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Abstract: In this paper, we study the kernel and spectral properties of the Bourguignon Laplacian on
a closed Riemannian manifold, which acts on the space of symmetric bilinear forms (considered as
one-forms with values in the cotangent bundle of this manifold). We prove that the kernel of this
Laplacian is an infinite-dimensional vector space of harmonic symmetric bilinear forms, in particular,
such forms on a closed manifold with quasi-negative sectional curvature are zero. We apply these
results to the description of surface geometry.
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1. Introduction

In this article, we consider a connected n-fimensional smooth manifold M endowed with a
Riemannian metric g. One can associate a number of natural elliptic differential operators to (M, g),
which arise from the Riemannian geometric structure. The most famous one is the Hodge–de Rham
Laplacian, ∆H , which acts on C∞-sections of the vector bundle Λp(M) of exterior differential p-forms
(p = 1, . . . , n− 1). For a closed manifold M, the condition ∆H ω = 0 defines ω as a harmonic p-form;
moreover, the dimension of the kernel Ker ∆H is equal to the p-th Betti number bp(M) of M (e.g., [1–3]
with the fundamentals of the theory of harmonic exterior differential forms on a Riemannian manifold).
If the curvature operator R̄ of (M, g) is quasi-positive, then bp(M) = 0. This is one of the main results
of the Bochner technique (see ([2], p. 351)), which is used to control the topology of a Riemannian
manifold by restrictions on its curvature (see ([2], pp. 333–364)). Many works are devoted to the
spectral theory of the Hodge–de Rham Laplacian (e.g., [4]).

J.-P. Bourguignon ([5], p. 273) has defined (as an analogue of ∆H) the second order self-adjoint and
strongly elliptic differential operator ∆B acting on C∞-sections of the vector bundle S2M of symmetric
bilinear forms on (M, g).

In the paper, we study the kernel and spectral properties of ∆B, considering S2M as one-forms
with values in the cotangent bundle of this manifold. We show that on a closed M the kernel Ker ∆B is
a finite-dimensional vector space consisting of harmonic symmetric bilinear forms (see ([5], p. 270)
and ([2], p. 350)). Similarly to the Hodge–de Rham Laplacian, ∆B is also a Laplacian and it admits
the Weitzenböck decomposition formula (see [5]). Therefore, we can study the Bourguignon operator
using the analytical method, due to Bochner. In particular, we prove that every harmonic symmetric
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bilinear form on a compact (M, g) with quasi-negative sectional curvature is zero. We also investigate
the spectral properties of ∆B. In this work, we apply these results to the description of surface geometry.
There is not a single article on the spectral theory of the Bourguignon Laplacian, and we are the first to
study this theory; thus, our research could have a significant contribution to the general spectral theory
of elliptic operators (e.g., [6]). We prove that any harmonic symmetric bilinear form is a Codazzi tensor
with constant trace. Therefore, the results in this work can be used in the theory of Codazzi tensors
(e.g., ([7], pp. 436–440); [4,8,9]) and its applications in physics (e.g., [10]).

2. The Bourguignon Laplacian

Let (M, g) be a closed (compact without boundary) manifold and L2(M, g) be the Hilbert space
of functions or tensors with the scalar product

〈u, w〉 =
∫

M
g(u, w)d volg,

where d volg is the volume form relative to g. In this case, H2(M, g) denotes the Hilbert space of
functions or tensors determined (M, g) with two covariant derivatives in L2(M, g) and with the usual
product and norm.

The cotangent bundle T∗M comes equipped with the Levi-Civita covariant derivative ∇; thus,
there is an induced exterior differential d∇ : C∞(S2M) → C∞(Λ2M ⊗ T∗M) on the bundle of
T∗M-valued differential one-forms,

d∇ϕ(X, Y, Z) := (∇X ϕ)(Y, Z)− (∇Y ϕ)(X, Z) (1)

for any tangent vector fields X, Y, Z on M and ϕ ∈ C∞(S2M). In particular, if d∇ϕ = 0 then ϕ ∈
C∞(S2M) is said to be a closed bilinear form; in this case, ϕ is a Codazzi tensor. A symmetric bilinear
form is called a Codazzi tensor (named after D. Codazzi) if its covariant derivative is a symmetric
tensor (see ([7], p. 435); [4,8]). We call a Codazzi tensor trivial if it is a constant multiple of metric.
Let δ∇ : C∞(Λ2M ⊗ T∗M) → C∞(S2M) be the formal adjoint operator of the exterior differential
d∇ (see ([7], p. 355) and [5]). For an arbitrary local orthonormal frame (ei) of vector fields on (M, g),
we have

δ∇ϕ(X) = −∑ i(∇ei ϕ)(ei, X).

Then ϕ ∈ C∞(S2M) is called harmonic if ω ∈ Ker d∇
⋂

Ker δ∇ (see ([5], p. 270) and ([2], p. 350)).
Using d∇ and δ∇, J.-P. Bourguignon ([5], p. 273) constructed the Laplacian ∆B : C∞(S2M)→ C∞(S2M)

using the formula
∆B := d∇δ∇ + δ∇ d∇.

Remark 1. The theory on T∗M-valued differential one-forms can be found in works from the following list:
([11], p. 338), ([7], pp. 133–134; 355), [5,12], ([2], pp. 349–351).

By direct computations we obtain the following integral formula:

〈∆B ϕ, ϕ〉 = 〈d∇ϕ, d∇ϕ〉+ 〈δ∇ϕ, δ∇ϕ〉. (2)

Based on (2), we conclude that the Bourguignon Laplacian ∆B is a non-negative operator. By the
general theorem on elliptic operators (see ([11], p. 383) and ([7], p. 464)), we have the orthogonal
decomposition

C∞(S2M) = Ker ∆B ⊕ Im ∆B, (3)
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with respect to the global scalar product 〈 ·, · 〉. It is known ([7], p. 464) that Ker ∆B (the kernel of ∆B)
is a finite-dimensional vector space over the field of real numbers. An easy computation yields the
Weitzenböck decomposition formula (e.g., ([7], p. 355), ([5], p. 273)).

∆B ϕ = ∆̄ ϕ + B ϕ, (4)

where ∆̄ = ∇∗∇ is the rough Laplacian (see ([7], p. 52)). The second component of the right hand side
of (4) is called the Weitzenböck curvature operator for ∆B. It has the form

B ϕ := ϕ ◦ Ric−
◦
R ϕ,

where ◦ is a composition of endomorphisms, Ric is the Ricci curvature, and
◦
R is the linear map of S2M

into itself such that (see ([7], p. 52))

( ◦
R ϕ
)
(X, Y) = ∑n

i=1 ϕ(R(X, ei)Y, ei)

for the curvature tensor R, any ϕ ∈ C∞(S2M) and an arbitrary local orthonormal basis (ei) of vector
fields on (M, g). By the above, B g = 0 and

traceg (B ϕ) = 0. (5)

From (4) and (5) we obtain the identity

traceg(∆B ϕ) = ∆̄(traceg ϕ). (6)

We consider the spectral theory of the Laplacian ∆B : C∞(S2M)→ C∞(S2M). Let ϕ be a nonzero
eigentensor corresponding to the eigenvalue λ, that is ∆B ϕ = λ ϕ and λ a real nonnegative number.
We can rewrite (4) in the following form: λ ϕ = ∆̄ ϕ + B ϕ. From (6) we obtain

∆̄(traceg ϕ) = λ (traceg ϕ), (7)

where ∆̄ : C∞(M) → C∞(M) is the ordinary Laplacian defined by ∆̄ f = −div ( grad f ) for any
f ∈ C∞(M). In this case, the following holds:

〈 ∆̄(traceg ϕ), traceg ϕ〉 = 〈∇ traceg ϕ,∇ traceg ϕ〉.

Therefore (for a closed M), ∆̄(traceg ϕ) = 0 if and only if traceg ϕ = const. We conclude that if (7)
holds for traceg ϕ = const and λ 6= 0, then traceg ϕ vanishes.

We have proved the following lemma.

Lemma 1. Let (Mn, g) (n ≥ 2) be a closed Riemannian manifold and ∆B ϕ = λ ϕ for the Bourguignon
Laplacian and for its nonzero eigenvalue λ. If

traceg ϕ = const,

then traceg ϕ = 0. On the other hand, if traceg ϕ is not constant, then traceg ϕ is an eigenfunction of the
rough Laplacian ∆̄ with the same eigenvalue λ.

3. Spectrum of the Bourguignon Laplacian

If the rough Laplacian is defined on scalar functions, then it is called the Laplace–Beltrami
Laplacian (see the theory of this Laplacian in [13]). Standard ellipticity theory and the fact that the
Laplace–Beltrami Laplacian ∆̄ is a self-adjoint nonnegative elliptic operator imply that the spectrum
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of ∆̄ consists of discrete eigenvalues 0 = λ̄0 < λ̄1 < λ̄2 < . . ., satisfying the condition ∆̄ fi = λ̄i fi
for the corresponding complete orthonormal sequence of eigenfunctions fi 6= 0 (e.g., [13]). We
focus on bounds on the first nonzero eigenvalue λ̄1 imposed by the Riemannian geometry of (M, g).
The lower bound for λ̄1 was found first by Lichnerowicz ([13], p. 181), and his result is the following:
If (Mn, g) (n ≥ 2) is a closed Riemannian manifold, whose Ricci curvature satisfies the inequality
Ric ≥ (n− 1) k for some constant k > 0, then the first positive eigenvalue λ̄ of the Laplacian ∆̄ has the
lower bound λ̄ ≥ n k.

Yang [14] generalized the above result in the following form: Let (Mn, g) (n ≥ 2) be a closed
Riemannian manifold with the diameter D(M) and condition Ric ≥ (n− 1) k for some constant k ≥ 0,
then the first positive eigenvalue λ̄ of the Laplacian ∆̄ satisfies the lower bound inequality

λ̄ ≥ (n− 1) k/4 + π2/D2(M).

On the other hand, by the spectral theory (e.g., [13]), ∆B has a discrete set of eigenvalues {λa}
forming a sequence 0 = λ0 < λ1 < λ2 < . . ., and λa → ∞ as a→ ∞. Any eigenvalue of ∆B has finite
multiplicity and an arbitrary λa for a ≥ 1 is positive because ∆B is a non-negative elliptic operator.
As a corollary of the Lichnerowicz and Yang theorems, we obtain the following.

Proposition 1. Let (Mn, g) (n ≥ 2) be a closed Riemannian manifold and λ a positive eigenvalue of ∆B,
such that its corresponding eigentensor ϕ ∈ C∞(S2M) has a nonzero trace. If the Ricci curvature of (M, g)
satisfies the inequality Ric ≥ (n − 1) k for some constant k > 0, then λ has the lower bound λ ≥ n k.
On other hand, if Ric ≥ (n − 1) k for some constant k ≥ 0, then λ satisfies the lower bound inequality
λ ≥ (n− 1) k/4 + π2/ D2(M).

Next, we will consider the case of a positive eigenvalue λ of ∆B such that its eigentensor ϕ is a
traceless bilinear form. In other words, ϕ ∈ C∞(S2

0 M), where S2
0 M is the vector bundle of traceless

symmetric bilinear forms. Then, using (4), we have the integral equality

λ〈ϕ, ϕ〉 = 〈B ϕ, ϕ〉+ 〈∇ ϕ,∇ ϕ〉. (8)

By direct computations we obtain the identity

g(B ϕ, ϕ) = (1/2) g(K ϕ, ϕ),

where
K := Ric ◦ ϕ + ϕ ◦ Ric− 2

◦
Rϕ

is the Weitzenböck curvature operator of the Lichnerowicz Laplacian (see ([7], p. 54); ([11], p. 388))

∆L = ∆̄ + K id.

In addition, we obtain equalities K(g) = 0 and traceg K(ϕ) = 0.
Let {ei} be an orthonormal basis of the tangent space Tx M at an arbitrary point x ∈ M such as

ϕx(ei, ej) = λi(x) δij, where δij is the Kronecker symbol and sec(ei ∧ ej) is the sectional curvature of the
plane π(x) = span{ei, ej}, then (see ([11], p. 388))

g(K(ϕ), ϕ) = ∑ i 6=j sec(ei ∧ ej)(ϕii − ϕjj). (9)
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Now, let ∆B be the Bourguignon Laplacian acting on the vector space of C∞-sections of S2
0 M. If

we assume sec (σx) ≥ Kmin > 0 in all directions σx at each point x ∈ M, then from (8) we obtain the
integral inequality

λ〈ϕ, ϕ〉 ≥ 1
2

Kmin

∫
M

∑i 6=j(ϕii − ϕjj)
2 d volg + 〈∇ ϕ,∇ ϕ〉 ≥ 0, (10)

for an arbitrary positive eigenvalue λ corresponding to a nonzero eigentensor ϕ ∈ C∞(S2
0) of ∆B. If

the condition traceg ϕ = ∑i ϕii = 0 holds, then

‖ϕ‖2 = ϕ2
11 + ϕ2

22 + . . . + ϕ2
n n =

1
n ∑i <j(ϕii − ϕjj)

2,

as it equals to the following:

∑i ϕ2
ii = −2 ∑i <j ϕii ϕjj,

that is (∑i ϕii)
2 = 0. In this case, from (10) we obtain the integral inequality

(λ− n Kmin)
∫

M
‖ ϕ ‖2 d volg ≥ 0. (11)

From (11) we conclude that λ ≥ n Kmin for any positive eigenvalue λ. If the first positive
eigenvalue λ = n Kmin, then its corresponding traceless bilinear form ϕ is parallel. In this case, if the
holonomy of (M, g) is irreducible, then ϕ = µ · g for some constant µ. However, in our case, the identity
traceg ϕ = 0 holds and, consequently, we have µ = 0. Thus, the following holds.

Proposition 2. Let the Bourguignon Laplacian ∆B act on traceless symmetric bilinear forms on a closed
Riemannian manifold (Mn, g) (n ≥ 2). Then the first positive eigenvalue of ∆B satisfies the lower bound λ ≥
n Kmin for the minimum Kmin of the strictly positive sectional curvature of (M, g). Moreover, if λ = n Kmin,
then the traceless symmetric bilinear form ϕ corresponding to λ is parallel. In particular, if the holonomy of
(M, g) is irreducible, then ϕ ≡ 0.

For example, if (M, g) is the standard sphere (Sn, g0), then sec(X ∧ Y) = 1 for orthonormal
vector fields, X and Y. In this case, the first positive eigenvalue λ ≥ n. We can formulate the
following corollary.

Corollary 1. Let the Bourguignon Laplacian ∆B act on traceless symmetric bilinear forms on the standard
sphere (Sn, g0) with n ≥ 2. Then the first positive eigenvalue of ∆B satisfies the lower bound inequality λ ≥ n.

In the case of the sphere (Sn, g0) we have

B ϕ := ϕ ◦ Ric−
◦
R ϕ = n ϕ, Kϕ = 2 n ϕ

for any symmetric bilinear form ϕ ∈ C∞(S2
0 M). Then we obtain the equality ∆B ϕ = (µ− n) ϕ for an

arbitrary positive eigenvalue µ of ∆L and for some ϕ ∈ C∞(S2
0 M) corresponding to µ. This means

that the eigenvalue λ of ∆B, which corresponds to the same bilinear form ϕ ∈ C∞(S2
0 M), is equal to

λ = µ− n. The converse is also true.
Consider the Lichnerowicz Laplacian ∆L acting on traceless and divergence-free symmetric

bilinear forms or, in other words, TT-tensors defined on the standard sphere (Sn, g0). In this case,
the eigenvalues of ∆L are given by the formula µa = a(n− 1 + a) + 2 (n− 1) for all a ≥ 2, see [15], i.e.,

spec (∆L | TT ) = {a(n− 1 + a) + 2 (n− 1) a ≥ 2}.
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Then we immediately obtain the spectrum of the ∆B acting on the TT-tensors defined on the
standard sphere (Sn, g0):

spec (∆B | TT ) = {a (n− 1 + a) + (n− 2) : a ≥ 2}.

Based on this result, we obtain the following.

Proposition 3. The eigenvalues of ∆B acting on the TT-tensors defined on the standard sphere (Sn, g0) are
given by the formula

λa = a (n− 1 + a) + (n− 2), a ≥ 2.

4. Vanishing Theorems for Harmonic Symmetric Bilinear Forms

Formula (1) indicates that we may take a symmetric bilinear form ϕ ∈ C∞(S2M) viewed as one
form with values in the cotangent bundle. In this case, ϕ is a Codazzi tensor if and only if d∇ϕ = 0.
Therefore, we obtain the following statement (e.g., ([2], p. 350)).

Lemma 2. A symmetric bilinear form ϕ ∈ C∞(S2M) on a Riemannian manifold (M, g) is a Codazzi tensor if
and only if it is a closed one-form viewed as a one form with values in the cotangent bundle T∗M.

It was proven in ([5], p. 271) that

δ∇ϕ = −d(traceg ϕ) (12)

for an arbitrary Codazzi tensor ϕ ∈ C∞(S2M). At the same time, he defined a harmonic symmetric
bilinear form in ([5], p. 270) (e.g., ([2], p. 350)).

Definition 1. A symmetric bilinear form ϕ ∈ C∞(S2M) on a Riemannian manifold (M, g) is harmonic if
ϕ ∈ Ker d∇

⋂
Ker δ∇.

Based on Definition 1, Lemma 2 and (12), we obtain the following.

Proposition 4. A symmetric bilinear form ϕ ∈ C∞(S2M) on a Riemannian manifold (M, g) is harmonic if
and only if it is a Codazzi tensor with constant trace.

Remark 2. Simple examples of bilinear symmetric harmonic forms are the second fundamental form of a
hypersurface with constant mean curvature of a Riemannian manifold of constant sectional curvature and the
Ricci tensor of a locally conformal flat Riemannian manifold of constant scalar curvature.

Based on (2) and (3), we conclude that the kernel of ∆B on a closed Riemannian manifold (M, g)
is finite-dimensional and satisfies the condition

Ker ∆B = Ker d∇ ∩Ker δ∇.

Hence, ∆B-harmonic bilinear forms on a closed Riemannian manifold are harmonic symmetric
bilinear forms (see ([7], p. 436)). Thus, we have the following.

Proposition 5. Let (Mn, g) be a closed Riemannian manifold. Then, the kernel of the Laplacian ∆B :
C∞(S2M)→ C∞(S2M) is a finite dimensional vector space of harmonic symmetric bilinear forms, or, in other
words, Codazzi tensors with constant trace.
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It was proven in ([5], p. 281), that a closed orientable four-dimensional Riemannian manifold
admitting a non-trivial Codazzi tensor with constant trace must have signature zero (see the definition
in ([7], p. 161)). Thus, the following holds.

Proposition 6. Let (M4, g) be a closed orientable Riemannian manifold. If the kernel of ∆B is non-trivial, then
(M, g) has zero signature.

Using (4), one obtains the Bochner–Weitzenböck formula

(1/2)∆(‖ϕ‖2) = −g(∆̄ ϕ, ϕ) + ‖∇ ϕ‖2

= −g(∆B ϕ, ϕ) + (1/2) g(Kϕ, ϕ) + ‖∇ ϕ‖2 (13)

for any ϕ ∈ C∞(S2M). Let ϕ ∈ C∞(S2M) be harmonic then (13) can be rewritten as (e.g., (9)):

∆‖ϕ‖2 = ∑i 6=j sec(ei ∧ ej)(ϕii − ϕjj) + 2‖∇ ϕ‖2. (14)

Recall that a Codazzi tensor ϕ commutes with the Ricci tensor Ric of (M, g) (see )[7], p. 439));
therefore, the eigenvectors of ϕ determine the principal directions of Ric at each point x ∈ M.
The converse is also true.

Using (14) and the Hopf maximum principle, we obtain the following.

Lemma 3. Let (M, g) be an open Riemannian manifold and ϕ be a harmonic symmetric bilinear form defined
on M. If the sectional curvature sec(ei ∧ ej) ≥ 0 for all vectors of the orthonormal basis {ei} of Tx M, which is
determined by the principal directions of the Ricci tensor at an arbitrary point x ∈ M, and ‖ϕ‖2 has a local
maximum in M, then ϕ is parallel in M. Moreover, if sec(ei ∧ ej) > 0 at a point x ∈ M, then ϕ is trivial at x.

Proof. Suppose that sec(ei ∧ ej) ≥ 0 in M then g (K ϕ, ϕ) ≥ 0. Moreover, if there is a nonzero
Codazzi tensor ϕ given in M then from (14) we conclude that ∆ ‖ϕ‖2 ≥ 0, i.e., ‖ϕ‖2 is a nonnegative
subharmonic function in M. Suppose that ‖ϕ‖2 has a local maximum at some point x ∈ M, then ‖ϕ‖2

is a constant function in M according to the Hopf’s maximum principle (e.g., [1]). In this case,

‖∇ ϕ‖2 = 0.

In particular, the last equation means that the form ϕ is parallel.
Let ‖ ϕ‖2 = C for some constant C, then from (14) we find

g(Kϕ, ϕ) + 2 ‖∇ ϕ‖2 = 0.

Since sec(ei ∧ ej) ≥ 0, this means that

g(K ϕ, ϕ) = 0, ∇ ϕ = 0.

If there is a point x ∈ M such that sec(ei ∧ ej) > 0 then from (14) we find ϕ11(x)= . . .=ϕnn(x) = λ,
which is equivalent to ϕ = (λ/n) g, see ([7], p. 436).

If (M, g) is a closed manifold and a harmonic symmetric bilinear form ϕ is given in a global way
on (M, g) then due to the “Bochner maximum principle” for closed manifold it follows the classical
Berger–Ebin theorem (see ([7], p. 436) and ([11], p. 388)), which is a corollary of Lemma 3.

Corollary 2. Every harmonic symmetric bilinear form ϕ ∈ C∞(S2M) on a closed Riemannian manifold (M, g)
with nonnegative sectional curvature is parallel. Moreover, if sec > 0 at some point, then ϕ is trivial.
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Remark 3. It is well known that every parallel symmetric tensor field ϕ ∈ C∞(S2M) on a connected locally
irreducible Riemannian manifold (M, g) is proportional to g, i.e., ϕ = λ g for some constant λ. Using this
statement, we can reformulate Corollary 2 in the following form: Every harmonic bilinear form ϕ ∈ C∞(S2M)

on a connected closed and locally irreducible Riemannian manifold (M, g) with nonnegative sectional curvature
is trivial.

For example, let (M, g) be a Riemannian symmetric space of compact type, that is a closed Riemannian
manifold with non-negative sectional curvature with parallel curvature tensor and positive-definite
Ricci tensor (see ([7], p. 196); ([2], pp. 386, 392)). Therefore, we have the following.

Corollary 3. Every harmonic symmetric bilinear form on a Riemannian symmetric manifold of compact type is
parallel. If, in addition, the manifold is locally irreducible, then its harmonic symmetric bilinear forms are trivial.

The following theorem supplements the classical Berger–Ebin theorem (see ([11], p. 388) and ([7],
p. 436)) for the case of a complete noncompact manifold.

Proposition 7. Let (M, g) be a complete Riemannian manifold with nonnegative sectional curvature. Then
there is no a nonzero harmonic form ϕ ∈ C∞(S2M) such that

∫
M ‖ϕ ‖dvolg < ∞.

Proof. Let ϕ ∈ C∞(S2M) be a globally defined nonzero harmonic symmetric bilinear form, then
g(Kϕ, ϕ) ≥ 0. Therefore, from (14) we obtain the inequality

‖ϕ‖∆(‖ϕ‖) = −(1/2) g(Kϕ, ϕ) + ‖∇ ϕ‖2 −
∥∥∇‖ϕ‖

∥∥2 ≥ 0,

where ‖∇ ϕ‖2 ≥
∥∥∇‖ϕ‖

∥∥2 by the Kato inequality (see [16]). We conclude that ‖ϕ‖ is a non-negative
subharmonic function on a complete simply connected noncompact Riemannian manifold with
nonnegative sectional curvature. In this case, if ‖ϕ ‖ is not identically zero, then

∫
M ‖ϕ‖d volg = ∞

(see [17]).

If (M, g) is a hypersurface of an (n + 1)-dimensional Riemannian manifold of constant sectional
curvature then its second fundamental form is a Codazzi tensor (see ([7], p. 436)). Moreover, if (M, g)
has constant mean curvature then its second fundamental form is a harmonic bilinear form by
Proposition 4. Based on above and Proposition 7, we obtain the following.

Corollary 4. Let (M, g) be a complete simply connected hypersurface with constant mean curvature of an
(n + 1)-dimensional Riemannian manifold of positive constant sectional curvature. If its sectional curvature
is nonnegative and the second fundamental form ϕ satisfies the inequality

∫
M ‖ϕ‖ dvg < ∞, then (M, g) is a

spherical space form.

Remark 4. Corollary 4 completes the following result from [11]: If (M, g) is a compact minimal hypersurface of
a Euclidean sphere and (M, g) has strictly positive sectional curvature, then (M, g) is an equator of the sphere.
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