
mathematics

Article

Structure Functions of Pseudo Null Curves in
Minkowski 3-Space

Jinhua Qian 1,* , Jie Liu 1, Xueqian Tian 1 and Young Ho Kim 2

1 Department of Mathematics, Northeastern University, Shenyang 110004, China;
1800104@stu.neu.edu.cn (J.L.); 1800107@stu.neu.edu.cn (X.T.)

2 Department of Mathematics, Kyungpook National University, Daegu 41566, Korea; yhkim@knu.ac.kr
* Correspondence: qianjinhua@mail.neu.edu.cn; Tel.: +86-138-8935-7350

Received: 4 November 2019; Accepted: 16 December 2019; Published: 3 January 2020
����������
�������

Abstract: In this work, the embankment surfaces with pseudo null base curves are investigated in
Minkowski 3-space. The representation formula of pseudo null curves is obtained via the defined
structure functions and the k-type pseudo null helices are discussed completely. Based on the theories
of pseudo null curves, a class of embankment surfaces are constructed and characterized by the
structure functions of the pseudo null base curves.
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1. Introduction

With the development of the theory of relativity, geometers and researchers often extend some
topics in classical differential geometry of Riemannian manifolds to those of semi-Riemannian
manifolds, especially to Lorentz–Minkowski manifolds. However, due to the causal character of
vectors in Lorentz–Minkowski space, some problems become a little strange and different, especially
the ones related to lightlike (null) vectors, such as null curves, pseudo null curves, B-scrolls and the
marginally trapped surfaces and so on.

It is well known that a space curve is called a helix if its tangent vector makes a constant angle
with a fixed direction and it is called a slant helix if its principal normal vector makes a constant angle
with a fixed direction [1]. The helix and the slant helix play important roles in the curve theory, and
they can be applied into the science of biology and physics etc., such as analyzing the structure of DNA
and characterizing the motion of particles in a magnetic field [2]. Due to these fascinating applications,
the helix and the slant helix have been discussed widely, not only in the Euclidean space, but also
in the Lorentz–Minkowski space [3,4]. Recently, one of the authors investigated the representation
formula of null curves via the defined structure functions [5,6] and the null helix and k-type null slant
helices in Minkowski four-space were discussed in [6]. Motivated by those ideas, in the second part of
this paper, the pseudo null curves are represented by the new defined structure functions, at the same
time, the k-type pseudo null helices are defined and characterized by the structure functions in the
third part.

Naturally, the surface theory can also be generalized into the Lorentz–Minkowski space. In surface
theory, there exists an important class of surfaces, called ruled surfaces, which can be applied in
computer aided geometric designs (CAGD), surface approximations and tool path planning, etc.
The embankment surfaces as the envelope of cones are just formed by two ruled surfaces with the
same base curves [7]. Combining the theories of pseudo null curves, a kind of embankment surface,
with pseudo null base curves, are discussed in the fourth part of this work.

Throughout this paper, all the geometric objects under consideration are smooth and all surfaces
are connected unless otherwise stated.
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2. Representation Formula of Pseudo Null Curves

A Minkowski three-space E3
1 is provided with the standard flat metric given by

〈·, ·〉 = −dx2
1 + dx2

2 + dx2
3

in terms of the natural coordinate system (x1, x2, x3). Recall that a vector v is spacelike, timelike and
lightlike (null), if 〈v, v〉 > 0 or v = 0, 〈v, v〉 < 0 and 〈v, v〉 = 0, (v 6= 0), respectively. The norm of v is
defined by ‖v‖ =

√
|〈v, v〉|. For any two vectors x = (x1, x2, x3), y = (y1, y2, y3) ∈ E3

1, their exterior
product is given by

x× y =

∣∣∣∣∣∣∣
e1 e2 e3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣ =
(
−
∣∣∣∣∣x2 x3

y2 y3

∣∣∣∣∣ ,

∣∣∣∣∣x3 x1

y3 y1

∣∣∣∣∣ ,

∣∣∣∣∣x1 x2

y1 y2

∣∣∣∣∣
)

,

where {e1, e2, e3} is an orthogonal basis in E3
1. An arbitrary curve r(t) is spacelike, timelike or lightlike

if all of its velocity vectors are spacelike, timelike or lightlike. At the same time, a surface is said
to be timelike, spacelike or lightlike if all of its normal vectors are spacelike, timelike or lightlike,
respectively [8]. Furthermore, the spacelike curves in E3

1 can be classified into the first and the second
kind of spacelike curves and the pseudo null curves according to their principal normal vectors are
spacelike, timelike and lightlike, respectively. Among of them, the pseudo null curves are defined
as following.

Definition 1 ([9]). A spacelike curve r(t) framed by Frenet frame {α, β, γ} in E3
1 is called a pseudo null curve,

if its principal normal vector β and binormal vector γ are linearly independent null vectors.

Remark 1. The pseudo null lines are excluded from consideration throughout this paper.

Proposition 1 ([9]). Let r(s) : I→ E3
1 be a pseudo null curve parameterized by arc-length s, i.e., ‖r′(s)‖ = 1.

Then there exists a unique Frenet frame {r′(s) = α, β, γ}, such thatα′(s)
β′(s)
γ′(s)

 =

 0 1 0
0 κ(s) 0
−1 0 −κ(s)


α(s)

β(s)
γ(s)

 , (1)

where 〈α, α〉 = 〈β, γ〉 = 1, 〈β, β〉 = 〈γ, γ〉 = 〈α, β〉 = 〈α, γ〉 = 0 and α× β = β, β× γ = α, γ× α = γ.
In sequence, α, β, γ is called the tangent, principal normal and binormal vector field of r(s), respectively. The
function κ(s) is called the curvature function.

Remark 2. In some research papers for pseudo null curves such as [9], the function κ(s) is also called torsion
function. Throughout the paper, the pseudo null curves are parameterized by arc-length s.

The cone curves on Q2 and null curves in E3
1 are described by the defined structure functions

in [5,10], respectively. Motivated by them, the pseudo null curves in E3
1 can also be characterized.

First, we write r′(s) = (ξ1(s), ξ2(s), ξ3(s)), since r′(s) is a unit spacelike vector, then −ξ2
1 + ξ2

2 +

ξ2
3 = 1. Without loss of generality, we can assume

ξ3 + ξ1

1 + ξ2
=

1− ξ2

ξ3 − ξ1
= f , ξ2 = g,
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where f = f (s) and g = g(s) are non-constant functions of arc-length s. Then

ξ1 =
f (1 + g)− f−1(1− g)

2
, ξ2 = g, ξ3 =

f (1 + g) + f−1(1− g)
2

. (2)

Therefore, the pseudo null curve r(s) can be written as

r(s) =
∫
(ξ1, ξ2, ξ3)ds =

1
2

∫ (
f (1 + g)− f−1(1− g), 2g, f (1 + g) + f−1(1− g)

)
ds.

Furthermore, through direct calculations, we have

r′′(s) = 1
2
(

f ′(1 + g) + f g′ + f ′ f−2(1− g) + f−1g′, 2g′, f ′(1 + g) + f g′ − f ′ f−2(1− g)− f−1g′
)

. (3)

Due to 〈r′′(s), r′′(s)〉 = 0, we get
f ′

f
=

2g′

g2 − 1
. (4)

Solving the above differential Equation (4), we get

c f =
g− 1
g + 1

, (0 6= c ∈ R). (5)

Proposition 2. Let r(s) be a pseudo null curve in E3
1. Then r(s) can be written as

r(s) =
1
2

∫ (
f (1 + g)− f−1(1− g), 2g, f (1 + g) + f−1(1− g)

)
ds,

where f (s), g(s) are non-constant functions and they satisfy

c f =
g− 1
g + 1

, (0 6= c ∈ R).

Definition 2. The functions f (s) and g(s) in Proposition 2 are called structure functions of the pseudo null
curve r(s).

Proposition 3. Let r(s) be a pseudo null curve in E3
1. Then the curvature function κ(s) of r(s) and its structure

function g(s) are related by

κ(s) =
g′′(s)
g′(s)

. (6)

Proof of Proposition 3. According to Equation (3), through some calculations, we have

r′′′(s) =
1
2

(
( f ′(1 + g) + f g′ + f ′ f−2(1− g) + f−1g′)′, 2g′′, ( f ′(1 + g) + f g′ − f ′ f−2(1− g)− f−1g′)′

)
.

From the Frenet formula in Equation (1), we know r′′′(s) = κ(s)r′′(s). Comparing the above
equation to Equation (3), we can obtain the result easily.

Meanwhile, from the Frenet formula in Equations (1) and (2), through direct calculations, we can
get the representations of α and β. Then, according to Proposition 3, by solving a differential equation
system derived by γ′ = −α− κγ, it is not difficult to get the representation of γ. Thus, we have the
following conclusion.
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Proposition 4. Let r(s) be a pseudo null curve in E3
1. Then the Frenet frame {α, β, γ} of r(s) can be represented

by the structure functions f (s), g(s) as

α =
1
2

(
f (1 + g)− f−1(1− g), 2g, f (1 + g) + f−1(1− g)

)
,

β =
1
2

(
f ′(1 + g) + f g′ + f ′ f−2(1− g) + f−1g′, 2g′, f ′(1 + g) + f g′ − f ′ f−2(1− g)− f−1g′

)
,

γ =
1

2g′

(
c1 +

∫
[ f−1(1− g)− f (1 + g)]dg, 2(c2 −

∫
gdg), c3 −

∫
[ f (1 + g) + f−1(1− g)]dg

)
,

where ci(i = 1, 2, 3) ∈ R and they are related by 〈α, γ〉 = 0, 〈β, γ〉 = 1 and 〈γ, γ〉 = 0.

In what follows, we will be concerned with the pseudo null curves with constant curvatures.

Theorem 1. Let r(s) be a pseudo null curve in E3
1. If the curvature function κ(s) is constant, then the structure

functions f (s), g(s) can be written as

1. when κ(s) = 0, f (s) = as−1
as+1 , g(s) = as, (0 6= a ∈ R);

2. when κ(s) = c, f (s) = ecs−1
ecs+1 , g(s) = ecs, (0 6= c ∈ R).

Proof of Theorem 1. Let the curvature function κ(s) is constant c, from Equation (6), we have g′′(s) =
cg′(s).

Case 1: κ(s) = c = 0. It is easy to get g′(s) = a, g(s) = as + c1, (0 6= a ∈ R, c1 ∈ R). By the
parameter transformation s→ s + s0, where s0 is a constant, we can omit the integration constant c1

here, then g(s) = as. Furthermore, from Equation (5) we have

c2 f (s) =
as− 1
as + 1

, (0 6= c2 ∈ R).

By an appropriate transformation, we can let c2 = 1. Thus, we have f (s) = as−1
as+1 .

Case 2: κ(s) = c 6= 0. Similar to the proving procedure in Case 1, we can get g(s) = ecs and
f (s) = ecs−1

ecs+1 . This completes the proof.

From Proposition 2 and Theorem 1, the following conclusion can be achieved easily through
simple integrations [11].

Theorem 2. Let r(s) be a pseudo null curve with constant curvature κ(s) in E3
1. Then r(s) can be written as

1. when κ(s) = 0, r(s) = 1
2
(
as2, as2,−2s

)
, (0 6= a ∈ R);

2. when κ(s) = c, r(s) = 1
c (e

cs, ecs,−cs) , (0 6= c ∈ R).

Example 1. Consider pseudo null curves with constant curvatures.

1. r1(s) = (s2, s2,−s) with κ(s) = 0 (See Figure 1);
2. r2(s) = (es, es,−s) with κ(s) = 1 (See Figure 2).
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Figure 1. r1(s) shown with cone.

Figure 2. r2(s) shown with cone.

3. k-Type Pseudo Null Helices

In this section, we define the k-type pseudo null helices and investigate their properties.

Definition 3 ([6]). Let r(s) : I → E3
1 be a pseudo null curve with Frenet frame {α, β, γ}. If there exists a

non-zero constant vector field V such that 〈α, V〉 6= 0 (respectively, 〈β, V〉 6= 0, 〈γ, V〉 6= 0) is a constant for
all s ∈ I, then r(s) is said to be a k-type (k=1,2,3) pseudo null helix and V is called the axis of r(s).

Remark 3. If the tangent vector α, principal normal vector β or the binormal vector γ of r(s) is a constant
vector, then every fixed direction V satisfies the above definition. Throughout this paper, we assume this situation
never happens.
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Let V be the axis of a k-type pseudo null helix r(s). Then V can be decomposed by

V = v1α(s) + v2β(s) + v3γ(s), (7)

where vi = vi(s)(i = 1, 2, 3) are differentiable functions of arc-length s. Thus

v1 = 〈α, V〉 , v2 = 〈γ, V〉 , v3 = 〈β, V〉.

By taking the derivative with respect to s on the both sides of Equation (7), we get

(v′1 − v3)α + (v1 + v′2 + v2κ)β + (v′3 − v3κ)γ = 0,

which implies 
v′1 − v3 = 0,

v1 + v′2 + v2κ = 0,

v′3 − v3κ = 0.

(8)

3.1. One-Type Pseudo Null Helix

Theorem 3. Any pseudo null curve is a one-type pseudo null helix in E3
1.

Proof of Theorem 3. Based on the definition of one-type pseudo null helix, we have

〈α, V〉 = v1 = C0, (9)

where C0 is a non-zero constant. Differentiating Equation (9) with respect to s, we get

〈β, V〉 = v3 = 0. (10)

From Equation (8), the curvature κ(s) is an arbitrary function of arc-length s, together with
Equations (9) and (10), we get

v1 = C0, v2 = e−
∫

κds(c1 − C0

∫
e
∫

κdsds), v3 = 0,

where c1 ∈ R.
Conversely, if κ(s) is an arbitrary function, we can define a vector field V as

V = cα + e−
∫

κds(c1 − c
∫

e
∫

κdsds)β, (c1, c ∈ R and c 6= 0).

Then, we have V′ = 0 and 〈α, V〉 = c. This completes the proof.

As a consequence of Theorem 3, we have

Corollary 1. Let r(s) be a one-type pseudo null helix. Then the axis V is spacelike and it can be read as

V = cα + e−
∫

κds(c1 − c
∫

e
∫

κdsds)β (11)

or it can be represented by the structure function as

V = cα +
1
g′
(c1 − cg)β, (12)

where c1, c ∈ R and c 6= 0.
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Proof of Corollary 1. From Theorem 3, the axis V in Equation (11) can be obtained and it is spacelike
from 〈V, V〉 = c2 > 0. Substituting Equation (6) to Equation (11), we can get Equation (12) easily.

3.2. Two-Type Pseudo Null Helix

Theorem 4. There does not exist two-type pseudo null helix in E3
1.

Proof of Theorem 4. Based on the definition of two-type pseudo null helix, we have 〈β, V〉 = v3 = C0,
where C0 is a non-zero constant. Substituting v3 = C0 into Equation (8), we have κC0 = 0. Due to
C0 6= 0, we know κ(s) ≡ 0. At the same time, from Theorem 2 and the Frenet formula of Equation (1),
we know β = (a, a, 0), (0 6= a ∈ R) is a constant vector. This contradicts Remark 3.

3.3. Three-Type Pseudo Null Helix

Theorem 5. Let r(s) be a pseudo null curve in E3
1. Then r(s) is a three-type pseudo null helix if and only if its

curvature κ(s) satisfies
κ′′(s) = κ′(s)κ(s).

Explicitly, the curvature function κ(s) can be written as

1. κ(s) = −2(s + c1)
−1;

2. κ(s) = 2a tan a(s + c2);
3. κ(s) = a+aea(s+c3)

1−ea(s+c3)
,

where a > 0 and ci(i = 1, 2, 3) ∈ R.

Proof of Theorem 5. Based on the definition of three-type pseudo null helix, we have

〈γ, V〉 = v2 = C0, (13)

where C0 is a non-zero constant. Then, by taking derivative on both sides of Equation (13), we get

〈α, V〉+ κ〈γ, V〉 = 0. (14)

Due to Equation (14) together with Equation (8), we obtain

v1 = −κC0, v2 = C0, v3 = −κ′C0. (15)

Substituting v3 into the third equation of Equation (8), we know

κ′′(s) = κ′(s)κ(s). (16)

Let κ′(s) = p(κ), then Equation (16) can be rewritten by

dp
dκ

p = κp.

Since the curve r(s) is a planar curve when κ(s) is a constant [11], then p 6= 0 for a three-type
pseudo null helix. Solving the following differential equation

dp
dk

= κ,

we have
2κ′ = κ2 + c0, (c0 ∈ R). (17)

Solving the differential Equation (17), we get three cases as follows.
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Case 1: c0 = 0. It is easy to get

κ(s) = − 2
s + c1

, (c1 ∈ R).

Taking it into Equation (15), we have

v1 =
2C0

s + c1
, v2 = C0, v3 = − 2C0

(s + c1)2 .

Case 2: c0 = 4a2 > 0, (a > 0). By direct calculations, we obtain

κ(s) = 2a tan a(s + c2), (c2 ∈ R).

Substituting it into Equation (15), we get

v1 = −2aC0 tan a(s + c2), v2 = C0, v3 = −2a2C0 sec2 a(s + c2).

Case 3: c0 = −a2 < 0, (a > 0). After direct calculations, we obtain

κ(s) =
a + aea(s+c3)

1− ea(s+c3)
, (c3 ∈ R).

Taking it into Equation (15), we have

v1 =
aC0 + aC0ea(s+c3)

ea(s+c3) − 1
, v2 = C0, v3 = − 2a2C0ea(s+c3)

(1− ea(s+c3))2
.

Conversely, when κ(s) satisfies one of the following conditions, we can choose an appropriate
constant vector V as

1. V = 2c
s+c1

α + cβ− 2c
(s+c1)2 γ for κ(s) = − 2

s+c1
;

2. V = −2ca tan a(s + c2)α + cβ− 2ca2 sec2 a(s + c2)γ for κ(s) = 2a tan a(s + c2);
3. V = ca+caea(s+c3)

ea(s+c3)−1
α + cβ− 2ca2ea(s+c3)

(1−ea(s+c3))2 γ for κ(s) = a+aea(s+c3)

1−ea(s+c3)
.

Obviously, for each case, we have V′ = 0 and 〈γ, V〉 = c, (0 6= c ∈ R).

As a consequence of Theorem 5, we have

Corollary 2. Let r(s) be a three-type pseudo null helix. Then the axis V can be read as

1. when κ(s) = − 2
s+c1

, the axis V is lightlike. And

V =
2c

s + c1
α + cβ− 2c

(s + c1)2 γ;

2. when κ(s) = 2a tan a(s + c2), the axis V is timelike. And

V = −2ca tan a(s + c2)α + cβ− 2ca2 sec2 a(s + c2)γ;

3. when κ(s) = a+aea(s+c3)

1−ea(s+c3)
, the axis V is spacelike. And

V =
ca + caea(s+c3)

ea(s+c3) − 1
α + cβ− 2ca2ea(s+c3)

(1− ea(s+c3))2
γ,

where 0 < a, 0 6= c, ci(i = 1, 2, 3) ∈ R.
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From Theorem 5 and Proposition 3, we have

Corollary 3. Let r(s) be a three-type pseudo null helix. Then the structure functions f (s), g(s) of r(s) can be
written as

1. when κ(s) = − 2
s+c , f (s) = s+1

s−1 , g(s) = − 1
s ;

2. when κ(s) = 2a tan a(s + c), f (s) = −a+tan as
a+tan as , g(s) = tan as

a ;
3. when κ(s) = a+aea(s+c)

1−ea(s+c) , f (s) = 1−a(1−eas)
1+a(1−eas)

, g(s) = 1
a(1−eas)

,

where 0 < a, c ∈ R.

Proof of Corollary 3. When κ(s) = − 2
s+c , by the parameter transformation s → s + s0, (s0 ∈ R),

we can let c = 0, i.e., κ(s) = − 2
s . From Equation (6), we know g′′

g′ = −
2
s , then g(s) = − 1

s + c1, (c1 ∈ R).
Without loss of generality, we can put c1 = 0, then g(s) = − 1

s . Furthermore, from Equation (5), we have

c2 f (s) =
s + 1
s− 1

, (0 6= c2 ∈ R).

By an appropriate transformation, we can let c2 = 1. Thus, f (s) = s+1
s−1 .

Similarly, when κ(s) = 2a tan a(s + c) and κ(s) = a+aea(s+c)

1−ea(s+c) , by the parameter transformation, we
can get

g′′

g′
= 2a tan as and

g′′

g′
=

a + aeas

1− eas .

Solving the above two differential equations analogous to the first case, i.e., κ(s) = − 2
s+c , we can

get the other two conclusions easily.

Substituting the conclusions obtained in Corollary 3 to the representation formula shown by
Proposition 2, after direct integrations, we have

Corollary 4. Let r(s) be a three-type pseudo null helix. Then r(s) can be written as

1. r(s) = (ln |s|,− ln |s|, s) for κ(s) = − 2
s+c ;

2. r(s) = − 1
a2

(
ln | cos as|, ln | cos as|, a2s

)
for κ(s) = 2a tan a(s + c);

3. r(s) = 1
a2

(
ln |1− e−as|,− ln |1− e−as|, a2s

)
for κ(s) = a+aea(s+c)

1−ea(s+c) ,

where 0 < a, c ∈ R.

Example 2. Consider three-type pseudo null helices:

1. r1(s) = (ln s,− ln s, s), (s > 0) (see Figure 3);
2. r2(s) = − (ln cos s, ln cos s, s) , (−π

2 + 2nπ < s < π
2 + 2nπ, n ∈ Z) (see Figure 4);

3. r3(s) = (ln(1− e−s),− ln(1− e−s), s) , (s > 0) (see Figure 5).
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Figure 3. r1(s) shown with cone.

Figure 4. r2(s) shown with cone.
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Figure 5. r3(s) shown with cone.

4. Embankment Surfaces with Pseudo Null Base Curves

Given a one parameter family of regular implicit surfaces Φc : f (X, c) = 0, c ∈ [c1, c2].
The intersection curve of two neighbored surfaces Φc and Φc+∆c fulfills the two equations f (X, c) = 0
and f (X, c + ∆c) = 0. We consider the limit for ∆c→ 0 and get

fc(X, c) = lim
∆c→0

f (X, c)− f (X, c + ∆c)
∆c

= 0,

which motivates the following definition.

Definition 4 ([7]). Let Φc : f (X, c) = 0, c ∈ [c1, c2] be a one parameter family of regular implicit C2-surfaces.
The surface defined by the two equations

f (X, c) = 0, fc(X, c) = 0

is called an envelope of the given family of surfaces.

Definition 5 ([7]). Let Γ : X = c(s) = (a(s), b(s), c(s)) be a regular space curve and 0 < m ∈ R with
|mc′| <

√
a′2 + b′2. The envelope of the one parameter family of cones

f (X; s) = (x− a(s))2 + (y− b(s))2 −m2(z− c(s))2 = 0

is called an embankment surface and Γ its base curve.

Remark 4 ([7]). In fact, the embankment surface in above definition is consisted by two ruled surfaces which
can be represented as follows

X = X(s, t) = c(s) + tb1,2(s)
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with b1(s) = (ξ1(s), η1(s), 1), b2(s) = (ξ2(s), η2(s), 1) and (ξ1(s), η1(s)), (ξ2(s), η2(s)) are intersection
points of the circle ξ2 + η2 −m2 = 0 and the line ξa′ + ηb′ −m2c′ = 0.

Motivated by the generating process of embankment surfaces, we can construct a kind of
embankment surface in E3

1 based on a pseudo null curve as follows.

Definition 6. Let r(s) be a pseudo null curve framed by {α, β, γ} in E3
1 and b1,2(s) = 1√

2
(β± γ). Then the

surface partner

X1,2(s, t) = r(s) +
t√
2
(β± γ)

is called an embankment surface and r(s) its base curve.

Example 3. Consider an embankment surface X1,2(s, t) = r(s) + t√
2
(β± γ) with a pseudo null base curve

r(s) of curvature κ(s) = 1
s+1 (see Figure 6).

From Proposition 3, the structure functions of r(s) are

f (s) =
s2 + 2s− 2
s2 + 2s + 2

, g(s) =
s2 + 2s

2
.

Then, by Proposition 2, we know

r(s) =
√

2
18

(
√

2s3 + 3
√

2s2, s3 + 3s2 + 9s, s3 + 3s2 − 9s).

From Proposition 4, the principal normal vector β and binormal vector γ of r(s) are β =√
2(s+1)

3 (
√

2, 1, 1) and

γ = − 1
12(s + 1)

(
s4 + 4s3 + 4s2 + 9,

s4 + 4s3 + 10s2 + 12s− 9√
2

,
s4 + 4s3 − 2s2 − 12s− 9√

2

)
.

Figure 6. Embankment surface X1,2(s, t) with the red base curve r(s).

Combining the conclusions obtained in Section 3, when the base curve of an embankment surface
is a three-type pseudo null helix, we have

Theorem 6. Let X1,2(s, t) be an embankment surface with three-type pseudo null helix r(s) as its base curve.
Then X1,2(s, t) can be classified as
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1. when κ(s) = − 2
s+c , X1,2(s, t) = (ln |s|,− ln |s|, s) + t√

2
(β± γ), where

β =
1
s2 (−1, 1, 0), γ =

1
2
(s2 + 1, s2 − 1, 2s);

2. when κ(s) = 2a tan a(s + c), X1,2(s, t) = − 1
a2

(
ln | cos as|, ln | cos as|, a2s

)
+ t√

2
(β± γ), where

β = sec2 as(1, 1, 0), γ = − 1
2a2

(
sin2 as + a2 cos2 as, sin2 as− a2 cos2 as, a sin 2as

)
;

3. when κ(s) =
a + aea(s+c)

1− ea(s+c)
, X1,2(s, t) = 1

a2

(
ln |1− e−as|,− ln |1− e−as|, a2s

)
+ t√

2
(β± γ), where

β =
eas

(1− eas)2 (−1, 1, 0) , γ =
1

2a2eas

(
a2(eas − 1)2 + 1, a2(eas − 1)2 − 1, 2a(eas − 1)

)
,

where 0 < a, c ∈ R.

Proof of Theorem 6. From Corollary 4, when κ(s) = − 2
s+c (c ∈ R), the pseudo null curve r(s) =

(ln |s|,− ln |s|, s). According to Equation (1), we obtain

α = r′(s) =
1
s
(1,−1, s), β = α′ =

1
s2 (−1, 1, 0), γ = (

1
2
+ c1s2,−1

2
+ c2s2, s + c3s2),

where c1, c2, c3 are constants and related by 〈α, γ〉 = 0, 〈β, γ〉 = 1, 〈γ, γ〉 = 0. Through some direct
calculations, we obtain c1 = c2 = 1

2 , c3 = 0. Therefore

γ =
1
2
(s2 + 1, s2 − 1, 2s).

Similar to the first case, we can get the other two results, their explicit proofs are omitted here.

Example 4. Consider the embankment surfaces X1,2(s, t) with a three-type pseudo null helix stated in Example 2
as its base curve.

1. The embankment surface with base curve r(s) = (ln s,− ln s, s), (s > 0) are read as (see Figure 7)

X1,2(s, t) = (ln s,− ln s, s) +
t√
2
(− 1

s2 ±
1
2
(1 + s2),

1
s2 ±

1
2
(s2 − 1),±s);

2. The embankment surface with base curve r(s) = − (ln cos s, ln cos s, s) , (−π
2 + 2nπ < s < π

2 +

2nπ, n ∈ Z) are read as (see Figure 8)

X1,2(s, t) = − (ln cos s, ln cos s, s) +
t√
2
(sec2 s∓ 1

2
, sec2 s± cos 2s

2
,± sin 2s

2
);

3. The embankment surface with base curve r(s) = (ln(1− e−s),− ln(1− e−s), s) , (s > 0) are written as
(see Figure 9)

X1,2(s, t) = (ln(1− e−s),− ln(1− e−s), s)+ t√
2

(
± (1−es)2+1

2es − es

(1−es)2 , es

(1−es)2 ±
(1−es)2−1

2es ,± es−1
es

)
.
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Figure 7. Embankment surface X1,2(s, t) in 1.

Figure 8. Embankment surface X1,2(s, t) in 2.

Figure 9. Embankment surface X1,2(s, t) in 3.

Remark 5. The idea to study pseudo null curves by constructing structure functions can be extended into other
space–times and space forms, such as the hyperbolic space–time and de-Sitter space–time. At the same time,
the structure functions of pseudo null curves defined in this work can also be applied to some other submanifolds,
such as the canal (tube) submanifold, translation submanifold, product submanifold and rotation submanifold,
which play important roles in CAD (CAGD).
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