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1. Introduction

The displacement problem of elastostatics in an exterior Lipschitz domain Ω of R3 consists of
finding a solution to the equations [1] (Notation—Unless otherwise specified, we will use the notation
of the classical monograph [1] by M.E. Gurtin. In particular, (div C[∇u])i = ∂j(Cijhk∂kuh), Lin is
the space of second–order tensors (linear maps from R3 into itself) and Sym, Skw are the spaces of
the symmetric and skew elements of Lin respectively; if E ∈ Lin and v ∈ R3, Ev is the vector with
components Eijvj. BR = {x ∈ R3 : r = |x| < R}, TR = B2R \ BR, {BR = R3 \ BR and BR0 is a fixed ball
containing ∂Ω. If f (x) and φ(r) are functions defined in a neighborhood of infinity, then f (x) = o(φ(r))
means that limr→+∞( f /φ) = 0. To lighten up the notation, we do not distinguish between scalar,
vector, and second–order tensor space functions; c will denote a positive constant whose numerical
value is not essential to our purposes.)

div C[∇u] = 0 in Ω,

u = û on ∂Ω,

lim
R→+∞

∫
∂B

u(R, σ)dσ = 0,
(1)

where u is the (unknown) displacement field, û is an (assigned) boundary displacement, B is the unit
ball, C ≡ [Cijhk] is the (assigned) elasticity tensor, i.e., a map from Ω× Lin→ Sym, linear on Sym and
vanishing in Ω× Skw. We shall assume C to be symmetric, i.e.,

E ·C[L] = L ·C[E] ∀E, L ∈ Lin, (2)

and positive definite, i.e., there exists positive scalars µ0 and µe (minimum and maximum elastic
moduli [1]) such that

µ0|E|2 ≤ E ·C[E] ≤ µe|E|2, ∀ E ∈ Sym, a.e. in Ω. (3)
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Let D1,q(Ω), D1,q
0 (Ω) (q ∈ [1,+∞)) be the completion of C∞

0 (Ω) and C∞
0 (Ω), respectively, with

respect to the norm ‖∇u‖Lq(Ω).
We consider solutions u to equations (1) with finite Dirichlet integral (or with finite energy) that

we call D-solutions analogous with the terminology used in viscous fluid dynamics (see [2]). More
precisely, we say that u ∈ D1,2(Ω) is a D-solution to equation (1)1∫

Ω

∇ϕ ·C[∇u] = 0, ∀ϕ ∈ D1,2
0 (Ω). (4)

A D-solution to system (1) is a D-solution to equation (1)1, which satisfies the boundary condition
in the sense of trace in Sobolev’s spaces and tends to zero at infinity in a mean square sense [2]

lim
R→+∞

∫
∂B

|u(R, σ)|2dσ = 0. (5)

If u is a D-solution to (1)1, then the traction field on the boundary is

s(u) = C[∇u]n

where a well defined field of W−1/2,2(∂Ω) exists and the following generalized work and energy
relation [1] holds ∫

Ω∩BR

∇u ·C[∇u] =
∫

∂Ω

u · s(u),

where abuse of notation
∫

∂Ω u · s(u) means the value of the functional s(u) ∈ W−1/2,2(∂Ω) at u ∈
W1/2,2(∂Ω), and n is the unit outward (with respect to Ω) normal to ∂Ω.

If û ∈W1/2,2(∂Ω), denoting by u0 ∈ D1,2(Ω) an extension of û in Ω vanishing outside a ball, then
(1)1,2 is equivalent to finding a field u ∈ D1,2

0 (Ω) such that∫
Ω

∇ϕ ·C[∇v] = −
∫
Ω

∇ϕ ·C[∇u0], ∀ϕ ∈ D1,2
0 (Ω). (6)

Since the right-hand side of (6) defines a linear and continuous functional on D1,2
0 (Ω), and by the

first Korn inequality (see [1] Section 13)∫
Ω

|∇v|2 ≤ 2
µ0

∫
Ω

∇v ·C[∇v],

by the Lax–Milgram lemma, (6) has a unique solution v, and the field u = v + u0 is a D-solution to
(1)1,2. It satisfies (1)3 in the following sense (see Lemma 1)∫

∂B

|u(R, σ)|2dσ = o(R−1). (7)

Moreover, u exhibits more regularity properties provided C, ∂Ω and û are more regular. In
particular, if C, û and ∂Ω are of class C∞, then u ∈ C∞(Ω) [3].

If C is constant, then existence and regularity hold under the weak assumption of strong
ellipticity [1], i.e.,

µ0|a|2|b|2 ≤ a ·C[a⊗ b]b, ∀ a, b ∈ R3. (8)

As far as we are aware, except for the property (7), little is known about the convergence at infinity
of a D-solution and, in particular, whether or under what additional conditions (7) can be improved.
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The main purpose of this paper is just to determine reasonable conditions on C assuring that (7)
can be improved.

We say that C is regular at infinity if there is a constant elasticity tensor C0 such that

lim
|x|→+∞

C(x) = C0. (9)

Let C0 and C denote the linear spaces of the D-solutions to the equations

div C[∇h] = 0 in Ω,

h = τ on ∂Ω,

lim
R→+∞

∫
∂B

|h(R, σ)|2dσ = 0,
(10)

for all τ ∈ R3 and
div C[∇h] = 0 in Ω,

h = τ + Ax on ∂Ω,

lim
R→+∞

∫
∂B

|h(R, σ)|2dσ = 0,
(11)

for all τ ∈ R3, A ∈ Lin, respectively.
The following theorem holds.

Theorem 1. Let u be the D–solution to (1). There is q < 2 depending only on C such that∫
∂B

|u(R, σ)|qdσ = o(Rq−3). (12)

If C is regular at infinity, then∫
∂B

|u(R, σ)|qdσ = o(Rq−3), ∀q ∈ (3/2,+∞), (13)

and ∫
∂B

|u(R, σ)|qdσ = o(Rq−3), ∀q ∈ (1, 2]⇐⇒
∫

∂Ω

û · s(h) = 0, ∀h ∈ C0. (14)

Moreover, if ∫
∂Ω

C [û⊗ n] = 0,
∫

∂Ω

û · s(h) = 0, ∀h ∈ C, (15)

then ∫
∂B

|u(R, σ)|dσ = o(R−2). (16)

2. Preliminary Results

In this section, we collect the main tools we need to prove Theorem 1.

Lemma 1. If u ∈ D1,q(Ω), for q ∈ [1, 2], then∫
∂B

|u(R, σ)|qdσ ≤ c(q)Rq−3
∫
{BR

|∇u|q. (17)
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Moreover, if q = 2, then, for R� R0,

∫
{BR

|u|2
r2 ≤ 4

∫
{BR

|∇u|2. (18)

Proof. Lemma 1 is well-known (see, e.g., [2,4] and [5] Chapter II). We propose a simple proof for the
sake of completeness. Since D1,2(Ω) is the completion of C∞

0 (Ω) with respect to the norm ‖∇u‖L2(Ω),
it is sufficient to prove (17) and (18) for a regular field u vanishing outside a ball. By basic calculus
and Hölder inequality,

∫
∂B

|u(R, σ)|qdσ =
∫
∂B

∣∣∣∣ +∞∫
R

∂ru(r, σ)dr
∣∣∣∣qdσ =

∫
∂B

∣∣∣∣ +∞∫
R

r2/qr−2/q∂ru(r, σ)dr
∣∣∣∣qdσ

≤
{ ∫

∂B

dσ

+∞∫
R

|∇u(r, σ)|qr2dr

}{ ∫
∂B

∣∣∣∣ +∞∫
R

r−
2

q−1 dr

∣∣∣∣∣
q−1

dσ

}
.

Hence, (17) follows by a simple integration.
From ∫

{BR

|u|2
r2 =

+∞∫
R

∂r

(
r
∫
∂B

|u(r, σ)|2dσ

)
− 2

∫
{BR

u
r
· ∂ru

by Schwarz’s inequality, one gets

∫
{BR

|u|2
r2 ≤ 2

{ ∫
{BR

|u|2
r2

∫
{BR

|∇u|2
}1/2

.

Hence, (18) follows at once.

Let C0 be a constant and strongly elliptic elasticity tensor. The equation

div C0[∇u] = 0 (19)

admits a fundamental solution U(x − y) [6] that enjoys the same qualitative properties as the
well-known ones of homogeneous and isotropic elastostatics, defined by

Uij(x− y) =
1

8πµ(1− ν)|x− y|

[
(3− 4ν)δij +

(xi − yi)(xj − zj)

|x− y|2

]
,

where µ is the shear modulus and ν the Poisson ratio (see [1] Section 51). In particular, U(x) = O(r−1)

and for f with compact support (say) the volume potential

V[ f ](x) =
∫
R3

U(x− y) f (y)dvy (20)

is a solution (in a sense depending on the regularity of f ) to the system

div C0[∇u] + f = 0 in R3. (21)

Let H1 denote the Hardy space on R3 (see [7] Chapter III). The following result is classical (see,
e.g., [7]).

Lemma 2. ∇2V maps boundedly Lq into itself for q ∈ (1,+∞) andH1 into itself.
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Lemma 3. Let u be the D-solution to (1), Then, for R� R0,∫
∂Ω

s(u) =
∫

∂BR

s(u), (22)

and ∫
∂Ω

h · s(u) =
∫

∂Ω

û · s(h), ∀h ∈ C, (23)

where C is the space of D-solutions to system (11).

Proof. Let

g(x) =


0, |x| > 2R,

1, |x| < R,

R−1(R− |x|), R ≤ |x| ≤ 2R,

(24)

with R� R0. Scalar multiplication of both sides of (1)1 by gh, (2) and an integration by parts yield∫
∂Ω

h · s(u)−
∫

∂Ω

û · s(h) = 1
R

∫
TR

(
u ·C[∇h]er − h ·C[∇u]er

)
,

where er = x/r. Since R ≤ |x| ≤ 2R, by Schwarz’s inequality,∣∣∣∣∣ 1
R

∫
TR

h ·C[∇u]er

∣∣∣∣∣ ≤ 2
∫
TR

r−1|h ·C[∇u]er| ≤ c‖r−1h‖L2(TR)
‖∇u‖L2(TR)

,

∣∣∣∣∣ 1
R

∫
TR

u ·C[∇h]er

∣∣∣∣∣ ≤ 2
∫
TR

r−1|u ·C[∇h]er| ≤ c‖r−1u‖L2(TR)
‖∇h‖L2(TR)

.

Hence, letting R→ +∞ and taking into account Lemma 1, (23) follows.

Lemma 4. Let u be the D-solution to (1); then, for R� R0,∫
∂Ω

(
x⊗ s(u)−C [û⊗ n]

)
=
∫

∂BR

(
x⊗ s(u)−C [u⊗ eR]

)
, (25)

where C is the space of D-solutions to system (11).

Proof. (25) is easily obtained by integrating the identity

0 = x⊗ div C[∇u] = div
(
x⊗C[∇u]

)
−C[∇u]

over BR and using the divergence theorem.

3. Proof of Theorem 1

Let ϑ(r) be a regular function, vanishing in BR and equal to 1 outside B2R, for R� R0. The field
v = ϑu is a D-solution to the equation

div C[∇v] + f = 0 in R3, (26)

with
f = −C[∇u]∇ϑ− div C[u⊗∇ϑ]. (27)
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Of course, f ∈ L2(R3) vanishes outside TR. Let C0 be a strongly elliptic elasticity tensor. Clearly,
v is a D-solution to the system

div C0[∇v] + div (C−C0)[∇v] + f = 0 in R3, (28)

which coincides with u outside B2R. Since

∇kV[ f ](x) = O(r−1−k), k ∈ N, ∇k = ∇ . . .∇︸ ︷︷ ︸
k−times

, (29)

by Lemma 2, the map
w′(x) = ∇V

[
(C−C0)[∇w]

]
(x) +V[ f ](x) (30)

is continuous from D1,q into itself, for q ∈ (3/2,+∞). Choose

C0ijhk = µeδihδjk.

Since
‖∇V[(C−C0)[∇w]]‖D1,q ≤ c(q)

µe − µ0

µe
‖w‖D1,q

and [7]
lim
q→2

c(q) = 1,

the map (30) is contractive in a neighborhood of 2 and its fixed point must coincide with v . Hence,
there is q ∈ (1, 2) such that u ∈ D1,q(Ω) and (12) is proved.

If C is regular at infinity, then by Lemma 1 and the property of ϑ,

‖v′ − z′‖D1,q ≤ c(q)‖C−C0‖L∞({SR0 )
‖v− z‖D1,q . (31)

Since the constant c(q) is uniformly bounded in every interval [a, b] and ‖C− C0‖L∞({SR0 )
is

sufficiently small, u ∈ D1,q for q ∈ (3/2,+∞).
Assume that ∫

∂Ω

û · s(h) = 0, ∀h ∈ C0. (32)

By Lemma 3, for R� R0, ∫
∂BR

s(u) =
∫

∂BR

C[∇u]eR = 0.

Therefore, taking into account (27),

∫
R3

f =
∫
TR

f =

2R∫
R

ϑ′(r)dr
∫

∂Br

C[∇u]er = 0, (33)

Since
V[ f ](x) =

∫
R3

[
U(x− y)−U(y)

]
f (y)dvy +U(x)

∫
R3

f ,

by (33), Lagrange’s theorem and (29)

∇V[ f ](x) = O(r−3),

so that
∇V[ f ] ∈ Lq, q ∈ (1, 2]. (34)
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Then, by (31), the map (30) is contractive for q in a right neighborhood of 1 so that

u ∈ D1,q(Ω), q ∈ (1, 2]. (35)

Conversely, if (35) holds, then a simple computation yields∫
∂Ω

s(u) =
∫
R3

C[∇u]∇g = − 1
R

∫
TR

C[∇u]er, (36)

where g is the function (24). By Hölder’s inequality,

1
R

∣∣∣∣∣
∫
TR

C[∇u]er

∣∣∣∣∣ ≤ c
R

{ ∫
TR

|∇u|3/2

}2/3{ ∫
TR

dv

}1/3

≤
{ ∫

TR

|∇u|3/2

}2/3

.

Therefore, letting R→ +∞ in (36) yields∫
∂Ω

s(u) = 0

and this implies (32).
From

Vi[ f ](x) =
∫
R3

[
Uij(x− y)−U(y)− yk∂kUij(y)

]
f j(y)dvy

+Uij(x)
∫
R3

f j + ∂kU(x)
∫
R3

Uij(y) f j(y)dvy

by (33), Lemma 4, Lagrange’s theorem and (29)

∇V[ f ](x) = O(r−4),

so that ∇V[ f ] ∈ L1. Since f ∈ L2(R3) has compact support and satisfies (33), it belongs toH1 (see [7]
p. 92) and by Lemma 2 V[ f ] ∈ H1. Hence, it follows that (30) mapsH1 into itself and

‖v′ − z′‖H1 ≤ ‖C−C0‖L∞({SR0 )
‖v− z‖H1 .

Since, by assumptions, ‖C−C0‖L∞({SR0 )
is small, (30) is a contraction and by the above argument

its (unique) fixed point must coincide with v so that ∇u ∈ L1(Ω). �

We aim at concluding the paper with the following remarks.

(i) It is evident that the hypothesis that C is regular at infinity can be replaced by the weaker one
that |C−C0| is suitably small at a large spatial distance.

(ii) The operator V maps boundedly the Hardy space Hq (q ∈ (0, 1]) into itself [7]. Hence, the
argument in the proof of (16) can be used to show that ∇v ∈ Hq, q > 3/4. We can then use the
Sobolev–Poincaré (see [8] p. 255) to see that u ∈ Lq(Ω) for q > 1.

(iii) Relation (16) is a kind of Stokes’ paradox in nonhomogeneous elastostatics: if C is regular at infinity,
then the system

div C[∇h] = 0 in Ω,

h = τ on ∂Ω,∫
∂B

h(R, σ)dσ= o(R−1),
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with τ nonzero constant vector, does not admit solutions.
(iv) If C is constant and strongly elliptic, then u is analytic in Ω and at large spatial distance admits

the representation

u(x) = U(x)
∫

∂Ω

s(u) +∇U(x)
∫

∂Ω

(
ξ ⊗ s(u)−C[û⊗ n]

)
(ξ) + ψ(x)

with |x|3|ψ(x)| ≤ c. Therefore, in the homogeneous case, the conclusions of Theorem 1 hold
pointwise:

|x|2|u(x)| ≤ c⇐⇒
∫

∂Ω

û · s(h) = 0, ∀h ∈ C0,

∫
∂Ω

C [û⊗ n] = 0,
∫

∂Ω

û · s(h) = 0, ∀h ∈ C ⇒ |x|3|u(x)| ≤ c.
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