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Abstract

:

We study the asymptotic behavior of solutions with finite energy to the displacement problem of linear elastostatics in a three-dimensional exterior Lipschitz domain.
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1. Introduction


The displacement problem of elastostatics in an exterior Lipschitz domain  Ω  of   R 3   consists of finding a solution to the equations [1] (Notation—Unless otherwise specified, we will use the notation of the classical monograph [1] by M.E. Gurtin. In particular,     (  div   C  [ ∇ u ]  )  i  =  ∂ j   (  C  i j h k    ∂ k   u h  )   , Lin is the space of second–order tensors (linear maps from   R 3   into itself) and Sym, Skw are the spaces of the symmetric and skew elements of Lin respectively; if   E ∈ Lin   and   v ∈   R  3   ,   E v   is the vector with components    E  i j    v j   .    B R   = { x ∈   R 3  : r =  | x | < R }   ,    T R  =  B  2 R   ∖  B R   ,   ∁  B R  =   R  3  ∖   B R  ¯    and   B  R 0    is a fixed ball containing   ∂ Ω  . If   f ( x )   and   ϕ ( r )   are functions defined in a neighborhood of infinity, then   f ( x ) = o ( ϕ ( r ) )   means that    lim  r → + ∞    ( f / ϕ )  = 0  . To lighten up the notation, we do not distinguish between scalar, vector, and second–order tensor space functions; c will denote a positive constant whose numerical value is not essential to our purposes.)


      div   C [ ∇ u ]      = 0  in  Ω ,      u     =  u ^   on  ∂ Ω ,         lim  R → + ∞    ∫  ∂ B   u  ( R , σ )  d σ       = 0 ,     



(1)




where  u  is the (unknown) displacement field,   u ^   is an (assigned) boundary displacement, B is the unit ball,   C ≡ [  C  i j h k   ]   is the (assigned) elasticity tensor, i.e., a map from   Ω × Lin → Sym  , linear on Sym and vanishing in   Ω × Skw  . We shall assume  C  to be symmetric, i.e.,


  E · C [ L ] = L · C [ E ]  ∀ E , L ∈ Lin ,  



(2)




and positive definite, i.e., there exists positive scalars   μ 0   and   μ e   (minimum and maximum elastic moduli [1]) such that


   μ 0    | E |  2  ≤ E · C  [ E ]  ≤  μ e    | E |  2  ,  ∀  E ∈ Sym ,    a . e .   in  Ω .  



(3)







Let    D  1 , q    ( Ω )   ,    D 0  1 , q    ( Ω )     ( q ∈ [ 1 , + ∞ ) )   be the completion of    C 0 ∞   (  Ω ¯  )    and    C 0 ∞   ( Ω )   , respectively, with respect to the norm    ∥ ∇ u ∥    L q   ( Ω )    .



We consider solutions  u  to equations (1) with finite Dirichlet integral (or with finite energy) that we call D-solutions analogous with the terminology used in viscous fluid dynamics (see [2]). More precisely, we say that   u ∈  D  1 , 2    ( Ω )    is a D-solution to equation (1)   1  


   ∫ Ω  ∇ φ · C  [ ∇ u ]  = 0 ,  ∀ φ ∈  D 0  1 , 2    ( Ω )  .  



(4)







A D-solution to system (1) is a D-solution to equation (1)   1  , which satisfies the boundary condition in the sense of trace in Sobolev’s spaces and tends to zero at infinity in a mean square sense [2]


   lim  R → + ∞    ∫  ∂ B     | u  ( R , σ )  |  2  d σ = 0 .  



(5)







If  u  is a D-solution to (1)   1  , then the traction field on the boundary is


  s ( u ) = C [ ∇ u ] n  








where a well defined field of    W  − 1 / 2 , 2    ( ∂ Ω )    exists and the following generalized work and energy relation [1] holds


   ∫  Ω ∩  B R    ∇ u · C  [ ∇ u ]  =  ∫  ∂ Ω   u · s  ( u )  ,  








where abuse of notation    ∫  ∂ Ω   u · s  ( u )    means the value of the functional   s  ( u )  ∈  W  − 1 / 2 , 2    ( ∂ Ω )    at   u ∈  W  1 / 2 , 2    ( ∂ Ω )   , and  n  is the unit outward (with respect to  Ω ) normal to   ∂ Ω  .



If    u ^  ∈  W  1 / 2 , 2    ( ∂ Ω )   , denoting by    u 0  ∈  D  1 , 2    ( Ω )    an extension of   u ^   in  Ω  vanishing outside a ball, then    ( 1 )   1 , 2    is equivalent to finding a field   u ∈  D 0  1 , 2    ( Ω )    such that


   ∫ Ω  ∇ φ · C  [ ∇ v ]  = −  ∫ Ω  ∇ φ · C  [ ∇  u 0  ]  ,  ∀ φ ∈  D 0  1 , 2    ( Ω )  .  



(6)







Since the right-hand side of (6) defines a linear and continuous functional on    D 0  1 , 2    ( Ω )   , and by the first Korn inequality (see [1] Section 13)


   ∫ Ω    | ∇ v |  2  ≤  2  μ 0    ∫ Ω  ∇ v · C  [ ∇ v ]  ,  








by the Lax–Milgram lemma, (6) has a unique solution  v , and the field   u = v +  u 0    is a D-solution to    ( 1 )   1 , 2   . It satisfies    ( 1 )  3   in the following sense (see Lemma 1)


   ∫  ∂ B     | u  ( R , σ )  |  2  d σ = o  (  R  − 1   )  .  



(7)







Moreover,  u  exhibits more regularity properties provided  C ,   ∂ Ω   and   u ^   are more regular. In particular, if  C ,   u ^   and   ∂ Ω   are of class   C ∞  , then   u ∈  C ∞   (  Ω ¯  )    [3].



If  C  is constant, then existence and regularity hold under the weak assumption of strong ellipticity [1], i.e.,


   μ 0    | a |  2    | b |  2  ≤ a · C  [ a ⊗ b ]  b ,  ∀  a , b ∈   R  3  .  



(8)







As far as we are aware, except for the property (7), little is known about the convergence at infinity of a D-solution and, in particular, whether or under what additional conditions (7) can be improved.



The main purpose of this paper is just to determine reasonable conditions on  C  assuring that (7) can be improved.



We say that  C  is regular at infinity if there is a constant elasticity tensor   C 0   such that


   lim  | x | → + ∞   C  ( x )  =  C 0  .  



(9)







Let   C 0   and  C  denote the linear spaces of the D-solutions to the equations


      div   C [ ∇ h ]      = 0  in  Ω ,      h     = τ  on  ∂ Ω ,         lim  R → + ∞    ∫  ∂ B     | h  ( R , σ )  |  2  d σ       = 0 ,     



(10)




for all   τ ∈   R  3    and


      div   C [ ∇ h ]      = 0     in  Ω ,      h     = τ + A x  on  ∂ Ω ,         lim  R → + ∞    ∫  ∂ B     | h  ( R , σ )  |  2  d σ       = 0 ,     



(11)




for all   τ ∈   R  3   ,   A ∈ Lin  , respectively.



The following theorem holds.



Theorem 1.

Let  u  be the D–solution to   ( 1 )  . There is   q < 2   depending only on  C  such that


    ∫  ∂ B     | u  ( R , σ )  |  q  d σ = o  (  R  q − 3   )  .   



(12)







If  C  is regular at infinity, then


    ∫  ∂ B     | u  ( R , σ )  |  q  d σ = o  (  R  q − 3   )  ,  ∀ q ∈  (  3 / 2  , + ∞ )  ,   



(13)







and


    ∫  ∂ B     | u  ( R , σ )  |  q  d σ = o  (  R  q − 3   )  ,   ∀ q ∈  ( 1 , 2 ]  ⟺  ∫  ∂ Ω    u ^  · s  ( h )  = 0 ,   ∀ h ∈  C 0  .   



(14)







Moreover, if


    ∫  ∂ Ω   C   [  u ^  ⊗ n ]  = 0 ,   ∫  ∂ Ω    u ^  · s  ( h )  = 0 ,   ∀ h ∈ C ,   



(15)







then


    ∫  ∂ B    | u  ( R , σ )  |  d σ = o  (  R  − 2   )  .   



(16)










2. Preliminary Results


In this section, we collect the main tools we need to prove Theorem 1.



Lemma 1.

If   u ∈  D  1 , q    ( Ω )   , for   q ∈ [ 1 , 2 ]  , then


    ∫  ∂ B     | u  ( R , σ )  |  q  d σ ≤ c  ( q )   R  q − 3    ∫  ∁  B R      | ∇ u |  q  .   



(17)







Moreover, if   q = 2  , then, for   R ≫  R 0   ,


    ∫  ∁  B R       | u |  2   r 2   ≤ 4  ∫  ∁  B R      | ∇ u |  2  .   



(18)









Proof. 

Lemma 1 is well-known (see, e.g., [2,4] and [5] Chapter II). We propose a simple proof for the sake of completeness. Since    D  1 , 2    ( Ω )    is the completion of    C 0 ∞   (  Ω ¯  )    with respect to the norm    ∥ ∇ u ∥    L 2   ( Ω )    , it is sufficient to prove (17) and (18) for a regular field  u  vanishing outside a ball. By basic calculus and Hölder inequality,


       ∫  ∂ B     | u  ( R , σ )  |  q  d σ        =  ∫  ∂ B   |   ∫ R  + ∞    ∂ r  u  ( r , σ )  d r  | q  d σ =  ∫  ∂ B   |   ∫ R  + ∞    r  2 / q    r  − 2 / q    ∂ r  u  ( r , σ )  d r  | q  d σ           ≤   ∫  ∂ B   d σ  ∫ R  + ∞     | ∇ u  ( r , σ )  |  q   r 2  d r    ∫  ∂ B   |  ∫ R  + ∞    r  −  2  q − 1     d r  |  q − 1   d σ  .      











Hence, (17) follows by a simple integration.



From


   ∫  ∁  B R       | u |  2   r 2   =  ∫ R  + ∞    ∂ r   r  ∫  ∂ B     | u  ( r , σ )  |  2  d σ  − 2  ∫  ∁  B R     u r  ·  ∂ r  u  








by Schwarz’s inequality, one gets


   ∫  ∁  B R       | u |  2   r 2   ≤ 2     ∫  ∁  B R       | u |  2   r 2    ∫  ∁  B R      | ∇ u |  2    1 / 2   .  











Hence, (18) follows at once. ☐





Let   C 0   be a constant and strongly elliptic elasticity tensor. The equation


   div    C 0   [ ∇ u ]  = 0  



(19)




admits a fundamental solution   U ( x − y )   [6] that enjoys the same qualitative properties as the well-known ones of homogeneous and isotropic elastostatics, defined by


   U  i j    ( x − y )  =  1  8 π μ ( 1 − ν ) | x − y |     ( 3 − 4 ν )   δ  i j   +    (  x i  −  y i  )   (  x j  −  z j  )     | x − y |  2    ,  








where  μ  is the shear modulus and  ν  the Poisson ratio (see [1] Section 51). In particular,   U  ( x )  = O  (  r  − 1   )    and for  f  with compact support (say) the volume potential


  V  [ f ]   ( x )  =  ∫   R  3   U  ( x − y )  f  ( y )  d  v y   



(20)




is a solution (in a sense depending on the regularity of  f ) to the system


   div    C 0   [ ∇ u ]  + f = 0  in    R  3  .  



(21)







Let    H  1   denote the Hardy space on    R  3   (see [7] Chapter III). The following result is classical (see, e.g., [7]).



Lemma 2.

   ∇ 2  V   maps boundedly   L q   into itself for   q ∈ ( 1 , + ∞ )   and    H  1   into itself.





Lemma 3.

Let u be the D-solution to   ( 1 )  , Then, for   R ≫  R 0   ,


    ∫  ∂ Ω   s  ( u )  =  ∫  ∂  B R    s  ( u )  ,   



(22)







and


    ∫  ∂ Ω   h · s  ( u )  =  ∫  ∂ Ω    u ^  · s  ( h )  ,  ∀ h ∈ C ,   



(23)







where  C  is the space of D-solutions to system   ( 11 )  .





Proof. 

Let


  g  ( x )  =      0 ,     | x | > 2 R ,       1 ,     | x | < R ,        R  − 1    ( R − | x | )  ,     R ≤ | x | ≤ 2 R ,       



(24)




with   R ≫  R 0   . Scalar multiplication of both sides of (1)   1   by   g h  , (2) and an integration by parts yield


   ∫  ∂ Ω   h · s  ( u )  −  ∫  ∂ Ω    u ^  · s  ( h )  =  1 R   ∫  T R    u · C  [ ∇ h ]   e r  − h · C  [ ∇ u ]   e r   ,  








where    e r  = x / r  . Since   R ≤ | x | ≤ 2 R  , by Schwarz’s inequality,


      |   1 R   ∫  T R   h · C  [ ∇ u ]   e r  | ≤ 2  ∫  T R    r  − 1    | h · C  [ ∇ u ]    e r   | ≤ c ∥   r  − 1     h ∥    L 2   (  T R  )      ∥ ∇ u ∥    L 2   (  T R  )    ,         |   1 R   ∫  T R   u · C  [ ∇ h ]   e r  | ≤ 2  ∫  T R    r  − 1    | u · C  [ ∇ h ]    e r   | ≤ c ∥   r  − 1     u ∥    L 2   (  T R  )      ∥ ∇ h ∥    L 2   (  T R  )    .      











Hence, letting   R → + ∞   and taking into account Lemma 1, (23) follows. ☐





Lemma 4.

Let  u  be the D-solution to   ( 1 )  ; then, for   R ≫  R 0   ,


    ∫  ∂ Ω    x ⊗ s  ( u )  − C   [  u ^  ⊗ n ]   =  ∫  ∂  B R     x ⊗ s  ( u )  − C   [ u ⊗  e R  ]    ,   



(25)







where  C  is the space of D-solutions to system   ( 11 )  .





Proof. 

(25) is easily obtained by integrating the identity


  0 = x ⊗  div   C  [ ∇ u ]  =  div    x ⊗ C [ ∇ u ]  − C  [ ∇ u ]   








over   B R   and using the divergence theorem. ☐






3. Proof of Theorem 1


Let   ϑ ( r )   be a regular function, vanishing in   B R   and equal to 1 outside   B  2 R   , for   R ≫  R 0   . The field   v = ϑ u   is a D-solution to the equation


   div   C  [ ∇ v ]  + f = 0  in    R  3  ,  



(26)




with


  f = − C [ ∇ u ] ∇ ϑ −  div   C [ u ⊗ ∇ ϑ ] .  



(27)







Of course,   f ∈  L 2   (   R  3  )    vanishes outside   T R  . Let   C 0   be a strongly elliptic elasticity tensor. Clearly,  v  is a D-solution to the system


   div    C 0   [ ∇ v ]  +  div    ( C −  C 0  )   [ ∇ v ]  + f = 0  in    R  3  ,  



(28)




which coincides with  u  outside   B  2 R   . Since


   ∇ k  V  [ f ]   ( x )  = O  (  r  − 1 − k   )  ,  k ∈ N ,   ∇ k  =    ∇ … ∇  ︸   k − times   ,  



(29)




by Lemma 2, the map


   w ′   ( x )  = ∇ V   ( C −  C 0  )   [ ∇ w ]    ( x )  + V  [ f ]   ( x )   



(30)




is continuous from   D  1 , q    into itself, for   q ∈ ( 3 / 2 , + ∞ )  . Choose


     C 0    i j h k   =  μ e   δ  i h    δ  j k   .  











Since


   ∥ ∇ V   [  ( C −  C 0  )   [ ∇ w ]  ]    ∥   D  1 , q    ≤ c  ( q )     μ e  −  μ 0    μ e     ∥ w ∥   D  1 , q     








and [7]


   lim  q → 2   c  ( q )  = 1 ,  








the map (30) is contractive in a neighborhood of 2 and its fixed point must coincide with  v  . Hence, there is   q ∈ ( 1 , 2 )   such that   u ∈  D  1 , q    ( Ω )    and (12) is proved.



If  C  is regular at infinity, then by Lemma 1 and the property of  ϑ ,


   ∥   v ′  −  z ′    ∥   D  1 , q     ≤ c  ( q )  ∥ C −   C 0    ∥    L ∞   ( ∁  S  R 0   )      ∥ v − z ∥   D  1 , q    .  



(31)







Since the constant   c ( q )   is uniformly bounded in every interval   [ a , b ]   and    ∥ C −   C 0    ∥    L ∞   ( ∁  S  R 0   )      is sufficiently small,   u ∈  D  1 , q     for   q ∈ ( 3 / 2 , + ∞ )  .



Assume that


   ∫  ∂ Ω    u ^  · s  ( h )  = 0 ,  ∀ h ∈  C 0  .  



(32)







By Lemma 3, for   R ≫  R 0   ,


   ∫  ∂  B R    s  ( u )  =  ∫  ∂  B R    C  [ ∇ u ]   e R  = 0 .  











Therefore, taking into account (27),


   ∫   R  3   f =  ∫  T R   f =  ∫  R   2 R    ϑ ′   ( r )  d r  ∫  ∂  B r    C  [ ∇ u ]   e r  = 0 ,  



(33)







Since


  V  [ f ]   ( x )  =  ∫   R  3    U ( x − y ) − U ( y )  f  ( y )  d  v y  + U  ( x )   ∫   R  3   f ,  








by (33), Lagrange’s theorem and (29)


  ∇ V  [ f ]   ( x )  = O  (  r  − 3   )  ,  








so that


  ∇ V  [ f ]  ∈  L q  ,  q ∈  ( 1 , 2 ]  .  



(34)







Then, by (31), the map (30) is contractive for q in a right neighborhood of 1 so that


  u ∈  D  1 , q    ( Ω )  ,  q ∈  ( 1 , 2 ]  .  



(35)







Conversely, if (35) holds, then a simple computation yields


   ∫  ∂ Ω   s  ( u )  =  ∫   R  3   C  [ ∇ u ]  ∇ g = −  1 R   ∫  T R   C  [ ∇ u ]   e r  ,  



(36)




where g is the function (24). By Hölder’s inequality,


   1 R  |   ∫  T R   C  [ ∇ u ]   e r  | ≤  c R      ∫  T R     | ∇ u |   3 / 2     2 / 3       ∫  T R   d v   1 / 3   ≤     ∫  T R     | ∇ u |   3 / 2     2 / 3   .  











Therefore, letting   R → + ∞   in (36) yields


   ∫  ∂ Ω   s  ( u )  = 0  








and this implies (32).



From


      V i   [ f ]   ( x )  =        ∫   R  3     U  i j    ( x − y )  − U  ( y )  −  y k   ∂ k   U  i j    ( y )    f j   ( y )  d  v y        +       U  i j    ( x )   ∫   R  3    f j  +  ∂ k  U  ( x )   ∫   R  3    U  i j    ( y )   f j   ( y )  d  v y       








by (33), Lemma 4, Lagrange’s theorem and (29)


  ∇ V  [ f ]   ( x )  = O  (  r  − 4   )  ,  








so that   ∇ V  [ f ]  ∈  L 1   . Since   f ∈  L 2   (   R  3  )    has compact support and satisfies (33), it belongs to    H  1   (see [7] p. 92) and by Lemma 2  V  [ f ]  ∈   H  1   . Hence, it follows that (30) maps    H  1   into itself and


   ∥   v ′  −  z ′    ∥    H  1    ≤ ∥ C −   C 0    ∥    L ∞   ( ∁  S  R 0   )      ∥ v − z ∥    H  1   .  











Since, by assumptions,    ∥ C −   C 0    ∥    L ∞   ( ∁  S  R 0   )      is small, (30) is a contraction and by the above argument its (unique) fixed point must coincide with  v  so that   ∇ u ∈  L 1   ( Ω )   . □



We aim at concluding the paper with the following remarks.




	(i)

	
It is evident that the hypothesis that  C  is regular at infinity can be replaced by the weaker one that    | C −   C 0   |    is suitably small at a large spatial distance.




	(ii)

	
The operator  V  maps boundedly the Hardy space    H  q    ( q ∈ ( 0 , 1 ] )   into itself [7]. Hence, the argument in the proof of (16) can be used to show that   ∇ v ∈   H  q   ,   q > 3 / 4  . We can then use the Sobolev–Poincaré (see [8] p. 255) to see that   u ∈  L q   ( Ω )    for   q > 1  .




	(iii)

	
Relation (16) is a kind of Stokes’ paradox in nonhomogeneous elastostatics: if  C  is regular at infinity, then the system


      div   C [ ∇ h ]      = 0  in  Ω ,      h     = τ  on  ∂ Ω ,         ∫  ∂ B   h  ( R , σ )  d σ      = o (  R  − 1   ) ,     











with τ nonzero constant vector, does not admit solutions.




	(iv)

	
If  C  is constant and strongly elliptic, then  u  is analytic in  Ω  and at large spatial distance admits the representation


  u  ( x )  = U  ( x )   ∫  ∂ Ω   s  ( u )  + ∇ U  ( x )   ∫  ∂ Ω    ξ ⊗ s  ( u )  − C  [  u ^  ⊗ n ]    ( ξ )  + ψ  ( x )   








with     | x |  3   | ψ  ( x )  |  ≤ c  . Therefore, in the homogeneous case, the conclusions of Theorem 1 hold pointwise:


    | x |  2   | u  ( x )  |  ≤ c ⟺  ∫  ∂ Ω    u ^  · s  ( h )  = 0 ,   ∀ h ∈  C 0  ,  










   ∫  ∂ Ω   C   [  u ^  ⊗ n ]  = 0 ,   ∫  ∂ Ω    u ^  · s  ( h )  = 0 ,   ∀ h ∈ C  ⇒   | x |  3   | u  ( x )  |  ≤ c .  
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