η is unique up to homotopy (see ([1] Proposition 3.1)) and has
the form

η = i1P +η i2P ,

where +η is the addition induced by the comultiplication η. By the uniqueness of the comultiplication

η : Sn
P → Sn

P ∨ Sn
P

as the standard (or suspension) comultiplication, we have

i1P +η i2P = i1P + i2P ,

where + is the homotopy addition in the homotopy group

[Sn
P ; XP ∨ XP ] ∼= [Sn; XP ∨ XP ] ∼= πn(XP ∨ XP ).

Hence
ψk1
P = (k1

P ∨ k1
P )η = (k1

P ∨ k1
P )(i

1
P +η i2P ) = ι1P k1

P + ι2P k1
P .

We now consider the homotopy class Q in the homotopy group [Sn
P ; XP ∨XP ] as an abelian group

given by
Q = ψk2

P − ι1P k2
P − ι2P k2

P ;

that is,
ψk2
P = ι1P k2

P + ι2P k2
P + Q.

Then we obtain

π1
PQ = π1

Pψk2
P − π1

P ι1P k2
P − π1

P ι2P k2
P = k2

P − k2
P − 0 = 0

and
π2
PQ = π2

Pψk2
P − π2

P ι1P k2
P − π2

P ι2P k2
P = k2

P − 0− k2
P = 0,

as required.

Lemma 4. If Q : Sm
P → XP ∨ XP is any homotopy class in [Sm

P ; XP ∨ XP ] such that

π1
PQ = 0 = π2

PQ,

then the map ψ : XP → XP ∨ XP defined in Equation (1) is a comultiplication.

Proof. We have

• π1
Pψk1

P = π1
P (ι

1
P k1
P + ι2P k1

P ) = k1
P + 0 = k1

P ;
• π1

Pψk2
P = π1

P (ι
1
P k2
P + ι2P k2

P + Q) = k2
P + 0 + π1

PQ = k2
P + 0 + 0 = k2

P ;
• π2

Pψk1
P = π2

P (ι
1
P k1
P + ι2P k1

P ) = 0 + k1
P = k1

P ; and
• π2

Pψk2
P = π2

P (ι
1
P k2
P + ι2P k2

P + Q) = 0 + k2
P + π2

PQ = 0 + k2
P + 0 = k2

P ;

that is, π1
Pψ = 1XP and π2

Pψ = 1XP . This implies that ψ is a comultiplication on XP .

Using the results above, we can define a comultiplication on a wedge of localized spheres
as follows.

Definition 1. Let Q : Sm
P → XP ∨ XP be any element of [Sm

P ; XP ∨ XP ] satisfying

π1
PQ = 0 = π2

PQ.
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We define a comultiplication ψQ : XP → XP ∨ XP by{
ψQk1

P = ι1P k1
P + ι2P k1

P
ψQk2

P = ι1P k2
P + ι2P k2

P + Q.

The homotopy class Q is called a perturbation of the comultiplication ψQ.

We note that if e : S2n−1 → S2n−1
P is the P-localizing map, then the homomorphism

e∗ : [S2n−1
P ;Sn

P ∨ Sn
P ]

∼= // [S2n−1;Sn
P ∨ Sn

P ] (6)

induced by e is an isomorphism of homotopy groups.
Convention. For our convenience in notation, using the isomorphism of homotopy groups in (6),
we make use of the same notations of the homotopy classes on both sides of the isomorphism; that is,

γ 7→ e∗(γ) = γ ◦ e←→ γ ∈ [S2n−1
P ;Sn

P ∨ Sn
P ]

for any homotopy class γ in the homotopy group [S2n−1
P ;Sn

P ∨ Sn
P ]. In particular,

γ = [i1P , i2P ] ∈ [S2n−1
P ;Sn

P ∨ Sn
P ]

as the generalized Whitehead product in the sense of Arkowitz [26]; see below.

Lemma 5. Let [i1, i2] : S2n−1 → Sn ∨ Sn be the Whitehead product. Then we have

[i1, i2]P = [i1P , i2P ].

Proof. The functorial property of the localization shows that the following diagram

S2n−1

e
��

a // Sn ∨ Sn

e
��

i1∨i2 // Sn ∨ Sn ∨ Sn ∨ Sn

e
��

∇ // Sn ∨ Sn

e
��

S2n−1
P

aP // Sn
P ∨ Sn

P
i1P∨i2P // Sn

P ∨ Sn
P ∨ Sn

P ∨ Sn
P

∇P // Sn
P ∨ Sn

P

(7)

is commutative up to homotopy, where a : S2n−1 → Sn ∨ Sn is the attaching map and e : Y → YP is a
P-localizing map. Since

[S2n−1;Sn
P ∨ Sn

P ]
∼= [S2n−1

P ;Sn
P ∨ Sn

P ],

the commutative diagram in (7) shows the proof.

Example 1. Let α : Sm
P → S2n−1

P be any homotopy class. We define a homotopy class Q in the
homotopy group

πm(XP ∨ XP ) = [Sm; XP ∨ XP ] ∼= [Sm
P ; XP ∨ XP ]

as the composition

Sm
P

α // S2n−1
P

[i1,i2]P // Sn
P ∨ Sn

P
k1
P∨k1

P // XP ∨ XP

of maps; that is,
Q = (k1

P ∨ k1
P )[i

1, i2]P (α) = [ι1P k1
P , ι2P k1

P ]α,
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where [i1, i2]P is the localization of the Whitehead product [i1, i2]. Then the map ψQ : XP → XP ∨ XP
defined by Definition 1 is a comultiplication on XP ∨ XP whose perturbation is Q.

Let q2
P : XP → Sm

P be the projection. Then the cofibration

Sn
P ∨ Sn

P
k1
P∨k1

P // XP ∨ XP
q2
P∨q2

P // Sm
P ∨ Sm

P ,

asserts that if Q ∈ πm(XP ∨ XP ) is any homotopy class satisfying

π1
PQ = 0 = π2

PQ,

then there exists a unique homotopy class W ∈ πm(Sn
P ∨ Sn

P ) such that Q = (k1
P ∨ k1

P )W and

p1
PW = 0 = p2

PW,

where p1
P , p2

P : Sn
P ∨ Sn

P → Sn
P are the first and second projections induced by p1 and p2, respectively.

To investigate the fundamental property of homotopy comultiplications on a wedge of localized
spheres, we need to study the perturbations of all homotopy comultiplications. This naturally raises
the following question: How can we construct the perturbation of a comultiplication on the wedge of
localized spheres? The following lemma gives an answer to this query.

We denote the (generalized) basic Whitehead products of i1P and i2P by w1, w2, . . . , ws, . . . and the
height of ws is denoted by hs for each s = 1, 2, 3, . . .. Then we have the following.

Lemma 6. A perturbation Q : Sm
P → XP ∨ XP of any comultiplication ψQ : XP → XP ∨ XP can be

expressed uniquely as in Definition 1 as follows:

Q = (k1
P ∨ k1

P )∗(
∞

∑
s=3

wsas),

where ws is the sth (generalized) basic Whitehead product localized at P and as is any homotopy class in the
homotopy group

[Sm
P ;Shs+1

P ] ∼= [Sm;Shs+1
P ]

for s = 3, 4, 5, . . . .

Proof. By using Lemmas 3–5, we see that every comultiplication ψQ : XP → XP ∨ XP has the type of
Definition 1 satisfying

π1
PQ = 0 = π2

PQ.

Using Theorem 2, we obtain

πm(Sn
P ∨ Sn

P )
∼=

∞⊕
s=1

πm(Shs+1
P )

= πm(Sn
P )⊕ πm(Sn

P )⊕
∞⊕

s=3
πm(Shs+1

P ).

Moreover, every homotopy class Q in the homotopy group [Sm
P ; XP ∨ XP ] can be uniquely

expressed as the following type:

(k1
P ∨ k1

P )∗(i
1
P a1 + i2P a2 +

∞

∑
s=3

wsas) ∈ [Sm
P ; XP ∨ XP ] ∼= πm(XP ∨ XP ).

Here,
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• a1 and a2 are any homotopy classes in [Sm
P ;Sn

P ]
∼= πm(Sn

P );

• as is any homotopy class in [Sm
P ;Shs+1

P ] ∼= πm(Shs+1
P ) for s = 3, 4, 5, . . .; and

• ws is the (generalized) basic Whitehead product for s = 3, 4, 5 . . ..

We recall that all of the (generalized) basic Whitehead products ωs consists of at least one i1P
and at least one i2P , for example, ω3 = [i1P , i2P ], ω4 = [i1P , [i1P , i2P ]], ω5 = [i2P , [i1P , i2P ]] and so on. We
now have

π1
P ◦Q = π1

P (k
1
P ∨ k1

P )∗(
∞

∑
s=1

wsas)

= π1
P (k

1
P ∨ k1

P )∗(i
1
P a1 + i2P a2 +

∞

∑
s=3

wsas)

= a1 + 0∗(a2) + 0
= a1

(8)

and

π2
P ◦Q = π2

P (k
1
P ∨ k1

P )∗(
∞

∑
s=3

wsas)

= π2
P (k

1
P ∨ k1

P )∗(i
1
P a1 + i2P a2 +

∞

∑
s=3

wsas)

= 0∗(a1) + a2 + 0
= a2,

(9)

where 0∗ is the trivial homomorphism between homotopy groups and 0 is the trivial homotopy class.
From the fact that π1

PQ = 0 = π2
PQ, the homotopy classes a1 and a2 in (8) and (9) should be zero,

as required.

For the 2-fold wedge sum of localized spheres, we have

Theorem 3. The cardinality of the set of comultiplications on Sn
P ∨ Sm

P is

∞

∏
s=3
|πm(Shs+1

P )|,

where 2 ≤ n < m and P is a collection of prime numbers.

Proof. By Lemma 6, we have the proof.

Let |C(XP )| be the cardinality of the set C(XP ) of comultiplications on XP .

Example 2. If P = {2, 3}, then we have

(1) |C(S4
P ∨ S7

P )| = ∞;
(2) |C(S4

P ∨ S8
P )| = 2; and

(3) |C(S4
P ∨ S9

P )| = 2.

Indeed, by Theorem 3, we have

|C(S4
P ∨ S8

P )| = |π8(S7
P )| × |π8(S10

P )| × · · ·
= |Z2 ⊗ZP | × |{e} ⊗ZP | × · · ·
= 2× 1× 1× · · · × 1× · · ·
= 2

,

where {e} is the trivial group, and similarly for the other cases.
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3.3. The k-Fold Wedge Sum of (Localized) Spheres

We now consider the k-fold wedge sum of 1-connected spheres {Sni |i = 1, 2, . . . , k} and their
localized spheres {Sni

P |i = 1, 2, . . . , k} as a generalization of the statements above; that is,

X = Sn1 ∨ Sn2 ∨ · · · ∨ Snk

and
XP = Sn1

P ∨ S
n2
P ∨ · · · ∨ S

nk
P

for 2 ≤ n1 < n2 < · · · < nk.
Notation. We make use of the following notations in the rest of this paper.

• X :=
∨k

i=1 Sni for 2 ≤ n1 < n2 < · · · < nk.
• α1

i , α2
i : Sni → X ∨ X are the ith and (k + i)th inclusions, respectively, for i = 1, 2, . . . , k− 1.

• ζ i : Sni → X is the ith inclusion for i = 1, 2, . . . , k.
• ι1, ι2 : X → X ∨ X are the first and second inclusions, respectively.
• π1, π2 : X ∨ X → X are the first and second projections, respectively.
• W†

j is the set of all (generalized) basic Whitehead products localized at P containing the homotopy

classes from α1
i for i = 1, 2, . . . , j− 1 and j = 2, 3, . . . , k.

• W]
j is the set of all (generalized) basic Whitehead products localized at P containing the homotopy

classes from α2
i for i = 1, 2, . . . , j− 1 and j = 2, 3, . . . , k.

• W∗j is the set of all (generalized) basic Whitehead products localized at P containing as a factor at

least one of the homotopy classes from α1
i and at least one of the homotopy classes from α2

i for
i = 1, 2, . . . , j− 1 and j = 2, 3, . . . , k.

We note that if k = 2, n1 = n and n2 = m; that is, X = Sn ∨ Sm, then we have

1. ζ1 = k1 : Sn ↪→ Sn ∨ Sm;
2. ζ2 = k2 : Sm ↪→ Sn ∨ Sm;

3. α1
1 = (k1 ∨ k1) ◦ i1 : Sn i1 // Sn ∨ Sn k1∨k1

// X ∨ X ; and

4. α2
1 = (k1 ∨ k1) ◦ i2 : Sn i2 // Sn ∨ Sn k1∨k1

// X ∨ X

in the notations above.
To develop the basic Whitehead products in the k-fold wedge sum of spheres localized at P ,

we order the basic Whitehead products of weight 1 as follows:

• α1
i < α2

j for i, j = 1, 2, . . . , k− 1; and

• ι1ζ i < ι2ζ j for i, j = 1, 2, . . . , k.

Definition 2. Let Qj : Snj
P → XP ∨ XP be any element of [Snj

P ; XP ∨ XP ] satisfying

π1
PQj = 0 = π2

PQj

for each j = 2, 3, . . . , k, where π1
P , π2

P : XP ∨ XP → XP are the first and second projections, respectively.
We define a comultiplication

ψ = ψ(Q2,Q3,...,Qk)
: XP → XP ∨ XP
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by 

ψQζ1
P = ι1P ζ1

P + ι2P ζ1
P

ψQζ2
P = ι1P ζ2

P + ι2P ζ2
P + Q2

...
ψQζ

j
P = ι1P ζ

j
P + ι2P ζ

j
P + Qj

...
ψQζk

P = ι1P ζk
P + ι2P ζk

P + Qk.

(10)

Here, we call Qj ∈ [Snj
P ; XP ∨ XP ] the jth perturbation of ψ = ψ(Q2,Q3,...,Qk)

for j = 2, 3, . . . , k.

We need to investigate the jth perturbation Qj ∈ [Snj
P ; XP ∨ XP ] of ψ(Q2,Q3,...,Qk)

: XP → XP ∨ XP
as a generalization of Lemma 6 more concretely.

Lemma 7. The jth perturbation Qj ∈ [Sni
P ; XP ∨ XP ] of any comultiplication ψ : XP → XP ∨ XP can be

uniquely expressed as in Definition 2 by

Qj = ∑
wj∈W∗j

wj ◦ cj. (11)

for j = 2, 3, . . . , k. Here,

• wj : S
hwj+1

P → XP ∨ XP is the jth (generalized) basic Whitehead product localized at P ; and

• cj : Snj
P → S

hwj+1

P is any homotopy class in the homotopy group [Snj
P ;S

hwj+1

P ] ∼= [Snj ;S
hwj+1

P ], where hwj

is the height of the (generalized) basic Whitehead product wj ∈W∗j for each j = 2, 3, . . . , k.

Proof. The localized version of the Hilton’s formula says that the jth perturbation Qj of ψ : XP →
XP ∨ XP can be uniquely written by

Qj =
j−1

∑
i=1

(α1
i )P ◦ βi

j +
j−1

∑
i=1

(α2
i )P ◦ γi

j + ∑
vj∈W†

j

uj ◦ aj + ∑
vj∈W]

j

vj ◦ bj + ∑
wj∈W∗j

wj ◦ cj (12)

Here,

• βi
j and γi

j are any homotopy classes in [Snj
P ;Sni

P ]
∼= πnj(S

ni
P ) for i = 1, 2, . . . , j− 1;

• aj is any homotopy class in [Snj
P ;S

huj+1

P ] ∼= πnj(S
huj+1

P ) for j = 2, 3, . . . k;

• bj is any homotopy class in [Snj
P ;S

hvj+1

P ] ∼= πnj(S
hvj+1

P ) for j = 2, 3, . . . k;

• cj is any homotopy class in [Snj
P ;S

hwj+1

P ] ∼= πnj(S
hwj+1

P ) for j = 2, 3, . . . k; and
• uj, vj and wj are the (generalized) basic Whitehead product localized at P for j = 2, 3, . . . k.

We show that the homotopy classes βi
j, γi

j, aj and bj are all zero. By taking the first and second

projections π1
P , π2

P : XP ∨XP → XP to the perturbation Qj of any comultiplication ψ : XP → XP ∨XP ,
we have

π1
P ◦Qj = 0 = π2

P ◦Qj (13)
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for each j = 2, 3, . . . , k; that is,

0 = π1
P ◦Qj

=
j−1

∑
i=1

π1
P ◦ (α1

i )P ◦ βi
j +

j−1

∑
i=1

π1
P ◦ (α2

i )P ◦ γi
j + ∑

uj∈W†
j

π1
P ◦ uj ◦ aj + ∑

vj∈W]
j

π1
P ◦ vj ◦ bj

+ ∑
wj∈W∗j

π1
P ◦ wj ◦ cj

(14)

and similarly, for the second projection π2
P ; see below. Since the map

π1
P ◦ (α1

i )P : Snj
P

(α1
i )P // XP ∨ XP

π1
P // XP (15)

in (14) is the inclusion map, the localized version of the Hilton’s formula asserts that the homotopy
class βi

j should be zero for each i = 1, 2, . . . , j− 1 and j = 2, 3, . . . , k. The choice of the (generalized)

basic Whitehead products localized at P in W†
j says that all the homotopy classes aj should be zero.

We note that the maps

π1
P ◦ (α2

i )P : Snj
P

(α2
i )P // XP ∨ XP

π1
P // XP , (16)

π1
P ◦ vj : S

hvj+1

P
vj // XP ∨ XP

π1
P // XP (17)

and

π1
P ◦ wj : S

hwj+1

P
wj // XP ∨ XP

π1
P // XP (18)

are all zero by the choice of (α2
i )P , vj and wj for each i = 1, 2, . . . , j− 1 and j = 2, 3, . . . , k.

Similarly, by taking the second projection π2
P : XP ∨ XP → XP to the perturbation Qj again,

we see that the map

π2
P ◦ (α2

i )P : Snj
P

(α2
i )P // XP ∨ XP

π2
P // XP (19)

from (12) is the inclusion map so that γi
j = 0 for each i = 1, 2, . . . , j− 1 and j = 2, 3, . . . , k. The choice of

the (generalized) basic Whitehead products localized at P in W]
j says that all the homotopy classes bj

should be zero. Moreover, the localized version of the Hilton’s formula asserts that the homotopy class
π2
P ◦ (α1

i )P , π2
P ◦ uj, and π2

P ◦wj are all zero by the choice of (α1
i )P , uj and wj for each i = 1, 2, . . . , j− 1

and j = 2, 3, . . . , k, as required.

For the k-fold wedge sum of localized spheres, we have the following.

Theorem 4. The cardinality of the set of comultiplications on XP := Sn1
P ∨ S

n2
P ∨ · · · ∨ S

nk
P is

∏
w2∈W∗2

|πn2(S
hw2+1
P )| × ∏

w3∈W∗3

|πn3(S
hw3+1
P )| × · · · × ∏

wk∈W∗k

|πnk (S
hwk+1
P )|,

where 2 ≤ n1 < n2 < · · · < nk and P is a collection of prime numbers.

Proof. By Lemma 7, we complete the proof.
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Example 3. If P = {2, 3, 5}, then we have

(1) |C(S8
P ∨ S

12
P ∨ S26

P )| = ∞; and
(2) |C(S8

P ∨ S
12
P ∨ S27

P )| = 512.

3.4. The (Localized) Moore Spaces

A comultiplication ϕ : Y → Y ∨Y is said to be associative if

(ϕ ∨ 1) ◦ ϕ ' (1∨ ϕ) ◦ ϕ : Y → Y ∨Y ∨Y,

where 1 : Y → Y is the identity map. If ϕ is associative, we call (Y, ϕ) an associative co-H-space or
co-H-group. It is well known that all Moore spaces M(G, n), n ≥ 2, are co-H-groups, where G is an
abelian group.

In general, the cardinality of the set C(Y) ⊆ [Y; Y ∨Y] of all homotopy classes of comultiplications
on Y is extremely difficult to detect. As a particular case, it was shown in [27] that the set of
comultiplications C(M(G, 2)) is in one-one correspondence with the group Ext(G, G⊗ G), and that
if n ≥ 3, then C(M(G, n)) has one element as the standard comultiplication, where G is an abelian
group. We note that this result is also valid for localizations.

4. Main Result and Its Illustration

Let P be a collection of prime numbers which may be empty and let XP be the localization of the
k-fold wedge sum of spheres

X :=
k∨

i=1

Sni = Sn1 ∨ Sn2 ∨ · · · ∨ Snk

for 2 ≤ n1 < n2 < · · · < nk or a Moore space M(G, n), where G is an abelian group and n ≥ 2. Then,
by using the results in Sections 2 and 3, we have the following theorem.

Theorem 5. Let |C(X)| and |C(XP )| be the cardinalities of the sets of all the homotopy comultiplications on X
and XP , respectively.

(1) If |C(X)| is finite, then |C(X)| ≥ |C(XP )|.
(2) If |C(X)| is infinite, then |C(X)| = |C(XP )|.

Proof. We prove the theorem in the case of the k-fold wedge sum of spheres and its localization.

We first note that if the homotopy group πnj(S
hwj+1

) contains a q-torsion subgroup Tq with (p, q) = 1

for wj ∈W∗j , j = 2, 3, . . . , k, then all of the q-torsion subgroups of πnj(S
hwj+1

) could entirely vanish in

πnj(S
hwj+1

P ) for wj ∈W∗j , j = 2, 3, . . . , k, where q is a prime number with (p, q) = 1 for all p ∈ P .

(1) If |C(X)| is finite, then all of the homotopy groups πnj(S
hwj+1

), j = 2, 3, . . . , k must be the
torsion abelian groups Twj , j = 2, 3, . . . , k, where Twj is the torsion subgroup of

k

∏
j=2

∏
wj∈W∗j

πnj(S
hwj+1

) =
k

∏
j=2

∏
wj∈W∗j

Twj . (20)

We also note that
Twj
∼= Zp1

j1 ⊕Zp2
j2 ⊕ · · · ⊕Zpl

jl , (21)
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where p1, p2, . . . , pl are (not necessarily distinct) primes and j1, j2, . . . , jl are (not necessarily distinct)
positive integers. We thus have

|C(X)| =
k

∏
j=2

∏
wj∈W∗j

|πnj(S
hwj+1

)| (by Lemma 1)

=
k

∏
j=2

∏
wj∈W∗j

|Twj |

≥
k

∏
j=2

∏
wj∈W∗j

|Twj ⊗ZP |

=
k

∏
j=2

∏
wj∈W∗j

|πnj(S
hwj+1

P )| (by Theorem 4)

= |C(XP )|.

(22)

We note that equality of the inequality in (22) holds only in the case that the collection P of primes
contains all of the prime numbers expressed in the torsion subgroups Twj , j = 2, 3, . . . , k.

(2) If |C(X)| is infinite, then at least one of the homotopy groups πnj(S
hwj+1

), j = 2, 3, . . . , k
contains an infinite cyclic group, say in dimension ns = hws + 1 or ns = 2(hws + 1)− 1, where hws + 1
is an even integer for some s = 2, 3, . . . , k. Moreover, it can be seen that the numbers of nonzero

homotopy groups πnj(S
hwj+1

) or πnj(S
hwj+1

P ), j = 2, 3, . . . , k are always finite because the height hwj

goes to infinity.
Let Fws be a free abelian group of rank 1 and let Tws be a torsion subgroup of πns(Shws+1) for some

s = 2, 3, . . . , k. Then we have

|C(X)| =
k

∏
j=2

∏
wj∈W∗j

|πnj(S
hwj+1

)|

= |Fws ⊕ Tws | ×∏
j 6=s

∏
wj∈W∗j

|πnj(S
hwj+1

)|

≈ |Z|.

(23)

Here, ≈means the same cardinality as sets and

Fws ⊕ Tws
∼=
{
Z for ns = hws + 1

Z⊕ Tws for ns = 2(hws + 1)− 1 and hws + 1 even.

By Theorem 4 or by tensoring ZP on the homotopy groups described in (23), we see that if
ns = hws + 1 for some s, then

|C(XP )| =
k

∏
j=2

∏
wj∈W∗j

|πnj(S
hwj+1

P )|

= |(Fws ⊕ Tws)⊗ZP | ×∏
j 6=s

∏
wj∈W∗j

|πnj(S
hwj+1

P )|

= |Z⊗ZP | ×∏
j 6=s

∏
wj∈W∗j

|πnj(S
hwj+1

P )|

≈ |ZP |

(24)

and if hws + 1 is even and ns = 2(hws + 1)− 1 for some s, then
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|C(XP )| =
k

∏
j=2

∏
wj∈W∗j

|πnj(S
hwj+1

P )|

= |(Fws ⊕ Tws)⊗ZP | ×∏
j 6=s

∏
wj∈W∗j

|πnj(S
hwj+1

P )|

= |(Z⊕ Fws)⊗ZP | ×∏
j 6=s

∏
wj∈W∗j

|πnj(S
hwj+1

P )|

≈ |ZP |

(25)

We note that some finite groups in (24) and (25) will vanish for some torsion groups, each of
whose orders do not belong to the collection P of prime numbers. Moreover, because P is a collection
of primes and the free abelian group Z is a subgroup of ZP as a subring of the ring of rational numbers
Q; that is,

Z ⊆ ZP ⊆ Q,

their cardinalities are the same as countably infinite sets.
The proof in the case of a Moore space M(G, n) and its localization runs through the similar way

to the case of the k-fold wedge sum of spheres and its localization.

Remark 1. We note that if the collection P of prime numbers is the empty collection, then the above statement
is also true as a rationalization XQ of a 1-connected CW-complex X :=

∨k
i=1 Sni for 2 ≤ n1 < n2 < · · · < nk.

We finally give an example to illustrate our results.

Example 4. The finite (resp. infinite) cases are described in Tables 1–3 (resp. Tables 4 and 5). In the
tables, φ denotes the empty collection of primes and ℵ0 is aleph-zero.

Table 1. The finite case.

X = Sn ∨ Sm P |C(X)| |C(XP )|

S3 ∨ S6 {2, 5} 2 2
S3 ∨ S6 {3, 5} 2 1
S8 ∨ S26 {11, 13} 504 1
S3 ∨ S6 φ 2 1

Table 2. The finite case for k ≥ 3.

X =
∨k

i=1 Sni P |C(X)| |C(XP )|

S4 ∨ S6 ∨ S8 {3, 5} 2 1
S5 ∨ S6 ∨ S7 {3, 5} 1 1
S5 ∨ S7 ∨ S10 {3, 5} 2 1

S7 ∨ S9 ∨ S11 ∨ S22 {3, 5} 19, 568, 944, 742, 400 1

Table 3. The finite case: Moore spaces.

Y = M(G, n) P |C(Y)| |C(YP )|
M(Z, 2) {2, 5} 1 1
M(Z3, 2) {2, 5} 3 1
M(Q, 2) {3, 5} 1 1

M(G, n), n ≥ 3 φ 1 1
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Table 4. The infinite case.

X = Sn ∨ Sm P |C(X)| |C(XP )|

S4 ∨ S7 {2, 5} |Z| = ℵ0 |ZP | = ℵ0
S5 ∨ S9 {2, 5} |Z| = ℵ0 |ZP | = ℵ0
S10 ∨ S19 {2, 5} |Z| = ℵ0 |ZP | = ℵ0
S4 ∨ S7 φ |Z| = ℵ0 |Q| = ℵ0

Table 5. The infinite case for k ≥ 3.

X =
∨k

i=1 Sni P |C(X)| |C(XP )|

S3 ∨ S4 ∨ S5 {2, 5} |Z| = ℵ0 |ZP | = ℵ0
S4 ∨ S6 ∨ S12 {2, 5} |Z| = ℵ0 |ZP | = ℵ0
S7 ∨ S12 ∨ S24 {2, 5} |Z| = ℵ0 |ZP | = ℵ0
S6 ∨ S8 ∨ S20 φ |Z| = ℵ0 |Q| = ℵ0

Proof. To prove the example, we use the previous results in Sections 2 and 3, and prove the first two
cases to illustrate the method. We note that π6(S5) is isomorphic to the cyclic group of order 2; that is,
π6(S5) ∼= Z2; see [28]. If X = S3 ∨ S6 and P = {2, 5}, then we have

|C(X)| = |π6(S5)| × |π6(S7)| × |π6(S7)|
×|π6(S9)| × |π6(S9)| × |π6(S9)| × |π6(S11)| × · · ·

= 2× 1× 1× 1× 1× 1× 1× · · ·
= 2

and

|C(XP )| = |π6(S5)⊗ZP | × |π6(S7)⊗ZP | × |π6(S7)⊗ZP |
×|π6(S9)⊗ZP | × |π6(S9)⊗ZP | × |π6(S9)⊗ZP | × |π6(S11)⊗ZP | × · · ·

= |Z2 ⊗ZP | × |{e} ⊗ZP | × |{e} ⊗ZP |
×|{e} ⊗ZP | × |{e} ⊗ZP | × |{e} ⊗ZP | × |{e} ⊗ZP | × · · ·

= 2× 1× 1× 1× 1× 1× 1× · · ·
= 2

,

where {e} is the trivial group. If X = S3 ∨ S6 and P = {3, 5}, then we get

|C(XP )| = |π6(S5)⊗ZP | × |π6(S7)⊗ZP | × |π6(S7)⊗ZP |
×|π6(S9)⊗ZP | × |π6(S9)⊗ZP | × |π6(S9)⊗ZP | × |π6(S11)⊗ZP | × · · ·

= |Z2 ⊗ZP | × |{e} ⊗ZP | × |{e} ⊗ZP |
×|{e} ⊗ZP | × |{e} ⊗ZP | × |{e} ⊗ZP | × |{e} ⊗ZP | × · · ·

= 1× 1× 1× 1× 1× 1× 1× · · ·
= 1

.

Therefore, if X = S3 ∨ S6, then we have{
|C(X)| = 2 = |C(XP )| for P = {2, 5}
|C(X)| = 2 > 1 = |C(XP )| for P = {3, 5}

,

as required.

5. Conclusions and Further Prospects

Co-H-spaces, also called spaces with a comultiplication, and localization theory play a pivotal role
in (equivariant) homotopy theory. In general, it turns out that the computation of the cardinality of the
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set of homotopy comultiplications is very difficult. In this paper, we have investigated the inequalities
and relationships between the cardinalities of the sets of homotopy comultiplications on the wedge of
localized spheres and localized Moore spaces.

We do hope that our methods can be used to study homotopy comultiplications on the wedge
sum of any number localized spheres and localized Moore spaces. We also hope that the results
in this paper can be applied to the notions of algebra comultiplications on the (localized) algebraic
objects such as (free) Lie algebras by considering the coproduct of Lie algebras or cohomology modules
over ZP .
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