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Abstract: In this paper, we will consider a minimax fractional programming in complex spaces.
Since a duality model in a programming problem plays an important role, we will establish the
second-order Mond–Weir type and Wolfe type dual models, and derive the weak, strong, and strictly
converse duality theorems.
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1. Introduction

The minimax theorems are very important results in fixed point theory, game theory, minimax
programming problems, etc. John Nash provided an alternative proof of the minimax theorem using
Brouwer’s fixed point theorem. Later, Fan [1] established some minimax theorems on nonlinear spaces.
For instance, if X, Y are the compact Hausdorff spaces, and if the real-valued functional f : X×Y → R
satisfies some suitable conditions, then

min
x∈X

max
y∈Y

f (x, y) = max
y∈Y

min
x∈X

f (x, y).

On the other hand, many authors considered the left-hand side of the above equality with some
constraints, as a minimax programming problem. In 1977, Schmittendorf [2] first considered the
following real minimax problem:

min
x∈X

sup
y∈Y

f (x, y)

s.t. X = {x ∈ Rn | h(x) < 0},

where Y is a compact subset in Rm, functions f : Rn ×Rm → R and h : Rn → Rp are C1 mappings.
Since then, authors were interested in various types of the real minimax programming problems.
They derived the necessary and sufficient optimality conditions, and investigated various types of
duality models (see [3–7]). The generalized convexity is an important mathematical tool for studying
the sufficient optimality conditions and duality models in programming problems. For instance, Mititelu
and Treanţǎ [8] studied the efficiency conditions in vector control problems governed by multiple integrals.
Treanţǎ and Mititelu [9] investigated the duality with (ρ, b)-quasiinvexity for multidimensional vector
fractional control problems. Cipu [10] considered the duality results in quasiinvex variational control
problems with curvilinear integral functionals. Treanţǎ [11] also studied the multiobjective fractional
variational problem on higher-order jet bundles.
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For the minimax programming problems in complex spaces, Datta and Bhatia [12] first considered
the following complex minimax programming:

min
x∈X

sup
y∈Y

Re f (x, y)

s.t. x ∈ X = {x ∈ C2n | − h(x) ∈ T},

where Y is a compact subset in C2m, T is a polyhedral cone in Cp, functions f (·, y) and h(·) are analytic
on Q = {x = (x, x̄)|x ∈ Cn} ⊂ C2n. Remark that a nonlinear analytic function f : Cn → C does not
have a convex real part. As a consequence, we consider the complex functions defined on a linear
manifold of the set Q = {x = (x, x̄)|x ∈ Cn} ⊂ C2n (see Ferrero [13]).

After then, authors considered various types of the complex minimax programming problems,
established the optimality conditions, and studied various types of duality models under some
generalized convexities (see [14–18]).

In 2017, Huang [19] has constructed the second-order duality for non-differentiable complex
minimax programming problems. Huang and Lai [20] also established the second-order parametric
duality for complex minimax fractional programming problem, and derived the duality theorems
under generalized Θ-bonvexity.

In this paper, we are interested in a complex fractional minimax programming problem:

(P) min
x∈X

sup
y∈Y

Re f (x, y)
Re g(x, y)

subject to x ∈ X = {x ∈ C2n | − h(x) ∈ T},

where Y is a specified compact subset in C2m, T is a polyhedral cone in Cp; for x = (x, x̄) ∈ C2n,
y = (y, y) ∈ C2m, functions f (·, ·) and g(·, ·) are continuous functions; for each y ∈ Y, f (·, y), g(·, y)
and h(·) are analytic on the Q = {x = (x, x̄)|x ∈ Cn} ⊂ C2n, and, without loss of generality, we could
assume that Re f (x, y) ≥ 0 and Re g(x, y) > 0.

Our main goals of this paper will establish two types of second-order parametric free dual model
for the complex minimax fractional programming problem (P), and prove that the weak, strong, and
strictly converse duality theorems under generalized Θ-bonvexity assumptions.

This paper is divided into five sections. In order to construct the second-order parametric free
dual models, the definition of the second-order Θ-bonvexity, some notations and lemmas are introduced
in Section 2. Sections 3 and 4 include main results in this paper: we will formulate the second-order
Mond–Weir type (2nd-MWD) and Wolfe type (2nd-WD) dual models for problem (P) using the necessary
optimality conditions theorem with some suitable constraints, and derive their duality theorems under
generalized Θ-bonvexity. In Section 5, we will talk about the further plausible work.

2. Preliminary

In this section, we recall notations, definitions and introduce some lemmas from [15,19]. Given x ∈
Cp, the notations x, xT and xH are conjugate, transpose, and transpose conjugate of x. Let M ∈ Ck×p

be a k× p matrix, and the set T = {x ∈ Cp | Re(Mx) ≥ 0} be a polyhedral cone. The dual (or polar)
cone T∗ of T is defined by

T∗ = {µ ∈ Cp | Re〈x, µ〉 ≥ 0 for x ∈ T},

where 〈x, µ〉 = µHx is the inner product in complex spaces. Remark that T = (T∗)∗ if T is a
polyhedral cone.

Given x = (x, x) ∈ C2n and a twice differentiable analytic function Φ : C2n → C, the gradient
expression ∇Φ(x) is denoted by

∇Φ(x) =
(
∇xΦ(x),∇xΦ(x)

)
∈ C2n,
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where ∇xΦ(x) =
(
Φx1(x), · · · , Φxn(x)

)
∈ Cn, ∇xΦ(x) =

(
Φx1(x), · · · , Φxn(x)

)
∈ Cn.

The second-order gradient expression ∇2Φ(x) is denoted by

∇2Φ(x) =

(
∇xxΦ(x), ∇xxΦ(x)
∇xxΦ(x), ∇xxΦ(x)

)
∈ C2n×2n,

with
∇xxΦ(x) =

(
Φxixj(x)

)
n×n, i, j = 1, . . . n, ∇xxΦ(x) =

(
Φxixj(x)

)
n×n, i, j = 1, . . . n,

∇xxΦ(x) =
(
Φxixj(x)

)
n×n, i, j = 1, . . . n, ∇xxΦ(x) =

(
Φxixj(x)

)
n×n, i, j = 1, . . . n.

In order to introduce the optimality conditions and duality models, we need the following lemmas.
For the complete proofs, one can refer to the papers: ([15] Lemma 2) and ([19] Lemma 3.1).

Lemma 1. For y ∈ Y ⊂ C2m, x = (x, x) ∈ Q ⊂ C2n and nonzero vector µ ∈ Cp. Suppose that function

Φ(x) = f (x, y) + 〈h(x), µ〉

is differentiable at x0 = (x0, x0) ∈ Q. Then,

Re[Φ′(x0)(x− x0)] = Re
[〈

x− x0, ∇x f (x0, y) +∇x f (x0, y) + µT∇xh(x0) + µH∇xh(x0)
〉]

.

Lemma 2. Given x = (x, x), x0 = (x0, x0) ∈ Q ⊂ C2n, nonzero vector µ ∈ Cp and let v = (v, v) =

x− x0. Then, the twice differentiable analytic functions f (x) and 〈h(x), µ〉 have the second-order gradient
representations at x0 as follows:

(a)
(x− x0)

T∇2 f (x0)(x− x0) =
〈

v, vH [∇xx f (x0)]
〉
+
〈

vH [∇xx f (x0)], v
〉

+
〈

v, vT [∇xx f (x0)]
〉
+
〈

vT [∇xx f (x0)], v
〉
.

The real part of the above identity is equal to

Re
(〈

v, vH[∇xx f (x0) +∇xx f (x0)
]
+ vT[∇xx f (x0) +∇xx f (x0)

] 〉 )
.

(b)

(x− x0)
T∇2〈h(x0), µ〉(x− x0) =

〈
v, vH [µT∇xxh(x0)]

〉
+
〈

vH [µH∇xxh(x0)], v
〉

+
〈

v, vT [µT∇xxh(x0)]
〉
+
〈

vT [µH∇xxh(x0)], v
〉
.

The real part of the above identity is equal to

Re
(〈

v, vH[µT∇xxh(x0) + µH∇xxh(x0)
]
+ vT[µT∇xxh(x0) + µH∇xxh(x0)

] 〉 )
.

Let x ∈ Q ⊂ C2n be any feasible solution of problem (P). Denote a set

Y(x) =
{

y ∈ Y
∣∣∣ Re f (x, y)

Re g(x, y)
= sup

ν∈Y

Re f (x, ν)

Re g(x, ν)

}
.

Since f (x, ·) and g(x, ·) are continuous on the compact set Y, the set Y(x) is also a compact subset
of Y, and then the objective function of problem (P) can be expressed by the form:

Ψ(x) = sup
y∈Y

Re f (x, y)
Re g(x, y)

=

k
∑

i=1
λi Re f (x, yi)

k
∑

i=1
λi Re g(x, yi)

, (1)
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where yi ∈ Y(x) for i = 1, . . . , k, λi > 0, with ∑k
i=1 λi = 1, and the problem (P) become

(P) min
x∈X

Ψ(x).

Now, we could recall the necessary optimality conditions theorem of (P) as follows.

Theorem 1 ([14] Theorem 3.1). Let x0 = (x0, x0) be a (P)-optimal with optimal value γ∗. Suppose that the
problem (P) satisfies the constraint qualification at x0. Then, there exists a positive integer k, scalars λi ≥ 0
with ∑k

i=1 λi = 1, vectors yi ∈ Y(x0) for i = 1, . . . , k and non-zero vector µ ∈ T∗ ⊂ Cp such that

k

∑
i=1

λi

{[
∇x f (x0, xi) +∇x f (x0, yi)

]
− γ∗

[
∇xg(x0, yi) +∇xg(x0, yi)

]}
(2)

+ µT∇xh(x0) + µH∇xh(x0) = 0,

Re [ f (x0, yi)− γ∗g(x0, yi)] = 0, i = 1, 2, · · · , k, (3)

Re 〈µ, h(x0)〉 = 0. (4)

Note that problem (P) is said to have constraint qualification at x0, if, for any nonzero µ ∈ T∗ ⊂ Cp,
it results µT∇xh(x0) + µH∇xh(x0) 6= 0.

We state the definition of the generalized second-order Θ-bonvexity as follows.

Definition 1 ([19] Definition 4.1). The real part of a twice differentiable analytic function Φ(·) from C2n to R
is called, respectively,

(i) (strictly) Θ-bonvex at x0 ∈ Q ⊂ C2n if there exists a certain mapping Θ : C2n ×C2n → C2n such that
for any x ∈ Q,

Re
{

Φ(x)−Φ(x0) +
1
2 (x− x0)

T∇2Φ(x0)(x− x0)
}
≥ (>)

Re
{
[∇Φ(x0) + (x− x0)

T∇2Φ(x0)]Θ(x, x0)
}

,

(ii) (strictly) Θ-pseudobonvex at x0 ∈ Q ⊂ C2n if there exists a certain mapping Θ : C2n ×C2n → C2n

such that, for any x ∈ Q,

Re
{
[∇Φ(x0) + (x− x0)

T∇2Φ(x0)]Θ(x, x0)
}
≥ 0

⇒ Re
{

Φ(x)−Φ(x0) +
1
2 (x− x0)

T∇2Φ(x0)(x− x0)
}
≥ 0 (> 0),

(iii) Θ-quasibonvex at x0 ∈ Q if there exists a certain mapping Θ : C2n ×C2n → C2n such that, for any
x ∈ Q,

Re
{

Φ(x)−Φ(x0) +
1
2 (x− x0)

T∇2Φ(x0)(x− x0)
}
≤ 0

⇒ Re
{
[∇Φ(x0) + (x− x0)

T∇2Φ(x0)]Θ(x, x0)
}
≤ 0.

3. Second-Order Mond–Weir Type Dual Model

We are going to establish two types of second-order parametric free dual model with respect
to problem (P). These dual models are called the second-order Mond–Weir type dual model and the
second-order Wolfe type dual model. For convenience, we give some symbols as follows. For z ∈ C2n,
yi ∈ C2m, µ ∈ Cp, the second-ordered differentiable functions f , g : C2n ×C2m → C and h : C2n → C,
we denote notations:

F(1)(z, yi) = ∇x f (z, yi) +∇x f (z, yi);

F(2)
1 (z, yi) = ∇xx f (z, yi) +∇xx f (z, yi); F(2)

2 (z, yi) = ∇xx f (z, yi) +∇xx f (z, yi);
G(1)(z, yi) = ∇xg(z, yi) +∇xg(z, yi);

G(2)
1 (z, yi) = ∇xxg(z, yi) +∇xxg(z, yi); G(2)

2 (z, yi) = ∇xxg(z, yi) +∇xxg(z, yi);
H(1)(z, µ) = µT∇xh(z) + µH∇xh(z);
H(2)

1 (z, µ) = µT∇xxh(z) + µH∇xxh(z); H(2)
2 (z, µ) = µT∇xxh(z) + µH∇xxh(z).
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The second-order Mond–Weir type dual problem (2nd-MWD) of problem (P) is a maximize
problem as the following form:

(2nd-MWD) max
(k,λ̃,ỹ)∈K(z)

max
(z,µ,ν)∈X1(k,λ̃,ỹ)

k

∑
i=1

λi Re f (z, yi)

k

∑
i=1

λi Re g(z, yi)

,

where the set K(z) is the collection of the component (k, λ̃, ỹ) (here, λ̃ = (λ1, . . . , λk), λi ≥ 0 for
i = 1, . . . , k with ∑k

i=1 λi = 1 and ỹ = (y1, . . . , yk), yi ∈ C2m for i = 1, . . . , k) satisfying the necessary
optimality conditions of problem (P) for any given feasible solution z = (z, z) ∈ Q with constraint
qualification holding, then there exists a nonzero multiplier µ ∈ T∗ ⊂ Cp such that Re〈s, µ〉 ≥ 0 for
s ∈ T. Thus, Re〈h(z), µ〉 ≤ 0 as −h(z) ∈ T ⊂ Cp. The constraint set X1(k, λ̃, ỹ) is the collection of all
feasible solutions (z, µ, ν) ∈ C2n ×Cp ×Cn of (2nd-MWD), which satisfies the following expressions:
for z = (z, z) ∈ Q and 0 6= µ ∈ T∗, such that

H(1)(z, µ) + νH H(2)
1 (z, µ) + νT H(2)

2 (z, µ)+{
∑k

i=1 λi
[
F(1)(z, yi) + νH F(2)

1 (z, yi) + νT F(2)
2 (z, yi)

]}
·
(

∑k
i=1 λiRe g(z, yi)

)
−
(

∑k
i=1 λiRe f (z, yi)

)
·
{

∑k
i=1 λi

[
G(1)(z, yi) + νHG(2)

1 (z, yi) + νTG(2)
2 (z, yi)

]}
= 0,

(5)

(
∑k

i=1 λiRe f (z, yi)
)
·
{

∑k
i=1 λiRe

〈
ν , νHG(2)

1 (z, yi) + νTG(2)
2 (z, yi)

〉}
≥{

∑k
i=1 λiRe

〈
ν , νH F(2)

1 (z, yi) + νT F(2)
2 (z, yi)

〉}
·
(

∑k
i=1 λiRe g(z, yi)

)
,

(6)

Re〈h(z), µ〉 ≥ 1
2 Re

〈
ν , νH H(2)

1 (z, µ) + νT H(2)
2 (z, µ)

〉
. (7)

Denote a function

Φ1(•) =
[ k

∑
i=1

λiRe f (•, yi)
]
·
( k

∑
i=1

λiRe g(z, yi)
)
−
( k

∑
i=1

λiRe f (z, yi)
)
·
[ k

∑
i=1

λiRe g(•, yi)
]
.

The duality theorems of (2nd-MWD) with respect to primary problem (P) are established as
follows. First, we will prove that the feasible value of (P) is not less than the feasible value of
(2nd-MWD) under some suitable assumptions.

Theorem 2 (Weak Duality). Let x = (x, x) be a (P)-feasible solution, (k, λ̃, ỹ, z, µ, ν) be (2nd-MWD)-feasible
solution. If any one of the following conditions holds:

(i) Φ1(•) is Θ-pseudobonvex and Re 〈h(•), µ〉 is Θ-quasibonvex at z ∈ Q,
(ii) Φ1(•) is Θ-quasibonvex and Re 〈h(•), µ〉 is strictly Θ-pseudobonvex at z ∈ Q,
(iii) Φ1(•) and Re 〈h(•), µ〉 are both Θ-bonvex at z ∈ Q,

then

sup
y∈Y

Re f (x, y)
Re g(x, y)

≥ ∑k
i=1 λi Re f (z, yi)

∑k
i=1 λi Re g(z, yi)

.

Proof. Suppose, on the contrary, that

sup
y∈Y

Re f (x, y)
Re g(x, y)

<
∑k

i=1 λi Re f (z, yi)

∑k
i=1 λi Re g(z, yi)

.
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Then, for all y ∈ Y,

[Re f (x, y)] ·
{ k

∑
i=1

λi Re g(z, yi)
}
< [Re g(x, y)] ·

{ k

∑
i=1

λi Re f (z, yi)
}

.

Since λi ≥ 0 with ∑k
i=1 λ1 = 1 and given yi ∈ Y for i = 1, · · · , k, we obtain

[
k

∑
i=1

λiRe f (x, yi)] ·
{ k

∑
i=1

λi Re g(z, yi)
}
− [

k

∑
i=1

λiRe g(x, yi)] ·
{ k

∑
i=1

λi Re f (x, yi)
}
< 0.

The above inequality is Φ1(x) < 0. Since Φ1(z) = 0, we have

Φ1(x) < Φ1(z). (8)

For z = (z, z), x = (x, x) and let x− z = (v, v) = (x− z, x− z), we know that Equation (6) is

(x− z)T∇2Φ1(z)(x− z) ≤ 0. (9)

On the other hand, if x = (x, x) is a feasible solution of problem (P), and since Theorem 1
holds, then there exists a nonzero multiplier µ ∈ T∗ ⊂ Cp such that Re〈s, µ〉 ≥ 0 for s ∈ T.
Thus, the constraint condition of problem (P) could be expressed as

Re〈h(x), µ〉 ≤ 0.

If (k, λ̃, ỹ, z, µ, ν) is a feasible solution of (2nd-MWD), then Equation (7) holds. That is,

0 ≤ Re〈h(z), µ〉 − 1
2

Re
〈

ν , νH H(2)
1 (z, µ) + νT H(2)

2 (z, µ)
〉
.

Therefore,

Re〈h(x)− h(z), µ〉+ 1
2

Re
〈

ν , νH H(2)
1 (z, µ) + νT H(2)

2 (z, µ)
〉
≤ 0. (10)

1. From the hypotheses (i), Φ1(•) is Θ-pseudobonvex at z, and by Equations (8) and (9), there is a
mapping Θ : C2n ×C2n → C2n such that

Re
{
[∇Φ1(z) + (x− z)T∇2Φ1(z)]Θ(x, z)

}
< 0. (11)

Since Re〈h(•), µ〉 is Θ-quasibonvex at z and by Equation (10), we have

Re
{
[∇h(z) + (x− z)T∇2h(z)]Θ(x, z)

}
≤ 0. (12)

By Equations (11) and (12) , we obtain

Re
{[

(∇Φ1(z) +∇h(z)) + (x− z)T(∇2Φ1(z) +∇2h(z))
]
Θ(x, z)

}
< 0.

Thus,

H(1)(z, µ) + νH H(2)
1 (z, µ) + νT H(2)

2 (z, µ)+{
∑k

i=1 λi
[
F(1)(z, yi) + νH F(2)

1 (z, yi) + νT F(2)
2 (z, yi)

]}
·
(

∑k
i=1 λiRe g(z, yi)

)
−(

∑k
i=1 λiRe f (z, yi)

)
·
{

∑k
i=1 λi

[
G(1)(z, yi) + νHG(2)

1 (z, yi) + νTG(2)
2 (z, yi)

]}
6= 0.

(13)

This contradicts the equality of Equation (5).
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2. If hypothesis (ii) is true, Φ1(•) is Θ-quasibonvex at z, then Equation (11) becomes less than or
equal to zero. Since Re 〈h(•), µ〉 is strictly Θ-pseudobonvex at z, then Equation (12) becomes less than
zero. Thus, Equation (13) holds, and it still contradicts the equality of Equation (5).

3. Suppose that the hypothesis (iii) is true. By Equations (8) and (9), we have

Re
{
[Φ1(x)−Φ1(z)] +

1
2
(x− z)T∇2Φ1(z)(x− z)

}
< 0.

If Φ1(•) is Θ-bonvex at z ∈ Q, and from the above inequality, then there is a mapping Θ :
C2n ×C2n → C2n such that the Equation (11) holds. From Equation (10) and if Re 〈h(•), µ〉 is
Θ-bonvex at z ∈ Q, then we obtain Equation (12). Equation (13) still holds, and it contradicts the
equality of Equation (5).

Therefore, the result of the theorem is proved.

Given an optimal solution of problem (P), we can obtain a feasible solution of the dual problem
(2nd-MWD), and the following strong duality theorem will be proved.

Theorem 3 (Strong Duality). Let x0 = (x0, x0) be an optimal solution of problem (P). Then, there are
(k, λ̃, ỹ) ∈ K(x0) and (x0, µ, v) ∈ X(k, λ̃, ỹ) such that (k, λ̃, ỹ, x0, µ, v) is a feasible solution of the dual
problem (2nd-MWD). If the hypotheses of a weak duality theorem are fulfilled, then (k, λ̃, ỹ, x0, µ, v) is an
optimal solution of (2nd-MWD), and problems (P) and (2nd-MWD) have the same optimal values.

Proof. Let x0 be an optimal solution of (P) with optimal value

γ∗ = Ψ(x0) =
∑k

i=1 λiRe f (x0, yi)

∑k
i=1 λiReg(x0, yi)

.

From Theorem 1, we could obtain the nonzero µ ∈ T∗ ⊂ Cp, positive integer k with yi ∈ Y(x0) ,
multipliers λi ≥ 0 for i = 1, . . . , k and ∑k

i=1 λi = 1 such that

{ k

∑
i=1

λi
[
∇x f (x0, yi) +∇x f (x0, yi)

]
+ µT ∇xh(x0) + µH∇xh(x0)

}
×
( k

∑
i=1

λi Re g(x0, yi)
)

−
( k

∑
i=1

λi Re f (x0, yi)
)
×
{ k

∑
i=1

λi
[
∇x g(x0, yi) +∇x g(x0, yi)

]}
= 0.

If we take ν = x0 − x0 = 0 and replace µ by µ×
(

∑k
i=1 λi Re g(x0, yi)

)
, then

H(1)(x0, µ) + νH H(2)
1 (x0, µ) + νT H(2)

2 (x0, µ)+{ k

∑
i=1

λi
[
F(1)(x0, yi) + νH F(2)

1 (x0, yi) + νT F(2)
2 (x0, yi)

]}
·
( k

∑
i=1

λiRe g(x0, yi)
)

−
( k

∑
i=1

λiRe f (x0, yi)
)
·
{ k

∑
i=1

λi
[
G(1)(x0, yi) + νHG(2)

1 (x0, yi) + νTG(2)
2 (x0, yi)

]}
= 0,

and the component (x0, µ, ν = 0) ∈ X1(k, λ̃, ỹ) is satisfying conditions Equations (5)–(7) of problem
(2nd-MWD). It follows that (k, λ̃, ỹ, x0, µ, ν = 0) is a feasible solution of (2nd-MWD). If the hypotheses
of Theorem 2 are fulfilled, then (k, λ̃, ỹ, x0, µ, ν = 0) is an optimal solution of (2nd-MWD), and the two
problems (P) and (2nd-MWD) have the same optimal values.

If both optimal solutions of primary problem (P) and dual problem (2nd-MWD) exist, then the
optimal values of (P) and (2nd-MWD) are equal under some assumptions. We could prove this result
as the following theorem.
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Theorem 4. (Strictly Converse Duality) Let x and (k, λ̃, ỹ, z, µ, v) be optimal solutions of (P) and (2nd-MWD),
and assume that the assumptions of strong duality theorem are fulfilled. In addition, if Φ1(•) is strictly
Θ-pseudobonvex and Re〈h(•), µ〉 is Θ-quasibonvex at z ∈ Q, then x = z; and the optimal values of (P) and
(2nd-MWD) are equal.

Proof. Assume that x 6= z, and reach a contradiction.
By strong duality theorem (Theorem 3),

sup
y∈Y

Re f (x, y)
Re g(x, y)

=
∑k

i=1 λi Re f (z, yi)

∑k
i=1 λi Re g(z, yi)

.

Then, for all y ∈ Y,

[Re f (x, y)] ·
{ k

∑
i=1

λi Re g(z, yi)
}
≤ [Re g(x, y)] ·

{ k

∑
i=1

λi Re f (z, yi)
}

.

Since λi ≥ 0 with ∑k
i=1 λ1 = 1 and given yi ∈ Y for i = 1, · · · , k, we have that

[
k

∑
i=1

λiRe f (x, yi)] ·
{ k

∑
i=1

λi Re g(z, yi)
}
− [

k

∑
i=1

λiRe g(x, yi)] ·
{ k

∑
i=1

λi Re f (z, yi)
}
≤ 0.

That is,
Φ1(x)−Φ1(z) ≤ 0.

If Φ1(•) is strictly Θ-pseudobonvex at z, then, by using a similar process of the proof as in
Theorem 2, we get Equation (11). Since Re〈h(•), µ〉 is Θ-quasibonvex at z, we obtain Equation (12).
By Equations (11) and (12), Equation (13) still holds. It contradicts the equality of Equation (5). This is the
complete proof.

4. Second-Order Wolfe Type Dual Model

The second-order Wolfe type dual problem with respect to problem (P) is the following form:

(2nd-WD) max
(k,λ̃,ỹ)∈K(z)

max
(z,µ,v)∈X2(k,λ̃,ỹ)

k

∑
i=1

λi Re [ f (z, yi) + 〈h(z), µ〉]

k

∑
i=1

λi Re g(z, yi)

,

where the set K(z) is the collection of the component (k, λ̃, ỹ) (here λ̃ = (λ1, . . . , λk), λi ≥ 0 for i = 1, . . . , k
with ∑k

i=1 and ỹ = (y1, . . . , yk), yi ∈ C2m for i = 1, . . . , k) satisfying the necessary optimality conditions
of problem (P) for any given feasible solution z = (z, z) ∈ Q with constraint qualification hold, then
there exists a nonzero multiplier µ ∈ T∗ ⊂ Cp such that Re〈s, µ〉 ≥ 0 for s ∈ T. Thus, Re〈h(z), µ〉 ≤ 0 as
−h(z) ∈ T ⊂ Cp. The constraint set X2(k, λ̃, ỹ) satisfies the following conditions:
for z = (z, z) ∈ Q and 0 6= µ ∈ T∗, such that

{
∑k

i=1 λi
([

F(1)(z, yi) + H(1)(z, µ)
]
+

νH[F(2)
1 (z, yi) + H(2)

1 (z, µ)
]
+ νT[F(2)

2 (z, yi) + H(2)
2 (z, µ)

])}
×
(

∑k
i=1 λiRe g(z, yi)

)
−
(

∑k
i=1 λiRe[ f (z, yi) + 〈h(z), µ〉]

)
×
{

∑k
i=1 λi

[
G(1)(z, yi) + νHG(2)

1 (z, yi) + νTG(2)
2 (z, yi)

]}
= 0,

(14)

(
∑k

i=1 λi Re[ f (z, yi) + 〈h(z), µ〉]
)
×
{

∑k
i=1 λiRe

〈
ν , νH G(2)

1 (z, yi) + νT G(2)
2 (z, yi)

〉}
≥{

∑k
i=1 λiRe

〈
ν , νH[F(2)

1 (z, yi) + H(2)
1 (z, µ)

]
+ νT[F(2)

2 (z, yi) + H(2)
2 (z, µ)

]〉}
×
(

∑k
i=1 λiRe g(z, yi)

)
.

(15)
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Denote function Φ2(•) by

Φ2(•) =
{

∑k
i=1 λiRe [ f (•, yi) + 〈h(•), µ〉]

}
×
(

∑k
i=1 λiRe g(z, yi)

)
−
(

∑k
i=1 λiRe [ f (z, yi) + 〈h(z), µ〉]

)
×
{

∑k
i=1 λiRe g(•, yi)

}
.

We could state and prove the duality theorems of (2nd-WD) under the second-order generalized
Θ-bonvexities as follows.

Theorem 5 (Weak Duality). Let x = (x, x) be (P)-feasible solution, (k, λ̃, ỹ, z, µ, ν) be (2nd-WD)-feasible
solution, and if Φ2(•) is Θ-pseudobonvex at z ∈ Q. Then,

max
y∈Y

Re f (x, y)
Re g(x, y)

≥ ∑k
i=1 λi Re [ f (z, yi) + 〈h(z), µ〉]

∑k
i=1 λi Re g(z, yi)

.

Proof. Suppose, on the contrary, that

max
y∈Y

Re f (x, y)
Re g(x, y)

<
∑k

i=1 λi Re [ f (z, yi) + 〈h(z), µ〉]
∑k

i=1 λi Re g(z, yi)
.

Then, for all y ∈ Y,

[Re f (x, y)] ·
{ k

∑
i=1

λi Re g(z, yi)
}
< [Re g(x, y)] ·

{ k

∑
i=1

λi Re [ f (z, yi) + 〈h(z), µ〉]
}

.

Since λi ≥ 0 with ∑k
i=1 λ1 = 1 and given yi ∈ Y for i = 1, · · · , k, we have that

[
k

∑
i=1

λiRe f (x, yi)] ·
{ k

∑
i=1

λi Re g(z, yi)
}
− [

k

∑
i=1

λiRe g(x, yi)] ·
{ k

∑
i=1

λi Re [ f (z, yi) + 〈h(z), µ〉]
}
< 0.

Let x = (x, x) be the feasible solution of (P) that is

Re〈h(x), µ〉 ≤ 0.

By the above two inequalities, we get{
∑k

i=1 λiRe [ f (x, yi) + 〈h(x), µ〉]
}
·
{

∑k
i=1 λi Re g(z, yi)

}
−[∑k

i=1 λiRe g(x, yi)] ·
{

∑k
i=1 λi Re [ f (z, yi) + 〈h(z), µ〉]

}
< 0.

This implies that

Φ2(x) < 0 = Φ2(z). (16)

For z = (z, z), x = (x, x) and let x− z = (v, v) = (x− z, x− z). From Lemma 2,

Re
[
(x− z)T∇2Φ2(z)(x− z)

]
=
{ k

∑
i=1

λiRe
〈

ν , νH[F(2)
1 (z, yi) + H(2)

1 (z, µ)
]

+νT[F(2)
2 (z, yi) + H(2)

2 (z, µ)
]〉}
×
( k

∑
i=1

λiRe g(z, yi)
)

−
( k

∑
i=1

λiRe[ f (z, yi) + 〈h(z), µ〉]
)
×
{ k

∑
i=1

λiRe
〈

ν , νHG(2)
1 (z, yi) + νTG(2)

2 (z, yi)
〉}

.
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From condition Equations (15) and (16) and the above inequality, we know that

Re
{

Φ2(x)−Φ2(z) +
1
2
(x− z)T∇2Φ2(z)(x− z)

}
< 0.

If Φ2(•) is Θ-pseudobonvex at z, then there is a mapping Θ : C2n ×C2n → C2n such that

Re
{
[∇Φ2(z) + (x− z)T∇2Φ2(z)]Θ(x, z)

}
< 0.

Thus,

{
∑k

i=1 λi
([

F(1)(z, yi) + H(1)(z, µ)
]
+ νH[F(2)

1 (z, yi) + H(2)
1 (z, µ)

]
+νT[F(2)

2 (z, yi) + H(2)
2 (z, µ)

])}
×
(

∑k
i=1 λiRe g(z, yi)

)
−
(

∑k
i=1 λiRe[ f (z, yi) + 〈h(z), µ〉]

)
×
{

∑k
i=1 λi

[
G(1)(z, yi) + νHG(2)

1 (z, yi) + νTG(2)
2 (z, yi)

]}
6= 0.

(17)

This contradicts the condition of Equation (14) in dual problem (2nd-WD). This is the complete proof.

Theorem 6 (Strong Duality). Let x0 = (x0, x0) be an optimal solution of problem (P). Then, there are
(k, λ̃, ỹ) ∈ K(x0) and (x0, µ, v) ∈ X(k, λ̃, ỹ) such that (k, λ̃, ỹ, x0, µ, v) is a feasible solution of the dual
problem (2nd-WD). If the hypotheses of weak duality theorem are fulfilled, then (k, λ̃, ỹ, x0, µ, v) is an optimal
solution of (2nd-WD), and problems (P) and (2nd-WD) have the same optimal values.

Proof. It follows by the same way as the proof of strong duality theorem in (2nd-MWD).

Theorem 7 (Strictly Converse Duality). Let x and (k, λ̃, ỹ, z, µ, v) be optimal solutions of (P) and (2nd-WD),
and assume that the assumptions of a strong duality theorem are fulfilled. In addition, if Φ2(•) is strictly
Θ-pseudobonvex at z ∈ Q, then x = z, and the optimal values of (P) and (2nd-WD) are equal.

Proof. Assume that x 6= z and reach a contradiction.
By strong duality theorem (Theorem 6),

sup
y∈Y

Re f (x, y)
Re g(x, y)

=
∑k

i=1 λi Re [ f (z, yi) + 〈h(z), µ〉]
∑k

i=1 λi Re g(z, yi)
.

Then, for all y ∈ Y,

[Re f (x, y)] ·
{ k

∑
i=1

λi Re g(z, yi)
}
≤ [Re g(x, y)] ·

{ k

∑
i=1

λi Re [ f (z, yi) + 〈h(z), µ〉]
}

.

Since λi ≥ 0 with ∑k
i=1 λ1 = 1 and given yi ∈ Y for i = 1, . . . , k, we have that

[
k

∑
i=1

λiRe f (x, yi)] ·
{ k

∑
i=1

λi Re g(z, yi)
}
− [

k

∑
i=1

λiRe g(x, y)] ·
{ k

∑
i=1

λi Re [ f (z, yi) + 〈h(z), µ〉]
}
≤ 0.

By a similar process as the proof in Theorem 5, we can obtain

Φ2(x)−Φ2(z) ≤ 0

and
Re
{

Φ2(x)−Φ2(z) +
1
2
(x− z)T∇2Φ2(z)(x− z)

}
≤ 0.
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If Φ2(•) is strictly Θ-pseudobonvex at z, then we obtain Equation (17); this contradicts
the condition of Equation (14) in dual problem (2nd-WD). Therefore, the result of the theorem
is proved.

5. Conclusions and Further Plausible Work

In this paper, we formulated the second-order Mond–Weir type and Wolfe type dual models with
respect to problem (P), and derived their duality theorems. In further plausible work, we will establish
the second-order mixed type dual problem (2nd-MD) of problem (P), and then we would like to show
that the dual problems (2nd-MWD) and (2nd-WD) are the special cases of dual problem (2nd-MD).

Funding: This research was supported by MOST 108-2115-M-035-005-, Taiwan.

Acknowledgments: The authors express their sincere gratitude to the unknown reviewers for their detailed
reading and valuable advice.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Fan, K. Minimax theorems. Proc. Natl. Acad. Sci. USA 1953, 39, 42–47. [CrossRef] [PubMed]
2. Schmittendorf, W.E. Necessary conditions and sufficient conditions for static minmax problems. J. Math.

Anal. Appl. 1977, 57, 683–693. [CrossRef]
3. Ahmad, I.; Husain, Z.; Sharma, S. Second order duality in nondifferentiable minimax programming involving

type-I functions. J. Comput. Appl. Math. 2008, 215, 91–102. [CrossRef]
4. Bector, C.R.; Chandra, S.; Husain, I. Second-order duality for a minimax programming problem. Opsearch

1991, 28, 249–263.
5. Husain, Z.; Ahmad, I.; Sharma, S. Second order duality for minimax fractional programming. Optim. Lett.

2009, 3, 277–286. [CrossRef]
6. Husain, Z.; Jayswal, A.; Ahmad, I. Second-order duality for nondifferentiable minimax programming

problems with generalized convexity. J. Glob. Optim. 2009, 44, 593–608. [CrossRef]
7. Tanimoto, S. Duality for a class of nondifferentiable mathematical programming problems. J. Math. Anal.

Appl. 1981, 79, 286–294. [CrossRef]
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