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Abstract: We have studied the k-rainbow domination number of Cn2Cm for k ≥ 4 (Gao et al. 2019),
in which we present the 3-rainbow domination number of Cn2Cm, which should be bounded above
by the four-rainbow domination number of Cn2Cm. Therefore, we give a rough bound on the
3-rainbow domination number of Cn2Cm. In this paper, we focus on the 3-rainbow domination
number of the Cartesian product of cycles, Cn2Cm. A 3-rainbow dominating function (3RDF) f on
a given graph G is a mapping from the vertex set to the power set of three colors {1, 2, 3} in such
a way that every vertex that is assigned to the empty set has all three colors in its neighborhood.
The weight of a 3RDF on G is the value ω( f ) = ∑v∈V(G) | f (v)|. The 3-rainbow domination number,
γr3(G), is the minimum weight among all weights of 3RDFs on G. In this paper, we determine exact
values of the 3-rainbow domination number of C32Cm and C42Cm and present a tighter bound on
the 3-rainbow domination number of Cn2Cm for n ≥ 5.
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1. Introduction

In a graph G with vertex set V(G) and edge set E(G), the open neighborhood of a vertex v ∈
V(G) is a set {u|(u, v) ∈ E}, denoted by N(v). The degree of a vertex v ∈ V is deg(v) = |N(v)|.
The minimum degree of G is denoted by δ(G) and the maximum degree by ∆(G). If for each vertex
u ∈ V\S, there is a v ∈ S such that (u, v) ∈ E, then S is a dominating set. The domination number is
the minimum cardinality among all dominating sets in G and it is denoted by γ(G).

Domination in graphs originates from location problems in operations research. As a variation
of domination in graphs, rainbow domination was introduced by Brešar et al. [1]. The essence of the
rainbow domination is to study how to dispatch many types of “guards” to dominate a graph. It is
required that each vertex in a graph that is not settled by a “guard” has all types of “guards” in its
adjacent vertices.

A function f is called a k-rainbow dominating function (kRDF) on a graph G satisfying the
condition that for each vertex v such that f (v) = ∅, ∪u∈N(v) f (u) = {1, 2, · · · , k}. The weight of
kRDF on G is the value ω( f ) = ∑v∈V(G) | f (v)|. The minimum weight among all weights of kRDFs
on G is called the k-rainbow domination number, denoted by γrk(G). Let f be a kRDF function on G;
if w( f ) = γrk(G), then f is called the γrk(G)-function.

The k-rainbow domination has many practical applications, such as storage hierarchy
optimization, in information transfer or people allocation between company departments,
channel assignment, network security, logistics scheduling, and so on. Therefore, it has been
extensively studied by scholars. There are numerous studies on two-rainbow domination [2–10].
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For k ≥ 3, it is more difficult to determine the k-rainbow domination number of a graph.
Chang et al. [11] proved that the k-rainbow domination is NP-complete, and they studied the k-rainbow
domination problem on trees. Shao et al. [12] gave bounds for the k-rainbow domination number
on an arbitrary graph, and they investigated the 3-rainbow domination numbers of cycles, paths,
and generalized Petersen graphs. They determined the 3-rainbow domination number of P(n, 1)
and the upper bounds for P(n, 2) and P(n, 3). Fujita et al. [13] proved sharp upper bounds on the
k-rainbow domination number for all values of k. Hao et al. [14] studied the k-rainbow domination
number of directed graphs and presented the exact values of the k-rainbow domination number
on the Cartesian product graph of two directed cycles. Wang et al. [15] determined the k-rainbow
domination number of P32Pn for k ∈ {2, 3, 4}. Brezovnik et al. [16] studied the complexity of k-rainbow
independent domination and presented sharp bounds for the k-rainbow independent domination
number of the lexicographic product and the exact formula for k = 2. Kang et al. [17] initiated the
study of outer-independent k-rainbow domination and presented sharp lower and upper bounds on
the outer-independent two-rainbow domination number. There are also some references related to
k-coloring of a graph [18,19].

G12G2, the Cartesian product of G1 and G2, is the graph with the vertex set V(G1) × V(G2),
and (u, v)(u′, v′) ∈ E(G12G2) if either uu′ ∈ E(G1) and v = v′ or vv′ ∈ E(G2) and u = u′. Figure 1
shows the graph of Cn2Cm.
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Figure 1. Graph Cn2Cm.

Vizing initiated the problem of domination on Cartesian product graphs [20]. Since then,
various domination numbers of G2H were extensively studied [21–24].

In this paper, we focus on the study of the 3-rainbow domination number of Cartesian products
of two undirected cycles, Cn2Cm. Here, we recall some important results.

Theorem 1. ( [12]) Let G be a connected graph. Then, γrt(G) ≥
⌈ |V(G)|t

∆(G)+t

⌉
.

Theorem 2. ( [25]) Let G be a connected graph of order n ≥ 8 with δ(G) ≥ 2. Then, γr3(G) ≤ 5n
6 .

In G = Cn2Cm, |V(G)| = mn, ∆(G) = δ(G) = 4, by Theorems 1 and 2, we can get:

d3mn
7
e ≤ γr3(G) ≤ 5mn

6
. (1)
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We studied the k-rainbow domination number of Cn2Cm for k ≥ 4 [26], in which we presented
that the 3-rainbow domination number of Cn2Cm is bounded above by the four-rainbow domination
number of Cn2Cm, i.e.:

γr3(Cn2Cm) ≤ γr4(Cn2Cm) ≤
mn
2

+ m +
n
2
− 1. (2)

Since mn
2 + m + n

2 − 1 ≤ 5mn
6 for m, n ≥ 4, by Equations (1) and (2), we can get a rough bound of

γr3(Cn2Cm) as described in the following Lemma 1.

Lemma 1. For G = Cn2Cm, d 3mn
7 e ≤ γr3(G) ≤ mn

2 + m + n
2 − 1.

It is very difficult to determine the k-rainbow domination number of a graph for k ≥ 3, since the
problem is NP-complete. Only with some effective methods, one can present a sharp bound on the
k-rainbow domination number, or make the known bound tighter, or determine the exact k-rainbow
domination number for a given family of graphs. In this paper, we lower the upper bound in Lemma 1
by constructing some good enough 3RDFs; upon these functions, we can get a sharp upper bound
of γr3(Cn2Cm). Furthermore, we promote the lower bound in Lemma 1 for C32Cm and C42Cm by
providing proofs for the new lower bounds. Thus, we determine the exact values of γr3(C32Cm)

and γr3(C42Cm). For n ≥ 5 and any integer m, we present a tighter bound of γr3(Cn2Cm) than in
Lemma 1.

2. Upper Bounds on the 3-rainbow Domination Number of Cn2Cm

In this section, we construct some 3-rainbow dominating functions according to the characteristics
of Cn2Cm; upon these functions, we can get upper bounds of γr3(Cn2Cm). Figure 2a shows a 3RDF on
C82C8. We use 0, 1, 2, 3 to represent the color sets ∅, {1}, {2}, {3}, respectively, and use 2, 3 to encode
the color set {2, 3}. In this way, we could use Figure 2b to show a function in the following sections.
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Figure 2. A 3RDF on C82C8. (a) vertex labelled with color sets. (b) vertex labelled with codes.
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By symmetry of Cn2Cm, we can only discuss the cases of n(mod 4) ≥ m(mod 4).75

Lemma 2. For n ̸≡ 2(mod 4) and m ̸≡ 2(mod 4), γr3(Cn2Cm) ≤ ⌈ mn
2 ⌉.76

Proof. We define a 3RDF f as follows.

f (vi,j) =





∅, i(mod 2) ̸= j(mod 2),
{1}, i(mod 2) = j(mod 2) = 0 ∧ i(mod 4) = j(mod 4),
{2}, i(mod 4) + j(mod 4) = 2 ∧ i(mod 4) ̸= 1,
{3}, otherwise.

Figure 2. A 3RDF on C82C8. (a) Vertex labeled with color sets. (b) Vertex labeled with codes.

By symmetry of Cn2Cm, we can only discuss the cases of n(mod 4) ≥ m(mod 4).

Lemma 2. For n 6≡ 2(mod 4) and m 6≡ 2(mod 4), γr3(Cn2Cm) ≤ dmn
2 e.

Proof. We define a 3RDF f as follows.

f (vi,j) =





∅, i(mod 2) 6= j(mod 2),
{1}, i(mod 2) = j(mod 2) = 0∧ i(mod 4) = j(mod 4),
{2}, i(mod 4) + j(mod 4) = 2∧ i(mod 4) 6= 1,
{3}, otherwise.
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Figure 3 shows f on C82C8, C92C8, C92C9, C112C8, C112C9, and C112C11, where Rm means
we repeat the four columns with m becoming bigger and Rn means we repeat the four rows with n
becoming bigger.
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One can check that f is a 3RDF, and its weight is shown in Table 1.

Table 1. The weight of f on Cn2Cm (n 6≡ 2(mod 4) ∧m 6≡ 2(mod 4)).

n 6≡ 2(mod 4)∧m 6≡ 2(mod 4) The Weight of f

n ≡ 0 (mod 4), m ≡ 0 (mod 4) ω( f ) = m
4 × n

4 × 8 = mn
2

n ≡ 1 (mod 4), m ≡ 0 (mod 4) ω( f ) = m
4 × n−1

4 × 8 + m
4 × 2 = mn

2

n ≡ 1 (mod 4), m ≡ 1 (mod 4) ω( f ) = m−1
4 × n−1

4 × 8 + n−1
4 × 2 + m−1

4 × 2 + 1 = dmn
2 e

n ≡ 3 (mod 4), m ≡ 0 (mod 4) ω( f ) = m
4 × n−3

4 × 8 + m
4 × 6 = mn

2

n ≡ 3 (mod 4), m ≡ 1 (mod 4) ω( f ) = m−1
4 × n−3

4 × 8 + n−3
4 × 2 + m−1

4 × 6 + 2 = dmn
2 e

n ≡ 3 (mod 4), m ≡ 3 (mod 4) ω( f ) = m−3
4 × n−3

4 × 8 + n−3
4 × 6 + m−3

4 × 6 + 5 = dmn
2 e

Hence, γr3(Cn2Cm) ≤ dmn
2 e for n 6≡ 2(mod 4) and m 6≡ 2(mod 4).
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Lemma 3. For n ≡ 2(mod 4), m ≡ 0(mod 4), γr3(Cn2Cm) ≤ mn
2 .

Proof. We first define a 3RDF g on C42C4.

g(vi,j) =





∅, i(mod 2) 6= j(mod 2),
{1}, i = j ∧ i 6= 1,
{2}, i + j = 2∧ i 6= 1,
{3}, i = 1∧ j(mod 2) = 1∨ i = 3∧ j = 1.

Then, for Cn2Cm, n ≡ 2(mod 4), m ≡ 0(mod 4), we define a 3RDF f as follows.

f (vi,j) =

{
g(vi( mod 4),j( mod 4)), 0 ≤ i ≤ n− 3,
h(vi,j( mod 4)), n− 2 ≤ i ≤ n− 1,

where h is a function defined on {vi,j|n− 2 ≤ i ≤ n− 1, 0 ≤ j ≤ 3},

h(vi,j) =





∅, i(mod 2) 6= j(mod 2),
{1}, i = n− 1∧ j = 1,
{2}, i = n− 2∧ j = 0, 2,
{3}, i = n− 1∧ j = 3.

Figure 4 shows f on C102C8, where Rm means we repeat the four columns with m becoming
bigger and Rn means we repeat the four rows with n becoming bigger.
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Lemma 3. For n ≡ 2(mod 4), m ≡ 0(mod 4), γr3(Cn2Cm) ≤ mn
2 .82

Proof. We first define a 3RDF g on C42C4.

g(vi,j) =





∅, i(mod 2) ̸= j(mod 2),
{1}, i = j ∧ i ̸= 1,
{2}, i + j = 2 ∧ i ̸= 1,
{3}, i = 1 ∧ j(mod 2) = 1 ∨ i = 3 ∧ j = 1.

Then, for Cn2Cm, n ≡ 2(mod 4), m ≡ 0(mod 4), we define a 3RDF f as follows.

f (vi,j) =

{
g(vi( mod 4),j( mod 4)), 0 ≤ i ≤ n − 3,
h(vi,j( mod 4)), n − 2 ≤ i ≤ n − 1,

where h is a function defined on {vi,j|n − 2 ≤ i ≤ n − 1, 0 ≤ j ≤ 3},

h(vi,j) =





∅, i(mod 2) ̸= j(mod 2),
{1}, i = n − 1 ∧ j = 1,
{2}, i = n − 2 ∧ j = 0, 2,
{3}, i = n − 1 ∧ j = 3.

Figure 4 shows f on C102C8, where Rm means we repeat the 4 columns with m becoming bigger,83

Rn means we repeat the 4 rows with n becoming bigger.
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Figure 4. f on C102C8
84

One can check that f is a 3RDF, and the weight of f is ω( f ) = m
4 × n−2

4 × 8 + m
4 × 4 = mn

2 .85

Hence γr3(Cn2Cm) ≤ mn
2 for n ≡ 2(mod 4), m ≡ 0(mod 4).86

Lemma 4. For n ≡ 2(mod 4), m ≡ 1(mod 4), γr3(Cn2Cm) ≤ mn
2 .87

Proof. Case 1. m = 5.88

Case 1.1. For n ≡ 2(mod 12), we first define a 3RDF g1 on C62C5,

g1(vi,j) =





∅, i(mod 2) ̸= j(mod 2),
{1}, i = 0 ∧ j(mod 2) = 0 ∨ i = 3 ∧ j(mod 2) = 1,
{2}, i = 1 ∧ j = 1 ∨ i = 2 ∧ j = 2, 4 ∨ i = 4 ∧ j = 0 ∨ i = 5 ∧ j = 3,
{3}, i = 1 ∧ j = 3 ∨ i = 2 ∧ j = 0 ∨ i = 4 ∧ j = 2, 4 ∨ i = 5 ∧ j = 1.

Then, we construct a 3RDF f on Cn2C5,

f (vi,j) =

{
g1(vi( mod 6),j), 0 ≤ i ≤ n − 7,
h(vi,j), n − 6 ≤ i ≤ n − 1,

Figure 4. f on C102C8.

One can check that f is a 3RDF, and the weight of f is ω( f ) = m
4 × n−2

4 × 8 + m
4 × 4 = mn

2 .
Hence, γr3(Cn2Cm) ≤ mn

2 for n ≡ 2(mod 4), m ≡ 0(mod 4).

Lemma 4. For n ≡ 2(mod 4), m ≡ 1(mod 4), γr3(Cn2Cm) ≤ mn
2 .

Proof. Case 1. m = 5.
Case 1.1. For n ≡ 2(mod 12), we first define a 3RDF g1 on C62C5,

g1(vi,j) =





∅, i(mod 2) 6= j(mod 2),
{1}, i = 0∧ j(mod 2) = 0∨ i = 3∧ j(mod 2) = 1,
{2}, i = 1∧ j = 1∨ i = 2∧ j = 2, 4∨ i = 4∧ j = 0∨ i = 5∧ j = 3,
{3}, i = 1∧ j = 3∨ i = 2∧ j = 0∨ i = 4∧ j = 2, 4∨ i = 5∧ j = 1.

Then, we construct a 3RDF f on Cn2C5,

f (vi,j) =

{
g1(vi( mod 6),j), 0 ≤ i ≤ n− 7,
h(vi,j), n− 6 ≤ i ≤ n− 1,
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where h is a function defined on {vi,j|n− 6 ≤ i ≤ n− 1, 0 ≤ j ≤ 4},

h(vi,j) =





∅, i(mod 2) 6= j(mod 2),
{1}, i = n− 2, n− 6∧ j = 2∨ i = n− 4∧ j(mod 2) = 0,
{2}, i = n− 1, n− 3∧ j = 3∨ i = n− 2∧ j = 0∨ i = n− 5

∧j = 1∨ i = n− 6∧ j = 4,
{3}, otherwise.

Case 1.2. For n ≡ 6(mod 12), define f (vi,j) = g1(vi( mod 6),j).
Case 1.3. For n ≡ 10(mod 12), we first define g2 on C62C5,

g2(vi,j) =





∅, i(mod 2) 6= j(mod 2),
{1}, i = 0∧ j = 0, 2∨ i = 2∧ j = 4∨ i = 3∧ j = 1∨ i = 5∧ j = 1, 3
{2}, i = 0∧ j = 4∨ i = 1∧ j = 1∨ i = 3∧ j = 3∨ i = 4∧ j = 0,
{3}, i = 1∧ j = 3∨ i = 2∧ j = 0, 2∨ i = 4∧ j = 2, 4.

Then, we define f as follows.

f (vi,j) =

{
g2(vi( mod 6),j), 0 ≤ i ≤ n− 7,
h(vi,j), n− 6 ≤ i ≤ n− 1,

where h is a function defined on {vi,j|n− 6 ≤ i ≤ n− 1, 0 ≤ j ≤ 4},

h(vi,j) =





∅, i(mod 2) 6= j(mod 2),
{1}, i = n− 2∧ j = 4∨ i = n− 3∧ j = 1∨ i = n− 5∧ j = 1, 3,
{2}, i = n− 2∧ j = 0, 2∨ i = n− 4∧ j = 2, 4∨ i = n− 6∧ j = 0,
{3}, i = n− 1∧ j = 1, 3∨ i = n− 3∧ j = 3∨ i = n− 4∧ j = 0

∨i = n− 6∧ j = 0.

Figure 5 shows f on C262C5, C182C5, and C222C5, where Rn means we repeat the six rows with
n becoming bigger.

One can check that f is a 3RDF, and its weight is shown in Table 2.

Table 2. The weight of f on Cn2C5 (n ≡ 2(mod 4)).

m = 5∧ n ≡ 2 (mod 4) The Weight of f

m = 5, n ≡ 2 (mod 12) ω( f ) = 15×(n−8)
6 + 5×8

2 = 5n
2

m = 5, n ≡ 6 (mod 12) ω( f ) = 15×n
6 = 5n

2

m = 5, n ≡ 10 (mod 12) ω( f ) = 15×(n−10)
6 + 5×10

2 = 5n
2

Case 2. For m ≥ 9, we first define a function g on C42C4.

g(vi,j) =





∅, i(mod 2) 6= j(mod 2),
{1}, i(mod 2) = j(mod 2) = 0∧ i = j,
{2}, i + j = 2∧ i 6= 1∨ i = j = 3,
{3}, i = 1∧ j(mod 2) = 1∨ i = 3∧ j = 1.
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n ≡ 2 (mod 12)

Rn
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n ≡ 6 (mod 12)

Rn
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Figure 5. f on some Cn2C5 for n ≡ 2(mod 4)

where h1(vi,j) ({vi,j|0 ≤ i ≤ 4, m − 5 ≤ j ≤ m − 1}), h2(vi,j) ({vi,j|n − 3 ≤ i ≤ n − 1, 0 ≤ j ≤ 3}),
h3(vi,j) ({vi,j|n − 3 ≤ i ≤ n − 1, m − 5 ≤ j ≤ m − 1}) are defined as follows.

h1(vi,j) =





∅, i(mod 2) ̸= j(mod 2),
{1}, i = 0, 2 ∧ j = m − 5 ∨ i = 1, 3 ∧ j = m − 2,
{2}, i = 0 ∧ j = m − 1 ∨ i = 1 ∧ j = m − 4 ∨ i = 2 ∧ j = m − 3,
{3}, otherwise.

h2(vi,j) =





∅, i(mod 2) ̸= j(mod 2),
{1}, i = n − 1 ∧ j = 3 ∨ i = n − 3 ∧ j = 1,
{2}, i = n − 1 ∧ j = 1 ∨ i = n − 3 ∧ j = 3,
{3}, otherwise.

h3(vi,j) =





∅, i(mod 2) ̸= j(mod 2),
{1}, i = n − 2 ∧ j = m − 1, m − 3,
{2}, i = n − 1 ∧ j = m − 4 ∨ i = n − 3 ∧ j = m − 2,
{3}, otherwise.

Figure 6 shows f on C182C17, where Rm means we repeat the 4 columns with m becoming bigger,94

Rn means we repeat the 4 rows with n becoming bigger.95

Figure 5. f on some Cn2C5 for n ≡ 2(mod 4).

Then, we define f as follows.

f (vi,j) =





g(vi( mod 4),j( mod 4)), 0 ≤ i ≤ n− 4∧ 0 ≤ j ≤ m− 6,
h1(vi( mod 4),j), 0 ≤ i ≤ n− 4∧m− 5 ≤ j ≤ m− 1,
h2(vi,j( mod 4)), n− 3 ≤ i ≤ n− 1∧ 0 ≤ j ≤ m− 6,
h3(vi,j), n− 3 ≤ i ≤ n− 1∧m− 5 ≤ j ≤ m− 1,

where h1(vi,j) ({vi,j|0 ≤ i ≤ 4, m− 5 ≤ j ≤ m− 1}), h2(vi,j) ({vi,j|n− 3 ≤ i ≤ n− 1, 0 ≤ j ≤ 3}),
h3(vi,j) ({vi,j|n− 3 ≤ i ≤ n− 1, m− 5 ≤ j ≤ m− 1}) are defined as follows.

h1(vi,j) =





∅, i(mod 2) 6= j(mod 2),
{1}, i = 0, 2∧ j = m− 5∨ i = 1, 3∧ j = m− 2,
{2}, i = 0∧ j = m− 1∨ i = 1∧ j = m− 4∨ i = 2∧ j = m− 3,
{3}, otherwise.

h2(vi,j) =





∅, i(mod 2) 6= j(mod 2),
{1}, i = n− 1∧ j = 3∨ i = n− 3∧ j = 1,
{2}, i = n− 1∧ j = 1∨ i = n− 3∧ j = 3,
{3}, otherwise.
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h3(vi,j) =





∅, i(mod 2) 6= j(mod 2),
{1}, i = n− 2∧ j = m− 1, m− 3,
{2}, i = n− 1∧ j = m− 4∨ i = n− 3∧ j = m− 2,
{3}, otherwise.

Figure 6 shows f on C182C17, where Rm means we repeat the four columns with m becoming
bigger and Rn means we repeat the four rows with n becoming bigger.Version December 26, 2019 submitted to Journal Not Specified 8 of 19
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Figure 6. f on C182C17

One can check that f is a 3RDF, and the weight of f is ω( f ) = n−6
4 × m−5

4 × 8 + m−5
4 × 12 + n−6

4 ×96

10 + 15 = mn
2 .97

Hence γr3(Cn2Cm) ≤ mn
2 for n ≡ 2(mod 4), m ≡ 1(mod 4).98

Lemma 5. For n ≡ 2(mod 4), m ≡ 2(mod 4), γr3(Cn2Cm) ≤ mn
2 .99

Proof. We first define a function g on C42C4.

g(vi,j) =





∅, i(mod 2) ̸= j(mod 2),
{1}, i(mod 2) = j(mod 2) = 0 ∧ i = j,
{2}, i + j = 2 ∧ i ̸= 1 ∨ i = j = 3,
{3}, i = 1 ∧ j(mod 2) = 1 ∨ i = 3 ∧ j = 1.

Then, for n ≡ 2(mod 4), m ≡ 2(mod 4), we define a 3RDF f on Cn2Cm as follows..

f (vi,j) =





g(vi( mod 4),j( mod 4)), 0 ≤ i ≤ n − 3 ∧ 0 ≤ j ≤ m − 3,
h1(vi( mod 4),j), 0 ≤ i ≤ n − 3 ∧ m − 2 ≤ j ≤ m − 1,
h2(vi,j( mod 4)), n − 2 ≤ i ≤ n − 1 ∧ 0 ≤ j ≤ m − 3,
h3(vi,j), n − 2 ≤ i ≤ n − 1 ∧ m − 2 ≤ j ≤ m − 1,

where h1(vi,j) ({vi,j|0 ≤ i ≤ 4, m − 2 ≤ j ≤ m − 1}), h2(vi,j) ({vi,j|n − 2 ≤ i ≤ n − 1, 0 ≤ j ≤ 3}),
h3(vi,j) ({vi,j|n − 2 ≤ i ≤ n − 1, m − 2 ≤ j ≤ m − 1}) are defined as follows.

h1(vi,j) =





∅, i(mod 2) ̸= j(mod 2),
{1}, i = 0, 2 ∧ j = m − 2,
{2}, i = 1 ∧ j = m − 1,
{3}, i = 3 ∧ j = m − 1.

Figure 6. f on C182C17.

One can check that f is a 3RDF, and the weight of f is ω( f ) = n−6
4 × m−5

4 × 8+ m−5
4 × 12+ n−6

4 ×
10 + 15 = mn

2 .
Hence, γr3(Cn2Cm) ≤ mn

2 for n ≡ 2(mod 4), m ≡ 1(mod 4).

Lemma 5. For n ≡ 2(mod 4), m ≡ 2(mod 4), γr3(Cn2Cm) ≤ mn
2 .

Proof. We first define a function g on C42C4.

g(vi,j) =





∅, i(mod 2) 6= j(mod 2),
{1}, i(mod 2) = j(mod 2) = 0∧ i = j,
{2}, i + j = 2∧ i 6= 1∨ i = j = 3,
{3}, i = 1∧ j(mod 2) = 1∨ i = 3∧ j = 1.

Then, for n ≡ 2(mod 4), m ≡ 2(mod 4), we define a 3RDF f on Cn2Cm as follows.

f (vi,j) =





g(vi( mod 4),j( mod 4)), 0 ≤ i ≤ n− 3∧ 0 ≤ j ≤ m− 3,
h1(vi( mod 4),j), 0 ≤ i ≤ n− 3∧m− 2 ≤ j ≤ m− 1,
h2(vi,j( mod 4)), n− 2 ≤ i ≤ n− 1∧ 0 ≤ j ≤ m− 3,
h3(vi,j), n− 2 ≤ i ≤ n− 1∧m− 2 ≤ j ≤ m− 1,
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where h1(vi,j) ({vi,j|0 ≤ i ≤ 4, m− 2 ≤ j ≤ m− 1}), h2(vi,j) ({vi,j|n− 2 ≤ i ≤ n− 1, 0 ≤ j ≤ 3}),
h3(vi,j) ({vi,j|n− 2 ≤ i ≤ n− 1, m− 2 ≤ j ≤ m− 1}) are defined as follows.

h1(vi,j) =





∅, i(mod 2) 6= j(mod 2),
{1}, i = 0, 2∧ j = m− 2,
{2}, i = 1∧ j = m− 1,
{3}, i = 3∧ j = m− 1.

h2(vi,j) =





∅, i(mod 2) 6= j(mod 2),
{1}, i = n− 2∧ j = 0, 2,
{2}, i = n− 1∧ j = 1,
{3}, i = n− 1∧ j = 3.

h3(vi,j) =





∅, i(mod 2) 6= j(mod 2),
{2}, i = n− 2∧ j = m− 2,
{3}, i = n− 1∧ j = m− 1.

Figure 7 shows f on C102C10, where Rm means we repeat the four columns with m becoming
bigger and Rn means we repeat the four rows with n becoming bigger.
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h2(vi,j) =





∅, i(mod 2) ̸= j(mod 2),
{1}, i = n − 2 ∧ j = 0, 2,
{2}, i = n − 1 ∧ j = 1,
{3}, i = n − 1 ∧ j = 3.

h3(vi,j) =





∅, i(mod 2) ̸= j(mod 2),
{2}, i = n − 2 ∧ j = m − 2,
{3}, i = n − 1 ∧ j = m − 1,

Figure 7 shows f on C102C10, where Rm means we repeat the 4 columns with m becoming bigger,100

Rn means we repeat the 4 rows with n becoming bigger.101
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Figure 7. f on C102C10

One can check that f is a 3RDF, and the weight of f is ω( f ) = m−2
4 × n−2

4 × 8 + m−2
4 × 4 + n−2

4 ×102

4 + 2 = mn
2 .103

Hence γr3(Cn2Cm) ≤ mn
2 for n ≡ 2(mod 4), m ≡ 2(mod4).104

Lemma 6. For n ≡ 3(mod 4), m = 2(mod 4),

γr3(Cn2Cm) ≤
{

3m+2
2 , n = 3, m ≡ 2, 10(mod 12),

mn
2 , otherwise.

105

Proof. Case 1. For n = 3, we define f in two subcases.106

Case 1.1. m ≡ 6(mod 12).

f (vi,j) =





∅, i(mod 2) ̸= j(mod 2),
{1}, i(mod 2) = 0 ∧ j(mod 6) = 0 ∨ i = 1 ∧ j(mod 6) = 3,
{2}, i(mod 2) = 0 ∧ j(mod 6) = 2 ∨ i = 1 ∧ j(mod 6) = 5,
{3}, otherwise.

Figure 8 (above) shows f on C32C18, where Rm means we repeat the 6 columns with m becoming107

bigger. One can check that f is a 3RDF. The weight of f is ω( f ) = m
6 × 9 = 3m

2 . Hence, γr3(C32Cm) ≥108

3m
2 for m ≡ 6(mod12).109

Case 1.2. m ≡ 2, 10(mod 12). We first define a function g on C32C4.

g(vi,j) =





∅, i(mod 2) ̸= j(mod 2),
{1}, i = j = 0 ∨ i = j = 2,
{2}, i + j = 2 ∧ i ̸= 1,
{3}, i = 1 ∧ j = 1, 3.

Figure 7. f on C102C10.

One can check that f is a 3RDF, and the weight of f is ω( f ) = m−2
4 × n−2

4 × 8 + m−2
4 × 4 + n−2

4 ×
4 + 2 = mn

2 .
Hence, γr3(Cn2Cm) ≤ mn

2 for n ≡ 2(mod 4), m ≡ 2(mod4).

Lemma 6. For n ≡ 3(mod 4), m = 2(mod 4),

γr3(Cn2Cm) ≤
{

3m+2
2 , n = 3, m ≡ 2, 10(mod 12),

mn
2 , otherwise.

Proof. Case 1. For n = 3, we define f in two subcases.
Case 1.1. m ≡ 6(mod 12).

f (vi,j) =





∅, i(mod 2) 6= j(mod 2),
{1}, i(mod 2) = 0∧ j(mod 6) = 0∨ i = 1∧ j(mod 6) = 3,
{2}, i(mod 2) = 0∧ j(mod 6) = 2∨ i = 1∧ j(mod 6) = 5,
{3}, otherwise.
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Figure 8 (above) shows f on C32C18, where Rm means we repeat the six columns with m becoming
bigger. One can check that f is a 3RDF. The weight of f is ω( f ) = m

6 × 9 = 3m
2 . Hence, γr3(C32Cm) ≥

3m
2 for m ≡ 6(mod12).

Case 1.2. m ≡ 2, 10(mod 12). We first define a function g on C32C4.

g(vi,j) =





∅, i(mod 2) 6= j(mod 2),
{1}, i = j = 0∨ i = j = 2,
{2}, i + j = 2∧ i 6= 1,
{3}, i = 1∧ j = 1, 3.

Then, we define f as follows.

f (vi,j) =

{
g(vi,j( mod 4)), 0 ≤ j ≤ m− 4,
h(vi,j), m− 3 ≤ j ≤ m− 1,

where h is a function defined on {vi,j|0 ≤ i ≤ 2∧m− 3 ≤ j ≤ m− 1},

h(vi,j) =





∅, i = 0∧ j = m− 3, m− 1∨ i = 1∧ j = m− 2∨ i = 2∧ j = m− 1,
{1}, i = 2∧ j 6= m− 1,
{2}, i = 0∧ j = m− 2,
{3}, i = 1∧ j 6= m− 2.

Figure 8 (below) shows f on C32C14, where Rm means we repeat the four columns with m
becoming bigger. One can check that f is a 3RDF. The weight of f is f is ω( f ) = m−6

4 × 6 + 10 = 3m+2
2 .

Hence, γr3(C32Cm) ≤ 3m+2
2 for m 6≡ 6(mod12).
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Then,we define f as follows.

f (vi,j) =

{
g(vi,j( mod 4)), 0 ≤ j ≤ m − 4,
h(vi,j), m − 3 ≤ j ≤ m − 1,

where h is a function defined on {vi,j|0 ≤ i ≤ 2 ∧ m − 3 ≤ j ≤ m − 1},

h(vi,j) =





∅, i = 0 ∧ j = m − 3, m − 1 ∨ i = 1 ∧ j = m − 2 ∨ i = 2 ∧ j = m − 1,
{1}, i = 2 ∧ j ̸= m − 1,
{2}, i = 0 ∧ j = m − 2,
{3}, i = 1 ∧ j ̸= m − 2,

Figure 8 (below) shows f on C32C14, where Rm means we repeat the 4 columns with m becoming110

bigger. One can check that f is a 3RDF. The weight of f is f is ω( f ) = m−6
4 × 6 + 10 = 3m+2

2 . Hence,111

γr3(C32Cm) ≤ 3m+2
2 for m ̸≡ 6(mod12).
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Figure 8. 3RDFs on C32C18 and C32C14
112

Hence, for m ≡ 2(mod 4),

γr3(C32Cm) ≤
{

3m
2 , m ≡ 6(mod 12),

3m+2
2 , m ̸≡ 6(mod 12).

Case 2. For n = 7, we define f in two subcases.113

Case 2.1. m ≡ 6(mod 12).

f (vi,j) =





∅, i(mod 2) ̸= j(mod 2),
{1}, i(mod 2) = 0 ∧ j(mod 6) = 0 ∨ i(mod 2) = 1 ∧ j(mod 6) = 3,
{2}, i(mod 2) = 0 ∧ j(mod 6) = 2 ∨ i(mod 2) = 1 ∧ j(mod 6) = 5,
{3}, otherwise.

Figure 9 (above) shows f on C72C18, where Rm means that we repeat the 6 columns with m becoming114

bigger, Rn means we repeat the 2 rows with n becoming bigger. One can check that f is a 3RDF, and115

the weight of f is ω( f ) = 7−1
2 × m

6 × 6 + m
6 × 3 = 7m

2 .116

Case 2.2. m ≡ 2, 10(mod 12). We first define a function g on C72C4.

g(vi,j) =





∅, i(mod 2) ̸= j(mod 2),
{1}, i = 0 ∧ j = 0 ∨ i = 2 ∧ j = 2 ∨ i = 3 ∧ j = 1 ∨ i = 5 ∧ j = 1, 3,
{2}, i = 0 ∧ j = 2 ∨ i = 2 ∧ j = 0 ∨ i = 4 ∧ j = 2 ∨ i = 6 ∧ j = 0,
{3}, otherwise.

Figure 8. 3RDFs on C32C18 and C32C14.

Hence, for m ≡ 2(mod 4),

γr3(C32Cm) ≤
{

3m
2 , m ≡ 6(mod 12),

3m+2
2 , m 6≡ 6(mod 12).

Case 2. For n = 7, we define f in two subcases.
Case 2.1. m ≡ 6(mod 12).

f (vi,j) =





∅, i(mod 2) 6= j(mod 2),
{1}, i(mod 2) = 0∧ j(mod 6) = 0∨ i(mod 2) = 1∧ j(mod 6) = 3,
{2}, i(mod 2) = 0∧ j(mod 6) = 2∨ i(mod 2) = 1∧ j(mod 6) = 5,
{3}, otherwise.
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Figure 9 (above) shows f on C72C18, where Rm means that we repeat the six columns with m
becoming bigger and Rn means we repeat the two rows with n becoming bigger. One can check that f
is a 3RDF, and the weight of f is ω( f ) = 7−1

2 × m
6 × 6 + m

6 × 3 = 7m
2 .

Case 2.2. m ≡ 2, 10(mod 12). We first define a function g on C72C4.

g(vi,j) =





∅, i(mod 2) 6= j(mod 2),
{1}, i = 0∧ j = 0∨ i = 2∧ j = 2∨ i = 3∧ j = 1∨ i = 5∧ j = 1, 3,
{2}, i = 0∧ j = 2∨ i = 2∧ j = 0∨ i = 4∧ j = 2∨ i = 6∧ j = 0,
{3}, otherwise.

Then, we define f as follows.

f (vi,j) =

{
g(vi,j( mod 4)), 0 ≤ j ≤ m− 7,
h(vi,j), m− 6 ≤ j ≤ m− 1,

where h is a function defined on {vi,j|0 ≤ i ≤ 6∧m− 6 ≤ j ≤ m− 1},

h(vi,j) =





∅, i(mod 2) 6= j(mod 2),
{2}, i(mod 2) = 0∧ i 6= 0∧ j = m− 6∨ i = 0, 2∧ j = m− 4

∨i = 5∧ j = m− 3∨ i = 4∧ j = m− 2∨ i = 1∧ j = m− 1,
{3}, i(mod 2) = 1∧ i 6= 3∧ j = m− 5∨ i = 3∧ j = m− 1, m− 3

∨i = 0, 6∧ j = m− 2,
{1}, otherwise.

Figure 9 (below) shows f on C72C22, where Rm means we repeat the four columns with m
becoming bigger. One can check that f is a 3RDF, and the weight of f is ω( f ) = m−6

4 × 14 + 21 = 7m
2 .
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Then, we define f as follows.

f (vi,j) =

{
g(vi,j( mod 4)), 0 ≤ j ≤ m − 7,
h(vi,j), m − 6 ≤ j ≤ m − 1,

where h is a function defined on {vi,j|0 ≤ i ≤ 6 ∧ m − 6 ≤ j ≤ m − 1},

h(vi,j) =





∅, i(mod 2) ̸= j(mod 2),
{2}, i(mod 2) = 0 ∧ i ̸= 0 ∧ j = m − 6 ∨ i = 0, 2 ∧ j = m − 4

∨i = 5 ∧ j = m − 3 ∨ i = 4 ∧ j = m − 2 ∨ i = 1 ∧ j = m − 1,
{3}, i(mod 2) = 1 ∧ i ̸= 3 ∧ j = m − 5 ∨ i = 3 ∧ j = m − 1, m − 3

∨i = 0, 6 ∧ j = m − 2,
{1}, otherwise.

Figure 9 (below) shows f on C72C22, where Rm means we repeat the 4 columns with m becoming117

bigger. One can check that f is a 3RDF, and the weight of f is ω( f ) = m−6
4 × 14 + 21 = 7m

2 .
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Figure 9. 3RDFs on C72C18 and C72C22
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Hence γr3(C72Cm) ≤ 7m
2 , m ≡ 2(mod 4).119

Case 3. n ≥ 8.120

we first define a function g on C42C4.

g(vi,j) =





∅, i(mod 2) ̸= j(mod 2),
{1}, i = j ∧ i ̸= 1,
{2}, i + j = 2 ∧ i ̸= 1,
{3}, otherwise.

Then we define f as follows.121

Figure 9. 3RDFs on C72C18 and C72C22.

Hence, γr3(C72Cm) ≤ 7m
2 , m ≡ 2(mod 4).
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Case 3. n ≥ 8.
We first define a function g on C42C4.

g(vi,j) =





∅, i(mod 2) 6= j(mod 2),
{1}, i = j ∧ i 6= 1,
{2}, i + j = 2∧ i 6= 1,
{3}, otherwise.

Then, we define f as follows.

f (vi,j) =





g(vi( mod 4),j( mod 4)), 0 ≤ i ≤ n− 7∧ 0 ≤ j ≤ m− 4,
h1(vi( mod 4),j), 0 ≤ i ≤ n− 7∧m− 3 ≤ j ≤ m− 1,
h2(vi,j( mod 4)), n− 6 ≤ i ≤ n− 1∧ 0 ≤ j ≤ m− 4,
h3(vi,j), n− 6 ≤ i ≤ n− 1∧m− 3 ≤ j ≤ m− 1,

where h1(vi,j) ({vi,j|0 ≤ i ≤ 3, m− 3 ≤ j ≤ m− 1}), h2(vi,j) ({vi,j|n− 6 ≤ i ≤ n− 1, 0 ≤ j ≤ 3}),
h3(vi,j) ({vi,j|n− 6 ≤ i ≤ n− 1, m− 3 ≤ j ≤ m− 1}) are defined as follows.

h1(vi,j) =





∅, i(mod 2) 6= j(mod 2),
{1}, i = 1∧ j = m− 3∨ i = 3∧ j = m− 1,
{2}, i = 1∧ j = m− 1∨ i = 3∧ j = m− 3,
{3}, otherwise.

h2(vi,j) =





∅, i(mod 2) 6= j(mod 2),
{1}, i = n− 6∧ j = 1∨ i = n− 4∧ j = 3

∨i = n− 3∧ j = 2∨ i = n− 1∧ j = 0,
{2}, i = n− 6∧ j = 3∨ i = n− 4∧ j = 1

∨i = n− 3∧ j = 0∨ i = n− 1∧ j = 2,
{3}, i = n− 2∧ j(mod 2) = 1∨ i = n− 5∧ j(mod 2) = 0.

h3(vi,j) =





∅, i(mod 2) 6= j(mod 2),
{1}, i = n− 2, n− 6∧ j = m− 3

∨i = n− 5∧ j = m− 2∨ i = n− 4∧ j = m− 1,
{2}, i = n− 2, n− 6∧ j = m− 1

∨i = n− 4∧ j = m− 3,
{3}, i = n− 1, n− 3∧ j = m− 2.

Figure 10 shows f on C152C14, where Rm means we repeat the four columns with m becoming
bigger and Rn means we repeat the four rows with n becoming bigger.

One can check that f is a 3RDF, and the weight of f is ω( f ) = m−6
4 × n−7

4 × 8+ m−6
4 × 14+ n−7

4 ×
12 + 21 = mn

2 .
Hence, γr3(Cn2Cm) ≤ mn

2 for n ≡ 3(mod 4) (n > 7), m ≡ 2(mod 4).

By Lemmas 2–6, we have:

Theorem 3.

γr3(Cn2Cm) ≤
{

3m+2
2 , n = 3∧m ≡ 2, 10(mod 12),
dmn

2 e, otherwise.
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f (vi,j) =





g(vi( mod 4),j( mod 4)), 0 ≤ i ≤ n − 7 ∧ 0 ≤ j ≤ m − 4,
h1(vi( mod 4),j), 0 ≤ i ≤ n − 7 ∧ m − 3 ≤ j ≤ m − 1,
h2(vi,j( mod 4)), n − 6 ≤ i ≤ n − 1 ∧ 0 ≤ j ≤ m − 4,
h3(vi,j), n − 6 ≤ i ≤ n − 1 ∧ m − 3 ≤ j ≤ m − 1,

where h1(vi,j) ({vi,j|0 ≤ i ≤ 3, m − 3 ≤ j ≤ m − 1}), h2(vi,j) ({vi,j|n − 6 ≤ i ≤ n − 1, 0 ≤ j ≤ 3}),
h3(vi,j) ({vi,j|n − 6 ≤ i ≤ n − 1, m − 3 ≤ j ≤ m − 1}) are defined as follows.

h1(vi,j) =





∅, i(mod 2) ̸= j(mod 2),
{1}, i = 1 ∧ j = m − 3 ∨ i = 3 ∧ j = m − 1,
{2}, i = 1 ∧ j = m − 1 ∨ i = 3 ∧ j = m − 3,
{3}, otherwise.

h2(vi,j) =





∅, i(mod 2) ̸= j(mod 2),
{1}, i = n − 6 ∧ j = 1 ∨ i = n − 4 ∧ j = 3

∨i = n − 3 ∧ j = 2 ∨ i = n − 1 ∧ j = 0,
{2}, i = n − 6 ∧ j = 3 ∨ i = n − 4 ∧ j = 1

∨i = n − 3 ∧ j = 0 ∨ i = n − 1 ∧ j = 2,
{3}, i = n − 2 ∧ j(mod 2) = 1 ∨ i = n − 5 ∧ j(mod 2) = 0.

h3(vi,j) =





∅, i(mod 2) ̸= j(mod 2),
{1}, i = n − 2, n − 6 ∧ j = m − 3

∨i = n − 5 ∧ j = m − 2 ∨ i = n − 4 ∧ j = m − 1,
{2}, i = n − 2, n − 6 ∧ j = m − 1

∨i = n − 4 ∧ j = m − 3,
{3}, i = n − 1, n − 3 ∧ j = m − 2.

Figure 10 shows f on C152C14, where Rm means we repeat the 4 columns with m becoming122

bigger, Rn means we repeat the 4 rows with n becoming bigger.123
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Figure 10. f on C152C14

One can check that f is a 3RDF, and the weight of f is ω( f ) = m−6
4 × n−7

4 × 8 + m−6
4 × 14 + n−7

4 ×124

12 + 21 = mn
2 .125

Hence γr3(Cn2Cm) ≤ mn
2 for n ≡ 3(mod 4) (n > 7), m ≡ 2(mod 4).126

Figure 10. f on C152C14.

3. The 3-rainbow Domination Number of C32Cm

Let f be an arbitrary 3RDF on C32Cm; we denote ω( f j) = | f (v0,j)|+ | f (v1,j)|+ | f (v2,j)| (0 ≤ j ≤
m− 1).

Lemma 7. Let f be a 3-rainbow dominating function on C32Cm. Then:

(1) if ω( f j) = 0, then ω( f j−1) + ω( f j+1) ≥ 9;
(2) if ω( f j) = 1, then ω( f j−1) + ω( f j+1) ≥ 4.

Proof. (1) Since ω( f j) = 0, then | f (vi,j−1)|+ | f (vi,j+1)| ≥ 3 (i = 0, 1, 2). It follows that ω( f j−1) +

ω( f j+1) ≥ 9.
(2) Since ω( f j) = 1, without loss of generality, let | f (v0,j)| = 1, then | f (vi,j−1)|+ | f (vi,j+1)| ≥ 2

(i = 1, 2). It follows that ω( f j−1) + ω( f j+1) ≥ 4.

Theorem 4. For m = 3, 4, γr3(C32Cm) = d 3m
2 e.

Proof. By Theorem 2, γr3(C32Cm) ≤ d 3m
2 e (m = 3, 4).

If there exists ω( f j) = 0, by Lemma 7 (1), it follows that ω( f ) ≥ ω( f j−1) + ω( f j+1) ≥ 9 ≥ d 3m
2 e.

If ω( f j) ≥ 1 for 0 ≤ j ≤ m − 1, and if there exists ω( f j) = 1, then by Lemma 7 (2), ω( f ) =

ω( f j−1) + ω( f j+1) + ω( f j) ≥ 4 + 1 = 5 = d 3m
2 e for m = 3, and ω( f ) = ω( f j−1) + ω( f j+1) + ω( f j) +

ω( f j+2) ≥ 4 + 1 + 1 = 6 = d 3m
2 e for m = 4.

If ω( f j) ≥ 2 for 0 ≤ j ≤ m− 1, then ω( f ) = ∑0≤j≤m−1 ω( f j) ≥ 2×m = 2m. Thus, γr3(C32Cm) ≥
d 3m

2 e for m = 3, 4.

Lemma 8. Let f be a γr3(C32Cm)-function (m ≥ 5), then ω( f j) ≥ 1 for 0 ≤ j ≤ m− 1.

Proof. By contrast, suppose f is an arbitrary γr3-function and there exists a j with ω( f j) = 0;
by Lemma 7 (1), we have ω( f j−1) + ω( f j) + ω( f j+1) ≥ 9.
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We construct a function f ′ as follows, and Figure 11 shows the sketch of f ′.

f ′(vi,t) =





∅, i = 0, 2∧ t = j− 1, j + 1∨ i = 1∧ t = j,
{1}, i = 2∧ t = j,
{2}, i = 0∧ t = j,
{3}, i = 1∧ t = j− 1, j + 1,
{1} ∪ f (vi,t), i = 0∧ t = j− 2, j + 2,
{2} ∪ f (vi,t), i = 2∧ t = j− 2, j + 2,
f (vi,t), otherwise.
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j−3 j−2 j−1 j j+1 j+2 j+3

Figure 11. Sketch of f ′

153

Proof. First, we prove γr3(C32Cm) ≥ ⌈ 3m
2 ⌉ for m ≥ 5.154

Let f be a γr3(C32Cm)-function. By Lemma 8, ω( f j) ≥ 1 for 0 ≤ j ≤ m − 1.155

For ω( f j) = 1, by Lemma 7 (2), ω( f j−1) + ω( f j) + ω( f j) + ω( f j+1) ≥ 1 × 2 + 4 = 6.156

For ω( f j) = 2, ω( f j−1) + ω( f j) + ω( f j) + ω( f j+1) ≥ 1 + 2 × 2 + 1 = 6.157

For ω( f j) ≥ 3, ω( f j−1) + ω( f j) + ω( f j) + ω( f j+1) ≥ 1 + 2 × 3 + 1 = 8 > 6.158

Hence,

4ω( f ) = 4 ∑0≤j≤m−1 ω( f j)

= ∑0≤j≤m−1 ω( f j−1) + ω( f j) + ω( f j) + ω( f j+1) (3)

≥ 6m.

Thus, ω( f ) ≥ ⌈ 3m
2 ⌉.159

Then, we prove for m ≡ 2, 10(mod 12) the lower bounds of γr3(C32Cm) can be improved to160

3m+2
2 instead of ⌈ 3m

2 ⌉.161

If there exists ω( f j) ≥ 3, or ω( f j) = 2 ∧ (ω( f j−1) + ω( f j) + ω( f j) + ω( f j+1) > 6), or ω( f j) = 1162

∧ (ω( f j−1) + ω( f j) + ω( f j) + ω( f j+1) > 6), then inequality in (1) is strictly true, that is, ω( f ) > ⌈ 3m
2 ⌉,163

i.e. ω( f ) ≥ 3m+2
2 .164

Excluding the above cases, we will prove that the remaining cases ω( f j) = 1 ∧ ω( f j−1) =165

ω( f j+1) = 2 and ω( f j) = 2 ∧ ω( f j−1) = ω( f j+1) = 1 can not exist in C32Cm for m ≡ 2, 10 (mod 12).166

By contrary. Without loss of generality, let ω( f0) = 1 and | f (v0,0)| = 1, then ω( f1) = 2. By the167

definition of 3RDF, | f (v1,1)| = 2 or | f (v1,1)| = | f (v2,1)| = 1.168

Case 1. | f (v1,1)| = 2. In this case, by the definition of 3RDF, | f (v2,2)| = 1, | f (v0,3)| = 2,
| f (v1,4)| = 1, | f (v2,5)| = 2, | f (v0,6)| = 1. Continue in this way, we have

| f (vi,t)| =





1, i = 0 ∧ t = 6k ∨ i = 1 ∧ t = 6k + 4 ∨ i = 2 ∧ t = 6k + 2,
2, i = 0 ∧ t = 6k + 3 ∨ i = 1 ∧ t = 6k + 1 ∨ i = 2 ∧ t = 6k + 5,
0, otherwise.

where k ≥ 0.169

If we let f (v0,0) = {1}, then f (v1,1) = {2, 3}. For m ≡ 2, 10(mod 12) i.e. m ≡ 2, 4(mod 6), f on170

C32Cm is shown in Figure 12. Then, f (v2,0) = ∅ and ∪u∈N(v2,0)
f (u) ̸= {1, 2, 3}, this is a contradiction171

to the definition of 3RDF.172

Case 2. | f (v1,1)| = | f (v2,1)| = 1. In this case, we have | f (v0,2)| = 1, | f (v1,3)| = | f (v2,3)| =

| f (v0,4)| = 1. Continue in this way, we have

| f (vi,t)| =

{
1, i = 0 ∧ t = 2k ∨ i = 1 ∧ t = 2k + 1 ∨ i = 2 ∧ t = 2k + 1,
0, otherwise,

where k ≥ 0.173

If we let f (v0,0) = {1}, f (v1,1) = {2}, then we have f (v2,1) ∈ {{2}, {3}}.174

Figure 11. The sketch of f ′ in Lemma 8.

Thus, ω( f ′) = ω( f )− 9 + 8 < ω( f ), a contradiction with that f being a γr3-function.

Theorem 5. For m ≥ 5,

γr3(C32Cm) ≥
{

3m+2
2 , m ≡ 2, 10(mod 12),
d 3m

2 e, otherwise.

Proof. First, we prove γr3(C32Cm) ≥ d 3m
2 e for m ≥ 5.

Let f be a γr3(C32Cm)-function. By Lemma 8, ω( f j) ≥ 1 for 0 ≤ j ≤ m− 1.
For ω( f j) = 1, by Lemma 7 (2), ω( f j−1) + ω( f j) + ω( f j) + ω( f j+1) ≥ 1× 2 + 4 = 6.
For ω( f j) = 2, ω( f j−1) + ω( f j) + ω( f j) + ω( f j+1) ≥ 1 + 2× 2 + 1 = 6.
For ω( f j) ≥ 3, ω( f j−1) + ω( f j) + ω( f j) + ω( f j+1) ≥ 1 + 2× 3 + 1 = 8 > 6.
Hence,

4ω( f ) = 4 ∑0≤j≤m−1 ω( f j)

= ∑0≤j≤m−1 ω( f j−1) + ω( f j) + ω( f j) + ω( f j+1) (3)

≥ 6m.

Thus, ω( f ) ≥ d 3m
2 e.

Then, we prove for m ≡ 2, 10(mod 12) that the lower bounds of γr3(C32Cm) can be improved to
3m+2

2 instead of d 3m
2 e.

If there exists ω( f j) ≥ 3, or ω( f j) = 2 ∧ (ω( f j−1) + ω( f j) + ω( f j) + ω( f j+1) > 6), or ω( f j) = 1 ∧
(ω( f j−1) + ω( f j) + ω( f j) + ω( f j+1) > 6), then the inequality in (1) is strictly true, that is ω( f ) > d 3m

2 e,
i.e., ω( f ) ≥ 3m+2

2 .
Excluding the above cases, we will prove that the remaining cases ω( f j) = 1 ∧ ω( f j−1) =

ω( f j+1) = 2 and ω( f j) = 2 ∧ ω( f j−1) = ω( f j+1) = 1 cannot exist in C32Cm for m ≡ 2, 10 (mod 12).
By contrast, without loss of generality, let ω( f0) = 1 and | f (v0,0)| = 1, then ω( f1) = 2. By the

definition of 3RDF, | f (v1,1)| = 2 or | f (v1,1)| = | f (v2,1)| = 1.
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Case 1. | f (v1,1)| = 2. In this case, by the definition of 3RDF, | f (v2,2)| = 1, | f (v0,3)| = 2,
| f (v1,4)| = 1, | f (v2,5)| = 2, | f (v0,6)| = 1. Continuing in this way, we have:

| f (vi,t)| =





1, i = 0∧ t = 6k ∨ i = 1∧ t = 6k + 4∨ i = 2∧ t = 6k + 2,
2, i = 0∧ t = 6k + 3∨ i = 1∧ t = 6k + 1∨ i = 2∧ t = 6k + 5,
0, otherwise,

where k ≥ 0.
If we let f (v0,0) = {1}, then f (v1,1) = {2, 3}. For m ≡ 2, 10(mod 12), i.e., m ≡ 2, 4(mod 6), f on

C32Cm is shown in Figure 12. Then, f (v2,0) = ∅ and ∪u∈N(v2,0)
f (u) 6= {1, 2, 3}; this is a contradiction
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Figure 12. f on C32Cm for m ≡ 2, 4(mod 6)

Case 2.1. f (v2,1) = {2}. It follows f (v1,3) = f (v1,3) = f (v2,3) = {1}, f (v0,4) = {2}, f (v0,2) =

f (v1,5) = f (v2,5) = {3}. Continue in this way, we have

f (vi,t) =





{1}, i = 0 ∧ t = 6k ∨ i = 1, 2 ∧ t = 6k + 3,
{2}, i = 0 ∧ t = 6k + 4 ∨ i = 1, 2 ∧ t = 6k + 1,
{3}, i = 0 ∧ t = 6k + 2 ∨ i = 1, 2 ∧ t = 6k + 5,
∅, otherwise.

where k ≥ 0.
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Figure 13. Graph of f in Case 4.2.1
175

For m ≡ 2, 10(mod 12), i.e. m ≡ 2, 4(mod 6), f on C32Cm is shown in Figure 13. Then, f (v2,0) =176

∅ and ∪u∈N(v2,0)
f (u) ̸= {1, 2, 3}, a contradiction.177

Case 2.2. f (v2,1) = {3}. It follows f (v1,3) = {3} and f (v2,3) = {2}. Continue in this way, we
have

f (vi,t) =





{1}, i = 0 ∧ t = 2k,
{2}, i = 1 ∧ t = 4k + 1 ∨ i = 2 ∧ t = 4k + 3,
{3}, i = 1 ∧ t = 4k + 3 ∨ i = 2 ∧ t = 4k + 1,
∅, otherwise.

where k ≥ 0.
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178

Figure 12. f on C32Cm for m ≡ 2, 4(mod 6).

Case 2. | f (v1,1)| = | f (v2,1)| = 1. In this case, we have | f (v0,2)| = 1, | f (v1,3)| = | f (v2,3)| =
| f (v0,4)| = 1. Continuing in this way, we have:

| f (vi,t)| =
{

1, i = 0∧ t = 2k ∨ i = 1∧ t = 2k + 1∨ i = 2∧ t = 2k + 1,
0, otherwise,

where k ≥ 0.
If we let f (v0,0) = {1}, f (v1,1) = {2}, then we have f (v2,1) ∈ {{2}, {3}}.
Case 2.1. f (v2,1) = {2}. It follows that f (v1,3) = f (v1,3) = f (v2,3) = {1}, f (v0,4) = {2},

f (v0,2) = f (v1,5) = f (v2,5) = {3}. Continuing in this way, we have:

f (vi,t) =





{1}, i = 0∧ t = 6k ∨ i = 1, 2∧ t = 6k + 3,
{2}, i = 0∧ t = 6k + 4∨ i = 1, 2∧ t = 6k + 1,
{3}, i = 0∧ t = 6k + 2∨ i = 1, 2∧ t = 6k + 5,
∅, otherwise,

where k ≥ 0.
For m ≡ 2, 10(mod 12), i.e., m ≡ 2, 4(mod 6), f on C32Cm is shown in Figure 13. Then, f (v2,0) =

∅ and ∪u∈N(v2,0)
f (u) 6= {1, 2, 3}, a contradiction.

Case 2.2. f (v2,1) = {3}. It follows the f (v1,3) = {3} and f (v2,3) = {2}. Continuing in this way,
we have:

f (vi,t) =





{1}, i = 0∧ t = 2k,
{2}, i = 1∧ t = 4k + 1∨ i = 2∧ t = 4k + 3,
{3}, i = 1∧ t = 4k + 3∨ i = 2∧ t = 4k + 1,
∅, otherwise,

where k ≥ 0.
For m ≡ 2, 10(mod 12), i.e., m ≡ 2(mod 4), f on C32Cm is shown in Figure 14. Then, f (v2,0) = ∅

and ∪u∈N(v2,0)
f (u) 6= {1, 2, 3}, a contradiction.
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Figure 12. f on C32Cm for m ≡ 2, 4(mod 6)

Case 2.1. f (v2,1) = {2}. It follows f (v1,3) = f (v1,3) = f (v2,3) = {1}, f (v0,4) = {2}, f (v0,2) =

f (v1,5) = f (v2,5) = {3}. Continue in this way, we have

f (vi,t) =





{1}, i = 0 ∧ t = 6k ∨ i = 1, 2 ∧ t = 6k + 3,
{2}, i = 0 ∧ t = 6k + 4 ∨ i = 1, 2 ∧ t = 6k + 1,
{3}, i = 0 ∧ t = 6k + 2 ∨ i = 1, 2 ∧ t = 6k + 5,
∅, otherwise.

where k ≥ 0.
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Figure 13. Graph of f in Case 4.2.1
175

For m ≡ 2, 10(mod 12), i.e. m ≡ 2, 4(mod 6), f on C32Cm is shown in Figure 13. Then, f (v2,0) =176

∅ and ∪u∈N(v2,0)
f (u) ̸= {1, 2, 3}, a contradiction.177

Case 2.2. f (v2,1) = {3}. It follows f (v1,3) = {3} and f (v2,3) = {2}. Continue in this way, we
have

f (vi,t) =





{1}, i = 0 ∧ t = 2k,
{2}, i = 1 ∧ t = 4k + 1 ∨ i = 2 ∧ t = 4k + 3,
{3}, i = 1 ∧ t = 4k + 3 ∨ i = 2 ∧ t = 4k + 1,
∅, otherwise.

where k ≥ 0.
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Case 2.1. f (v2,1) = {2}. It follows f (v1,3) = f (v1,3) = f (v2,3) = {1}, f (v0,4) = {2}, f (v0,2) =

f (v1,5) = f (v2,5) = {3}. Continue in this way, we have

f (vi,t) =





{1}, i = 0 ∧ t = 6k ∨ i = 1, 2 ∧ t = 6k + 3,
{2}, i = 0 ∧ t = 6k + 4 ∨ i = 1, 2 ∧ t = 6k + 1,
{3}, i = 0 ∧ t = 6k + 2 ∨ i = 1, 2 ∧ t = 6k + 5,
∅, otherwise.

where k ≥ 0.
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Figure 13. Graph of f in Case 4.2.1
175

For m ≡ 2, 10(mod 12), i.e. m ≡ 2, 4(mod 6), f on C32Cm is shown in Figure 13. Then, f (v2,0) =176

∅ and ∪u∈N(v2,0)
f (u) ̸= {1, 2, 3}, a contradiction.177

Case 2.2. f (v2,1) = {3}. It follows f (v1,3) = {3} and f (v2,3) = {2}. Continue in this way, we
have

f (vi,t) =





{1}, i = 0 ∧ t = 2k,
{2}, i = 1 ∧ t = 4k + 1 ∨ i = 2 ∧ t = 4k + 3,
{3}, i = 1 ∧ t = 4k + 3 ∨ i = 2 ∧ t = 4k + 1,
∅, otherwise.

where k ≥ 0.
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Figure 14. Graph of f in Case 4.2.2.

Thus, ω( f ) ≥ 3m+2
2 for m ≡ 2, 10(mod12).

By Theorems 3–5, we have:

Theorem 6. For m ≥ 3,

γr3(C32Cm) =

{
3m+2

2 , m ≡ 2, 10(mod 12),
d 3m

2 e, otherwise.

4. The 3-rainbow Domination Number of C42Cm

Let f be an arbitrary 3RDF on C42Cm; we denote ω( f j) = | f (v0,j)|+ | f (v1,j)|+ | f (v2,j)|+ | f (v3,j)|
(0 ≤ j ≤ m− 1).

Lemma 9. Let f be a 3-rainbow dominating function on C42Cm. Then:

(1) if ω( f j) = 0, then ω( f j−1) + ω( f j+1) ≥ 12;
(2) if ω( f j) = 1, then ω( f j−1) + ω( f j+1) ≥ 7.

Proof. (1) Since ω( f j) = 0, then | f (vi,j−1)|+ | f (vi,j+1)| ≥ 3 (i = 0, 1, 2, 3). It follows that ω( f j−1) +

ω( f j+1) ≥ 12.
(2) Since ω( f j) = 1, we can let | f (v0,j)| = 1, then | f (v1,j−1)| + | f (v1,j+1)| ≥ 2, | f (v2,j−1)| +

| f (v2,j+1)| ≥ 3 and | f (v3,j−1)|+ | f (v3,j+1)| ≥ 2. It follows that ω( f j−1) + ω( f j+1) ≥ 7.

Theorem 7. γr3(C42C4) = 8.

Proof. By Theorem 2, γr3(C42C4) ≤ 8.
If there exists ω( f j) = 0, by Lemma 9 (1), it follows that ω( f ) ≥ ω( f j−1) + ω( f j+1) ≥ 12 > 8.
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If ω( f j) ≥ 1 for 0 ≤ j ≤ m− 1, and if there exists ω( f j) = 1, then by Lemma 9 (2), it follows that
ω( f ) ≥ ω( f j−1) + ω( f j) + ω( f j+1) ≥ 8.

If ω( f j) ≥ 2 for 0 ≤ j ≤ m− 1, then ω( f ) = ∑0≤j≤3 ω( f j) ≥ 4× 2 = 8.
Thus, γr3(C42C4) ≥ 8, together with γr3(C42C4) ≤ 8, and we have γr3(C42C4) = 8.

Lemma 10. Let f be a γr3(C42Cm)-function (m ≥ 5), then ω( f j) ≥ 1 for 0 ≤ j ≤ m− 1.

Proof. By contrast, suppose f is an arbitrary γr3-function and there exists a j with ω( f j) = 0.
By Lemma 9 (1), we have ω( f j−1) + ω( f j) + ω( f j+1) ≥ 12.

We construct a function f ′ as follows, and Figure 15 shows the sketch of f ′.

f ′(vi,t) =





∅, i = 0, 2∧ t = j− 1, j + 1∨ i = 1, 3∧ t = j,
{1}, i = 0∧ t = j,
{2}, i = 2∧ t = j,
{3}, i = 1, 3∧ t = j− 1, j + 1,
{1} ∪ f (vi,t), i = 2∧ t = j− 2, j + 2,
{2} ∪ f (vi,t), i = 0∧ t = j− 2, j + 2,
f (vi,t), otherwise.
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Proof. By contrary, suppose |S1| ≥ 1. Without loss of generality, we may assume that | f (v0,s)| = 1, it209

follows | f (v0,s+2)| ≥ 1, | f (v2,s+2)| ≥ 1 and | f (v3,s+2)| ≥ 3 (say, {1} ⊆ f (v2,s+2)).210

We can construct a function f ′ such that ω( f ′) ≤ ω( f ). Figure 15 shows the sketch of f ′.
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Proof. By contrary, suppose |S2| ≥ 1 for all γr3(C42Cm)-functions, that is the minimum |S2| is 1. Let215

f be a γr3(C42Cm)-function such that |S2| = 1, we denote |S2| f = 1. Let s be the smallest positive216

integer such that s ∈ S2 (0 ≤ s ≤ m − 1). Without loss of generality, we may assume that | f (v0,s)| = 1,217

it follows | f (v1,s+2)| ≥ 2, | f (v2,s+2)| ≥ 2 and | f (v3,s+2)| ≥ 2 (say, {1} ⊆ f (v3,s+2)).218

We can construct a function f ′ as follows satisfying ω( f ′) = ω( f ) and |S2| f ′ < |S2| f = 1 (see
Figure 17 for the sketch of f ′). Thus, there is a contradiction with the minimum |S2| is 1.
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{2} ∪ f (vi,t), i = 2 ∧ t = s + 3,
f (vi,t), otherwise.
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Then, ω( f ′) = ω( f )− 12 + 10 < ω( f ), a contradiction with f being a γr3-function.

Lemma 11. Let f be a γr3(C42Cm)-function. If S1= {j
∣∣| f (vi,j)| = | f (vi+2,j)| = | f (vi+1,j+1)| =

1, | f (vi+1,j)| = | f (vi+3,j)| = | f (vi,j+1)| = | f (vi+2,j+1)| = | f (vi+3,j+1)| = 0, 0 ≤ j ≤ m − 1},
then |S1| = 0.

Proof. By contrast, suppose |S1| ≥ 1. Without loss of generality, we may assume that | f (v0,s)| = 1;
it follows that | f (v0,s+2)| ≥ 1, | f (v2,s+2)| ≥ 1 and | f (v3,s+2)| ≥ 3 (say, {1} ⊆ f (v2,s+2)).

We can construct a function f ′ such that ω( f ′) ≤ ω( f ). Figure 16 shows the sketch of f ′.

f ′(vi,t) =





∅, i = 3∧ t = s + 2,
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f (vi,t), otherwise.
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Then, ω( f ′) = ω( f )− 3 + 2 < ω( f ), a contradiction with f being a γr3-function.

Lemma 12. There is a γr3(C42Cm)-function f such that |S2| = 0, where S2= {j
∣∣| f (vi,j)| = | f (vi+2,j)| =

| f (vi,j+1)| = 1 and | f (vi+1,j)| = | f (vi+1,j+1)| = | f (vi+3,j)| = | f (vi+3,j+1)| = | f (vi+2,j+1)| = 0, 0 ≤ j ≤
m− 1}.

Proof. By contrast, suppose |S2| ≥ 1 for all γr3(C42Cm)-functions, that is the minimum |S2| is one.
Let f be a γr3(C42Cm)-function such that |S2| = 1; we denote |S2| f = 1. Let s be the smallest positive
integer such that s ∈ S2 (0 ≤ s ≤ m− 1). Without loss of generality, we may assume that | f (v0,s)| = 1;
it follows that | f (v1,s+2)| ≥ 2, | f (v2,s+2)| ≥ 2, and | f (v3,s+2)| ≥ 2 (say, {1} ⊆ f (v3,s+2)).

We can construct a function f ′ as follows satisfying ω( f ′) = ω( f ) and |S2| f ′ < |S2| f = 1 (see
Figure 17 for the sketch of f ′). Thus, there is a contradiction with the minimum |S2| being one.

f ′(vi,t) =





∅, i = 2∧ t = s + 2,
{3}, i = 2∧ t = s + 1,
{2} ∪ f (vi,t), i = 2∧ t = s + 3,
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Lemma 13. Let f be a γr3(C42Cm)-function with |S1| = |S2| = 0, then γr3(C42Cm) ≥ 2m (m ≥ 5),220

where S1 and S2 are as defined as in Lemma 11 and 12.221

Proof. By Lemma 10, ω( f j) ≥ 1 for 0 ≤ j ≤ m − 1.222

Case 1. If ω( f j) = 1, by Lemma 9 (2), (ω( f j−1) + ω( f j)) + (ω( f j) + ω( f j+1)) ≥ 1 × 2 + 7 > 8.223

Case 2. If ω( f j) = 2, then there are three subcases.224

Case 2.1. There is one vertex v with | f (v)| = 2. Let | f (v0,j)| = 2, then | f (v1,j)| =225

| f (v2,j)| = | f (v3,j)| = 0. It follows | f (v1,j−1)| + | f (v1,j+1)| ≥ 1, | f (v2,j−1)| + | f (v2,j+1)| ≥ 3,226

| f (v3,j−1)| + | f (v3,j+1)| ≥ 1. Hence, (ω( f j−1) + ω( f j)) + (ω( f j) + ω( f j+1)) ≥ 2 × 2 + 5 > 8.227

Case 2.2. There are two vertices with weight of 1 and they are neighbors. Let | f (v0,j)| =228

| f (v1,j)| = 1, then | f (v2,j)| = | f (v3,j)| = 0. It follows | f (v2,j−1)| + | f (v2,j+1)| ≥ 2, | f (v3,j−1)| +229

| f (v3,j+1)| ≥ 2. Hence, (ω( f j−1) + ω( f j)) + (ω( f j) + ω( f j+1)) ≥ 2 × 2 + 4 = 8.230

Case 2.3. There are two vertices with weight of 1 and they are not neighbors. Let | f (vi,j)| =231

| f (vi+2,j)| = 1. By Lemma 11-12, we can get ω( f j−1) ≥ 2 and ω( f j+1) ≥ 2. Hence, (ω( f j−1) +232

ω( f j)) + (ω( f j) + ω( f j+1)) ≥ 2 + 2 × 2 + 2 = 8.233

Case 3. If ω( f j) ≥ 3, (ω( f j−1) + ω( f j)) + (ω( f j) + ω( f j+1)) ≥ 1 + 2 × 3 + 1 = 8,234

Thus,

4ω( f ) = 4 ∑0≤j≤m−1 ω( f j)

= ∑0≤j≤m−1(ω( f j−1) + ω( f j)) + (ω( f j) + ω( f j+1))

≥ 8m.

That is, ω( f ) ≥ 2m.235

Theorem 8. For m ≥ 4, γr3(C42Cm) = 2m.236

Proof. By Theorem 3 and Lemma 13, it has γr3(C42Cm) = 2m (m ≥ 5), together with Theorem 7, we237

have γr3(C42Cm) = 2m (m ≥ 4).238

5. Conclusion239

In this paper, we investigate the 3-rainbow domination number of Cartesian products of cycles240

Cn2Cm. We determine the exact values of the 3-rainbow domination number of C32Cm and C42Cm,241

i.e. γr3(C32Cm) = ⌈ 3m+α
2 ⌉, α = 2 for m ≡ 2, 10(mod 12), α = 0 for m ̸≡ 2, 10(mod 12),242

γr3(C42Cm) = 2m. For n ≥ 5, by Lemma 1 and Theorem 3, we present a better bound on the243

3-rainbow domination number of Cn2Cm, that is, 3mn
7 ≤ γr3(Cn2Cm) ≤ mn

2 .244
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Figure 17. The sketch of f ′ in Lemma 12.

Lemma 13. Let f be a γr3(C42Cm)-function with |S1| = |S2| = 0, then γr3(C42Cm) ≥ 2m (m ≥ 5),
where S1 and S2 are defined as in Lemmas 11 and 12.

Proof. By Lemma 10, ω( f j) ≥ 1 for 0 ≤ j ≤ m− 1.
Case 1. If ω( f j) = 1, by Lemma 9 (2), (ω( f j−1) + ω( f j)) + (ω( f j) + ω( f j+1)) ≥ 1× 2 + 7 > 8.
Case 2. If ω( f j) = 2, then there are three subcases.
Case 2.1. There is one vertex v with | f (v)| = 2. Let | f (v0,j)| = 2, then | f (v1,j)| = | f (v2,j)| =

| f (v3,j)| = 0. It follows that | f (v1,j−1)| + | f (v1,j+1)| ≥ 1, | f (v2,j−1)| + | f (v2,j+1)| ≥ 3, | f (v3,j−1)| +
| f (v3,j+1)| ≥ 1. Hence, (ω( f j−1) + ω( f j)) + (ω( f j) + ω( f j+1)) ≥ 2× 2 + 5 > 8.

Case 2.2. There are two vertices with a weight of one, and they are neighbors. Let | f (v0,j)| =
| f (v1,j)| = 1, then | f (v2,j)| = | f (v3,j)| = 0. It follows that | f (v2,j−1)|+ | f (v2,j+1)| ≥ 2, | f (v3,j−1)|+
| f (v3,j+1)| ≥ 2. Hence, (ω( f j−1) + ω( f j)) + (ω( f j) + ω( f j+1)) ≥ 2× 2 + 4 = 8.
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Case 2.3. There are two vertices with a weight of one, and they are not neighbors. Let | f (vi,j)| =
| f (vi+2,j)| = 1. By Lemmas 11 and 12, we can get ω( f j−1) ≥ 2 and ω( f j+1) ≥ 2. Hence, (ω( f j−1) +

ω( f j)) + (ω( f j) + ω( f j+1)) ≥ 2 + 2× 2 + 2 = 8.
Case 3. If ω( f j) ≥ 3, (ω( f j−1) + ω( f j)) + (ω( f j) + ω( f j+1)) ≥ 1 + 2× 3 + 1 = 8,
Thus,

4ω( f ) = 4 ∑0≤j≤m−1 ω( f j)

= ∑0≤j≤m−1(ω( f j−1) + ω( f j)) + (ω( f j) + ω( f j+1))

≥ 8m.

That is, ω( f ) ≥ 2m.

Theorem 8. For m ≥ 4, γr3(C42Cm) = 2m.

Proof. By Theorem 3 and Lemma 13, it has γr3(C42Cm) = 2m (m ≥ 5); together with Theorem 7,
we have γr3(C42Cm) = 2m (m ≥ 4).

5. Conclusions

In this paper, we investigate the 3-rainbow domination number of Cartesian products of cycles
Cn2Cm. We determine the exact values of the 3-rainbow domination number of C32Cm and C42Cm,
i.e., γr3(C32Cm) = d 3m+α

2 e, α = 2 for m ≡ 2, 10(mod 12), and α = 0 for m 6≡ 2, 10(mod 12),
γr3(C42Cm) = 2m. For n ≥ 5, by Lemma 1 and Theorem 3, we present a better bound on the
3-rainbow domination number of Cn2Cm, that is 3mn

7 ≤ γr3(Cn2Cm) ≤ mn
2 .
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