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Abstract: The novel delay-dependent asymptotic stability of a differential and Riemann-Liouville
fractional differential neutral system with constant delays and nonlinear perturbation is studied.
We describe the new asymptotic stability criterion in the form of linear matrix inequalities (LMIs),
using the application of zero equations, model transformation and other inequalities. Then we
show the new delay-dependent asymptotic stability criterion of a differential and Riemann-Liouville
fractional differential neutral system with constant delays. Furthermore, we not only present the
improved delay-dependent asymptotic stability criterion of a differential and Riemann-Liouville
fractional differential neutral system with single constant delay but also the new delay-dependent
asymptotic stability criterion of a differential and Riemann-Liouville fractional differential neutral
equation with constant delays. Numerical examples are exploited to represent the improvement and
capability of results over another research as compared with the least upper bounds of delay and
nonlinear perturbation.

Keywords: asymptotic stability; differential and riemann-liouville fractional differential neutral
systems; linear matrix inequality

1. Introduction

Differential systems, or more generally functional differential systems, have been studied
rather extensively for at least 200 years and are used as models to describe transportation systems,
communication networks, teleportation systems, physical systems and biological systems, and so
forth. Parts of fractional-order systems have not received much attention by reason of absence of
appropriate utilization circumstances over the past 300 years. However, during the last 10 years
fractional-order systems have been widely investigated as they have the qualification to explain
various phenomena more precisely in many fields, for example, biological models, material science,
finance, cardiac tissues, quantum mechanics, viscoelastic systems, medicine and fluid mechanics [1–8].
Caputo fractional differential systems have been studied in many types of stability such as uniform
stability [9], Mittag-Leffler stability [10–13], Ulam stability [14], finite time stability [15,16] and
asymptotic stability [17,18]. Nevertheless, the stability of Riemann-Liouville fractional differential
systems is seldom considered, see References [19,20].

The neutral systems with time delays have already been applied in many fields, such as heartbeat,
memorization, locomotion, mastication and respiration, see References [21–24]. Accordingly, the issue
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of stability analysis for differential and Riemann-Liouville fractional differential neutral systems has
attracted researchers. The asymptotic stability criteria for certain neutral differential equations (CNDE)
with constant delays have been discussed in References [25–29] by applying Lyapunov-Krasovskii
functional and several model transformations. In References [30–33], the researchers considered
the exponential stability problem for CNDE with time-varying delays by several methods. In
Reference [30], the results were established without the use of the bounding technique and the
model transformation method, while researchers have studied it by using radially unboundedness,
the Lyapunov-Krasovskii functional approach and the model transformation method in Reference [32].
Moreover, in Reference [34] Li et al. presented the asymptotic stability conditions for fractional neutral
systems in the form of matrix measure and matrix norm of the system matrices. However, the criteria,
drafted in the form of matrix norm, are more conservative, while Liu et al. used the Lyapunov direct
method to establish the asymptotic stability criteria of Riemann-Liouville fractional neutral systems in
the form of LMIs [35].

This paper is involved with the analysis problem for the asymptotic stability of differential
and Riemann-Liouville fractional differential neutral systems with constant delays and nonlinear
perturbation by applying a zero equation, model transformation and other inequalities. The novel
asymptotic stability condition is instituted in the form of LMIs. Then we show the new delay-dependent
asymptotic stability criterion of differential and Riemann-Liouville fractional differential neutral
systems with constant delays. In addition, the improved delay-dependent asymptotic stability criterion
of differential and Riemann-Liouville fractional differential neutral systems with single constant delay
and the new delay-dependent asymptotic stability criterion of differential and Riemann-Liouville
fractional differential neutral equations with constant delays are established. Numerical examples
represent the capability of our results as compared with other research.

2. Problem Formulation and Preliminaries

We introduce a differential and fractional differential neutral system with constant delays and
nonlinear perturbation

t0 Dq
t [x(t) + Cx(t− τ)] = −Ax(t) + Bx(t− σ) + f (x(t− σ)), t > 0, (1)

x(t) = $(t), t ∈ [−κ, 0],

for 0 < q ≤ 1, the state vector x(t) ∈ Rn, A, B, C are symmetric positive definite matrices with ‖C‖ < 1,
τ, σ are positive real constants and $ ∈ C([−κ, 0];Rn) with κ = max{τ, σ}.

The uncertainty f (.) represents the nonlinear parameter perturbation satisfying

f T(x(t)) f (x(t)) ≤ δ2xT(t)x(t), (2)

f T(x(t− σ)) f (x(t− σ)) ≤ η2xT(t− σ)x(t− σ), (3)

where δ, η are given constants.
Next, the Riemann-Liouville fractional integral and derivative [36] are defined as, respectively

t0 D−q
t x(t) =

1
Γ(q)

∫ t

t0

(t− s)q−1x(s)ds, (q > 0), (4)

t0 Dq
t x(t) =

1
Γ(n− q)

dn

dtn

∫ t

t0

x(s)
(t− s)q+1−n ds, (n− 1 ≤ q < n). (5)

Lemma 1. [37] For x(t) ∈ Rn and p > q > 0, then

t0 Dq
t (t0 D−p

t x(t)) = t0 Dq−p
t x(t). (6)



Mathematics 2020, 8, 082 3 of 10

Lemma 2. [17] For a vector of differentiable function x(t) ∈ Rn, positive semi-definite matrix K ∈ Rn×n and
0 < q < 1, then

1
2 t0 Dq

t (xT(t)Kx(t)) ≤ xT(t)Kt0 Dq
t x(t), (7)

for all t ≥ t0.

3. Main Results

Consider the asymptotic stability for system (1) with constant delays and nonlinear perturbation.
We define a new variable

Ψ(t) = x(t) + Cx(t− τ). (8)

Rewrite the Equation (1) in the following equation

t0 Dq
t Ψ(t) = −Ax(t) + Bx(t− σ) + f (x(t− σ)). (9)

Theorem 1. Let δ and η be positive scalars, if there are any appropriate dimensions matrices Qj(j = 1, 2, 3)
and symmetric positive definite matrices Ki(i = 1, 2, 3, 4, 5) such that satisfy

∑ =


−Q1 −QT

1 Ω(1,2) Q1C−QT
3 K1 K1B

∗ Ω(2,2) Q2C + QT
3 0 0

∗ ∗ Ω(3,3) 0 0
∗ ∗ ∗ −K5 − σI 0
∗ ∗ ∗ ∗ −K3 + ση2 I

 < 0, (10)

where
Ω(1,2) = −K1 A + Q1 −QT

2 ,
Ω(2,2) = Q2 + QT

2 + K2 + K3 + τK4 + δ2K5,
Ω(3,3) = Q3C + CTQT

3 − K2.

Then the system (1) is asymptotically stable.

Proof of Theorem 1. For symmetric positive definite matrices Ki(i = 1, 2, 3, 4, 5) and any appropriate
dimensions matrices Qj(j = 1, 2, 3). Consider the Lyapunov-Krasovskii functional

V(t) =
2

∑
i=1

Vi(t), (11)

for

V1(t) = t0 Dq−1
t ΨT(t)K1Ψ(t),

V2(t) =
∫ t

t−τ
xT(s)K2x(s)ds +

∫ t

t−σ
xT(s)K3x(s)ds

+
∫ t

t−τ
(τ − t + s)xT(s)K4x(s)ds

+
∫ t

t−σ
f T(x(s))K5 f (x(s))ds.

Computing the differential of V(t) on the solution of system (1)
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V̇(t) =
2

∑
i=1

V̇i(t). (12)

The differential of V1(t) is computed by Lemma 2

V̇1(t) = t0 Dq
t ΨT(t)K1Ψ(t)

≤ 2ΨT(t)K1(t0 Dq
t Ψ(t))

= 2ΨT(t)K1[−Ax(t) + Bx(t− σ) + f (x(t− σ))]

+2ΨT(t)Q1[−Ψ(t) + x(t) + Cx(t− τ)]

+2xT(t)Q2[−Ψ(t) + x(t) + Cx(t− τ)]

+2xT(t− τ)Q3[−Ψ(t) + x(t) + Cx(t− τ)]. (13)

Taking the differential of V2(t), we obtain

V̇2(t) = xT(t)K2x(t)− xT(t− τ)K2x(t− τ)

+xT(t)K3x(t)− xT(t− σ)K3x(t− σ)

+τxT(t)K4x(t)−
∫ t

t−τ
xT(s)K4x(s)

+ f T(x(t))K5 f (x(t))− f T(x(t− σ))K5 f (x(t− σ))

≤ xT(t)K2x(t)− xT(t− τ)K2x(t− τ)

+xT(t)K3x(t)− xT(t− σ)K3x(t− σ)

+τxT(t)K4x(t) + δ2xT(t)K5x(t)

− f T(x(t− σ))K5 f (x(t− σ)). (14)

Next, from (3), we obtain

0 ≤ ση2xT(t− σ)x(t− σ)− σ f T(x(t− σ)) f (x(t− σ)). (15)

According to (13), (14) and (15), we can conclude that

V̇(t) ≤ ξT(t)∑ ξ(t), (16)

where ξ(t) = col{Ψ(t), x(t), x(t− τ), f (x(t− σ)), xT(t− σ)}.
Since linear matrix inequality (10) holds, then the system (1) is asymptotic stability.

Next, we consider system (1) with f (x(t− σ)) = 0,

t0 Dq
t [x(t) + Cx(t− τ)] = −Ax(t) + Bx(t− σ) t > 0, (17)

x(t) = $(t), t ∈ [−κ, 0],

for 0 < q ≤ 1, the state vector x(t) ∈ Rn, A, B, C are symmetric positive definite matrices with ‖C‖ < 1,
τ, σ are positive real constants and $ ∈ C([−κ, 0];Rn) with κ = max{τ, σ}.

Corollary 1. If there are any appropriate dimensions matrices Qj(j = 1, 2, 3) and symmetric positive definite
matrices Ki(i = 1, 2, 3, 4) such that satisfy

−Q1 −QT
1 −K1 A + Q1 −QT

2 Q1C−QT
3 K1B

∗ Q2 + QT
2 + K2 + K3 + τK4 Q2C + QT

3 0
∗ ∗ Q3C + CTQT

3 − K2 0
∗ ∗ ∗ −K3

 < 0. (18)
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Then the system (17) is asymptotically stable.

Proof of Corollary 1. For symmetric positive definite matrices Ki(i = 1, 2, 3, 4) and any appropriate
dimensions matrices Qj(j = 1, 2, 3). Consider the Lyapunov-Krasovskii functional

V(t) =
2

∑
i=1

Vi(t), (19)

for

V1(t) = t0 Dq−1
t ΨT(t)K1Ψ(t),

V2(t) =
∫ t

t−τ
xT(s)K2x(s)ds +

∫ t

t−σ
xT(s)K3x(s)ds

+
∫ t

t−τ
(τ − t + s)xT(s)K4x(s)ds.

According to Theorem 1, we present the asymptotic stability criterion (18) of system (17).

Next, we consider system (1) with f (x(t− σ)) = 0 and σ = τ,

t0 Dq
t [x(t) + Cx(t− τ)] = −Ax(t) + Bx(t− τ) t > 0, (20)

x(t) = $(t), t ∈ [−τ, 0],

for 0 < q ≤ 1, the state vector x(t) ∈ Rn, A, B, C are symmetric positive definite matrices with ‖C‖ < 1,
τ is positive real constants and $ ∈ C([−τ, 0];Rn).

Corollary 2. If there are any appropriate dimensions matrices Qj(j = 1, 2, 3) and symmetric positive definite
matrices Ki(i = 1, 2, 3) such that satisfy−Q1 −QT

1 −K1 A + Q1 −QT
2 Q1C−QT

3 + K1B
∗ Q2 + QT

2 + K2 + τK3 Q2C + QT
3

∗ ∗ Q3C + CTQT
3 − K2

 < 0. (21)

Then the Equation (20) is asymptotically stable.

Proof of Corollary 2. For symmetric positive definite matrices Ki(i = 1, 2, 3) and any appropriate
dimensions matrices Qj(j = 1, 2, 3). Consider the Lyapunov-Krasovskii functional

V(t) =
2

∑
i=1

Vi(t), (22)

for

V1(t) = t0 Dq−1
t ΨT(t)K1Ψ(t),

V2(t) =
∫ t

t−τ
xT(s)K2x(s)ds

+
∫ t

t−τ
(τ − t + s)xT(s)K3x(s)ds. (23)

According to Theorem 1, we present the asymptotic stability criterion (21) of system (20).
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4. Application

t0 Dq
t [x(t) + px(t− τ)] = −ax(t) + b tanh x(t− σ) t > 0, (24)

x(t) = $(t), t ∈ [−κ, 0],

for 0 < q ≤ 1, the state vector x(t) ∈ R, a, b, p are real constants with |p| < 1, τ, σ are positive real
constants $ ∈ C([−κ, 0];R) with κ = max{τ, σ}.

Corollary 3. If there are positive real constants ki(i = 1, 2, 3, 4, 5) and real constants qj(j = 1, 2, 3) such
that satisfy 

−2q1 −k1a + q1 − q2 q1 p− q3 k1b 0
∗ 2q2 + k2 + k3 + k4τ + k5 q2 p + q3 0 0
∗ ∗ 2q3 p− k2 0 0
∗ ∗ ∗ −k5 − σ 0
∗ ∗ ∗ ∗ −k3 + σ

 < 0. (25)

Then the Equation (24) is asymptotically stable.

Proof of Corollary 3. For positive real constants ki(i = 1, 2, 3, 4, 5) and real constants qj(j = 1, 2, 3).
Consider the Lyapunov-Krasovskii functional

V(t) =
2

∑
i=1

Vi(t), (26)

for

V1(t) = k1t0 Dq−1
t Ψ2(t),

V2(t) = k2

∫ t

t−τ
x2(s)ds + k3

∫ t

t−σ
x2(s)ds

+k4

∫ t

t−τ
(τ − t + s)x2(s)ds + k5

∫ t

t−σ
tanh x2(s)ds.

According to Theorem 1, we present the asymptotic stability criterion (25) of system (3).

5. Numerical Examples

Example 1. The fractional neutral system :

t0 Dq
t [x(t) + Cx(t− 0.5)] = −Ax(t) + Bx(t− σ) + f (x(t− σ)). (27)

Solving the LMI (10) when A =

[
1.45 0

0 1.45

]
, B =

[
0 0.4

0.4 0

]
, C =

[
−0.1 0

0 −0.1

]
, we have a set of

parameters that ensures asymptotic stability of system (27) which η = 5× 103, δ = 1 and σ = 0.5 as follows:

K1 = 108 ×
[

3.5993 0
0 3.5993

]
, K2 = 107 ×

[
1.3106 0

0 1.3106

]
, K3 = 108 ×

[
1.5730 0

0 1.5730

]
,

K4 = 106 ×
[

9.7620 0
0 9.7620

]
, K5 = 108 ×

[
3.5456 0

0 3.5456

]
, Q1 = 108 ×

[
2.9931 0

0 2.9931

]
,

Q2 = 108 ×
[
−3.0980 0

0 −3.0980

]
, Q3 = 107 ×

[
−2.2267 0

0 −2.2267

]
.
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Moreover, the least upper bound of the parameter σ that ensures the asymptotic stability of system (27) is
1.3227 when η = 5× 103 and δ = 1. Table 1 represents the least upper bound σ of this example for various
values of η, δ.

Table 1. The least upper bound of σ for Example 1.

η = 5× 103 η = 6× 103 η = 7× 103

δ = 0.8 6.4920 4.5076 3.3117
δ = 0.9 4.1166 2.8588 2.1003
δ = 1 1.3227 0.9185 0.6748

Example 2. The fractional neutral system :

t0 Dq
t [x(t) + Cx(t− τ)] = −Ax(t) + Bx(t− 1.2). (28)

Solving the LMI (18) when A =

[
1.45 0

0 1.45

]
, B =

[
0 0.4

0.4 0

]
, C =

[
−0.1 0

0 −0.1

]
, we have a set of

parameters that ensures asymptotic stability of system (28) which τ = 0.6 as follows:

K1 =

[
44.0782 0

0 44.0782

]
, K2 =

[
32.9861 0

0 32.9861

]
, K3 =

[
32.6501 0

0 32.6501

]
,

K4 =

[
31.8793 0

0 31.8793

]
, Q1 =

[
14.6090 0

0 14.6090

]
, Q2 =

[
−56.7801 0

0 −56.7801

]
,

Q3 =

[
−3.3600 0

0 −3.3600

]
.

Moreover, the least upper bound of the parameter τ that ensures the asymptotic stability of system (28) is
3.7× 1022.

Example 3. The fractional neutral system :

t0 Dq
t [x(t) + Cx(t− τ)] = −Ax(t) + Bx(t− τ). (29)

Solving the LMI (21) when A =

[
3 −1
0 1

]
, B =

[
0.2 0.1
0 0.1

]
, C =

[
0.1 0
0 0.2

]
, we obtain the least upper

bound of the parameter τ that ensures the asymptotic stability is 2.86× 1024. By the criterion in [35], the least
upper bound of the parameter τ is 2.99× 1021. This example represents our result is less conservative than these
in [35].

Example 4. The differential equation, which is considered in [25,27,30–32]:

d
dt
[x(t) + 0.35x(t− 0.5)] = −1.5x(t) + b tanh x(t− 0.5). (30)

By using linear matrix inequality (25), the comparison for the least upper bound b that ensures asymptotic
stability of Equation (30) are represented in Table 2.
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Table 2. The least upper bound of b for Example 4.

Deng et al. (2009) [25] 0.889
Nam and Phat (2009) [27] 1.405

Chen and Meng (2011) [31] 1.346
Chen (2012) [30] 1.405

Keadnarmol and Rojsiraphisal (2014) [32] 1.405
Corollary 3 1.4051

Example 5. The differential equation in [27,30,31,38]:

d
dt
[x(t) + 0.2x(t− 0.1)] = −0.6x(t) + 0.3 tanh x(t− σ). (31)

By using linear matrix inequality (25), the comparison for the least upper bound delay σ that ensures
asymptotic stability of Equation (31) are represented in Table 3.

Table 3. The least upper bound of σ for Example 5.

Nam and Phat (2009) [27] 2.32
Rojsiraphisal and Niamsup (2010) [38] 2.32

Chen and Meng (2011) [31] 1021

Chen (2012) [30] 1.34× 1021

Corollary 3 6.21× 108

Example 6. The fractional neutral equation :

t0 Dq
t [x(t) + px(t− 0.5)] = −ax(t) + b tanh x(t− 0.5). (32)

Solving the LMI (25), we have a set of parameters that ensures asymptotic stability of Equation (32) which
a = 0.75, b = 0.3 and p = 0.4 as follows:
k1 = 3.1544, k2 = 1.0324, k3 = 1.0749, k4 = 0.7170, k5 = 0.7385, q1 = 0.7587, q2 = −1.9721,
q3 = 0.4433.

Furthermore, the least upper bound of b that ensures the asymptotic stability of Equation (32) is 0.6873
with a = 0.75, p = 0.4. Table 4 represents the least upper bound b of this example for various values of a, p.

Table 4. The least upper bound of b for Example 6.

a = 0.25 a = 0.5 a = 0.75 a = 1 a = 1.25

p = 0.2 0.2449 0.4898 0.7348 0.9797 1.2247
p = 0.4 0.2291 0.4582 0.6873 0.9165 1.1456
p = 0.6 0.2000 0.3999 0.5999 0.7999 0.9999
p = 0.8 0.1500 0.2999 0.4499 0.5999 0.7499

6. Conclusions

The aim of this paper is a novel asymptotic stability analysis of differential and Riemann-Liouville
fractional differential neutral systems with constant delays and nonlinear perturbation by applying
zero equations, model transformation and other inequalities. The new asymptotic stability condition
is given in the form of LMIs. Then we show the new delay-dependent asymptotic stability criterion
of a differential and Riemann-Liouville fractional differential neutral system with constant delays.
Furthermore, we propose the improved delay-dependent asymptotic stability criterion of differential
and Riemann-Liouville fractional differential neutral systems with single constant delay and the
new delay-dependent asymptotic stability criterion of differential and Riemann-Liouville fractional
differential neutral equations with constant delays. Numerical examples illustrate the advantages and
applicability of our results.
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