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Abstract: In the beginning, the basic facts about a conformal transformations are exposed and then
equitorsion conformal transformations are defined. For every five independent curvature tensors in
Generalized Riemannian space, the above cited transformations are investigated and corresponding
invariants-5 concircular tensors of concircular transformations are found.

Keywords: generalized Riemannian space; conformal; equitorsion and concircular transformations

1. Introduction

In the sense of Eisenhart’s definition [1], a generalized Riemannian space (GRy) is a differentiable
N-dimensional manifold that is endowed with basic non-symmetric tensor (g;; # gji), where detg;; # 0.
The symmetric part of g;; is noted with g;; and antisymmetric one with g;;. The lowering and rising of
- 14

indices in GRyy is defined by g;; and gﬁ, respectively, where g,»jgi = (5}‘ (detgi; # 0). The Christoffel symbols
in GRy are given in the next manner: ; ;

ik = 5 (8jik = &jei + &ikj)r D)Tje = 8FTpjk = 58%(&jpk — Gjip + &pki), O
where, e.g., gijx = agij/axk.

Because of non-symmetry of the affine connection coefficients T;k by indices j and k, there are four

kinds of covariant differentiation in the space GRy. Namely, for a tensor a;, these covariant derivatives
are defined as:

i i PP P i
U R L B @
! mp le
; pr m
4 mp jm

Yano in [2] investigates a conformal and concircular transformations in the Ry . In that case, of course,
he considers one that is Riemannian curvature tensor. De and Mandal in [3] studied concircular curvature
tensors as important tensors from the differential geometric point of view. In [4-11], Mikes et al. have
studied special kinds ot transformations in Riemannian space.

Minci¢, in his doctoral dissertation (Novi Sad, 1975), obtained 12 curvature tensors, using
non-symmetric connection. Among these 12 tensors, five of them are independent (se also [12-17])
and they are noted 11{, e, 15{
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In [18], another combination of five independent curvature tensors is obtained, and they are denoted
by 11< .. Ié
For five independent tensors Ie< in [19], the invariants % were found, which are different from the

invariants % in the present paper (see Remark 3.1, at the end). Compare e.g., % from the present paper and
% from [19], where 11{ = 11<

Investigation of various kinds of mappings in the settings of generalized Riemannian spaces is
an active research topic, numerous results were obtained in the recent years; see, for instance [20-22].
Very recently, conformal and concircular diffeomorphisms of generalized Riemannian spaces have been
studied by M. Z Petrovi¢, M. S. Stankovi¢ and P. Peska [23].

2. Equitorsion Conformal Transformation in Generalized Riemannian Space

Consider a special transformation of the objects in GRy.

Definition 1. Conformal transformation is that one under which the basic tensor is changed according to the law

ii(x) = p*(x)8ij(x), (gij # 8ji)s 3)

where p(x) = p(x', ..., xN) is some differentiable function of coordinates in GRy.

We see that g and g are considered in the common system of coordinates. The same is valid for the
other geometric objects.
Furthermore, we have:

ds* = gijdxidxj, ds* = g‘ijdxidxf = ngijdxidxj,
ds* = p*ds*> < ds/ds = p. (4)
If the transformation (3) is effected, for the Christoffel symbols, it is obtained

- 1

Tiji =5 (&jik — Gjri + Gin j)
2k i Pi L
=p [ 0 g]z 0 g]k + 0 Sik + z(g]z,k g]k,z +gzk,])]'
Denoting
o(In 1
(Inp),; = (ax,-p ) _ o0 = Pir (5)
the previous equation gives
T jk = 0°(Tiji + 8jiPk — 8jkoi + SikPj)- (6)
For f;k, according to (1), we get
o 1 5P (5 5 5 7
ik = 58 &jpk = &jkp + Gpk)- @)

Because the inverse matrix for (g;;) is the matrix (g), we get

gl(x) = [o(x)] g'(x) ®)
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and, based on (1), (6), (8),

Tl = Th + 8o, + 810 — '8 ik e 9
where '
;:k = gf(gj&apk 8Ky + g;gcpj)- (10)
Denote
o' = g0y = g(Inp) . (11)

From (9), it is obtained: for the symmetric part of the connection
Ll = T+ 0joy + 50 — P80 (12)
and for the torsion tensor (double skewsymmetric part of the connection)

T = 2T = Tj + 28"(gj,0k — Skp; + 8kjop) = Ty + 28k (13)
14 1% 1%

v

Definition 2. An equitorsion conformal transformation of the connection in GRy is that conformal transformation
(3) on the base of which the torsion is not changed, i.e.,

Ty =T =T}y = Ty — T} = T (14)

From (13), we conclude that
Theorem 1. Necessary and sufficient condition for a conformal transformation of the connection to be equitorsion is
= giﬁ(g]€Pk = 8k + 8igpp) = 0. (15)

3. Curvature Tensors in Equitorsion Conformal and Concircular Transformation in Generalized
Riemannian Space

3.1. The First Curvature Tensor
The 1% from the cited curvature tensors in GRy is [12,13]
§§mn = T = D + r]f’mr;n - r]’?nr;m. (16)
Based on (15), (9), we obtain
Tl = Tl + 0oy + G0; — pigjk' 17)
If by the transformation of the connection I into I’ we write
a) F;'k = r;‘k + P}k/ b)IJ;k = 5}Pk + 310 — Pigﬁ = Plij/ (18)

we can consider how e.g., some curvature tensors from the above mentioned independent ones are
transformed.
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With respect to (18), for IlQ, one obtains

— p p
Ilzémn r}m n r;n mt r]mr;m r]nr;gm
— p p p
= Ry + ]m|n - mlm + PP Py — Pl Pl + Thu P

jp’
and substituting P from (18b):

If;mn = R;mn + 5]1(pm|n ~ Pu|m + TV;ZWHOP) + 57111(p/|n +P]Pn)
1 1 1
= 0(pjim — pjom) + (0}, — 0'om)gjn — (p]
1 1 1

+ 07 0p (O1u&in — S1gjm) + Toan0j — Tjunl?'s

where |m denotes covariant derivative of the first kind on x™. Because
1

w = 0'0n)8jm

Pmin = Pn|jm = _Tnﬁnpp/

1 1

the 2nd addend on the right side in (20) is 0. Introducing the notation

Pij = Pi|j — Pipj T
1 1

1 s 1 r
58 0rPs8ij = Pifj = Pifj T 5010 &ijs
1
we obtain
Fl}mn - fl)nm (2:2) pml\n - pnl\m = _Tanpp/
and, for R;mn,

i
If]mn ]mn

(P]n 2gﬁprpsgjﬁ) -

: 1
On(jm — 58PrPs&jm)
X jm
+87giu (pp\m ~ Opom)

= 828jm(Ppin — PpPn) + 0pP? Oinjn — Ou&jm)
1
+ A;mn
is obtained, where
A;mn - rlrlnpj - Tj.mnpl'
Furthermore,
R;mn

: 1
]mn + 6 (p]n 2gﬁprpsgj£) — Oy (Fl’]m - Egﬁprpsgjm)

) 1 .
+g gﬂ(ppm 2g 0PrPs8pm) —gﬁgm(f;pn — 58" Prps8pn) + ppp" 8jn — On8jm)

+ A;mn'
from where ]
y , ‘ , . ‘
Rijinn = Rjyy + 5;41)]-,1 - 5Lfl>jm = 01u8jnPpp’ + 6, 8jmopo”
+ Ongjn — On&jm + 0pp? (i — n&jm) + Aj

jmn’

40f13

(19)

(20)

21)

(22)

(23)

(24)

(25
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and putting in order:
Rijnn = i+ Suin = 0upjm + O ~ O + A (26)

where Al

jmn 18 givenin (24). We are using the next definition from [2]

Definition 3. If a conformal transformation in a Riemannian space Ry :
5. — 2 —
Sij =8 (87 = gji)
transforms every geodesic circle into geodesic circle, the function p(x) satisfies the partial differential equation
pij = ®(x)gij(x), (gij = 8ji)s 27)

where ,
Pij = Pi;j — PiPj + Eppppgij/ (8ij = 8ji)- (28)

Such a transformation is called a concircular transformation in Ry, and concircular geometry is geometry
that treats the concircular transformations and the spaces that allow such kinds of transformations.

In the GRy;, we consider transformations
8ij =078, (8ij # &ji) (29)

where, based on (22), p;; # p;); in GRN. Now, we take
1 1

Pij = ?(x)gg(x)/ (8 # ji)s (30)

and such a transformation we name a concircular transformation of the first kind in GRy;.
We have to find the function C{D Substituting p from (30) into (26), we get:
1

Ri =R + 2g>(5£ngj£ — 8u8jm) + A (31)

1jmn 1 jmn jmn:
If we effect the contraction with i = n, it follows that
ijm = If]m + 2?(&1&?& - (S:gﬂ)/

where Ifjm = 11z;imi, and so on, and we get:

I}jm = Ry +2(1 = N)®gjm + Ay

By multiplying the corresponding sides of previous equation and the equation

_jﬁ:

0°g

jm

8

we obtain ) '
PR = gM{R;, +2(1 = N)Dgj + Ay},
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where 1;2 jm gjﬂ = 1;? and so on, while

]mgi (_) A]ng* = (Trlmp] - T]mzpl)gﬂ =0,

and we get

wherefrom it follows that

o
D = ——. 32
P = s oN (32)
Substituting CF into (31), we get
PPR-R .
Ilz;mn - If;mn - m(&ngﬂ - 5:13jm) + A;mn (33)

and from here o )
" R(025348j — 6118 )
_|_

1/mn N—-1)N
(N-TN_ o
o RO~ ngm)
_R]mn + (N _ l)N + A]mn
Taking into consideration that
1 _ 1

pi = s5lIng);i — (Ing)l = 5 (8i — &), g = det(gij), (35)

with respect to (24) and (35)

. . . . 1 . —
A;mn = T,Z,mp]' - Tj.man = T;mzp]' - Tj.mngﬁpp (;) W[Tizn(gj - gj) - Tj.mngﬁ(gp - gp)]

. (36)

1 =i = = _ip - 1 i
= o (T8 = Tnn&88p) = (Tun8j — T8 8p)],

where Ti,,, = Ti,, (for the first addend) and gii’gqj = giﬁgq]- (for the third addend). By substituting from
(36) into (34) and because of n n

g;‘n:g;‘nl ngjm:gjm/ 5;'11:5;1/ (37)
we obtain B
R D
]mn+ (N—l)N +21\]( g mngj)r

e (38)
112(5mgﬂ_5ng]ﬂ) 1

_Ri T ip, _Ti .

1 jmn

In that manner, we conclude that the following theorem is valid:
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Theorem 2. The tensor

iR 4 R(G08jn — %n8jm)
pJme (N-1)N (39)

1 . .
+ ﬂ( Timn8"8p — Tungj)
is an invariant in the space GRy;, by an equitorsion concircular transformation i.e., according to (38):

Zi =7 (40)

Timn Tjmn’

wheree.g., gj = (Ing) ; = (;n]g) and ZZ , 18 given by (39).

The tensor Z;mn is an equitorsion concircular tensor of the first kind in GRy.

3.2. The Second Curvature Tensor

The tensor 12( in GRy is [12,17]

I;;mn = rlrn] n r;] mt F;;;jr‘Z rP rlmp/ (41)
and, for Ri i by virtue of (18), it follows that
pi _ pi i P pi P pi P pi
R =K+ P = n]‘m + Pl Phyy = PLPh, — ThPh. (42)

Substituting from (18) into the previous equation and arranging, one obtains

2 2 2 2

, . . . . . (43)
+ (Pﬁm - plpm)gjﬁ = (Pl = P'0n)&jm + PpP” (68in — On8jm) = TinPj + Tjpnp'-
2 2

The term in the 1st bracket on the right side is 0 because of

Pl = Lo = Thnbp- (44)
2 2
If we introduce the denotation

_ LN 45
Pij = lej iR} T 500 8ijy (45)

we have

Pmn = Pnm = pm|n - pn|m = Tiﬁnpp
2 2 2 2

and, for Igmn from (43)-(45), it follows that

122;11171 = 1§;mn + 511'119]'71 - 57i1pjm + pingjn - p;gjm - A;'mn’ (46)
2 2 2 2
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where A;mn is given (24). Furthermore, we use the concircular transformation for 122
Pij = %)(x)gi](x) (47)
ek
By substitution of p;; into (46), by procedure as for IlQ, we obtain
2
o
D= 48
2 2(N—-1)N (48)
and at the end: ~
N - PR-R , ,
Rjmn = §}mn - m(%g& = u&jm) = Ajmn (49)
where A;mn is given in (24).
Thus, we conclude that the next theorem is valid.
Theorem 3. The tensor . .

. , R(57111gjn - 5111gjm)

Zityy =Rl + 2

g My (N—1)N (50)
1 . .

“ON (Tj.mngfgp B Trlnng])
is an invariant in GRy with respect to an equitorsion concircular transformation, i.e., in force is
Ziwn = Zjmn- (51)
The tensor % is an equitorsion concircular tensor of the 2nd kind at GRy and e.g., gj = (Ing)— a%l;jg ),
3.3. The Third Curvature Tensor

The tensor 13{ in GRy [12,14,17] is

Rin = Tjnon = Tojon + T Lop = T + T Ty, (52)
Ri

where T; j is torsion tensor in local coordinates. For Rjmn oN the base of (18), it is obtained

Pl — Ri i i i pP i pP i pP

I;}mn - 1§;mn +P}m|n - :;j\m +P;llﬂpjm _P;Jmpnj+T}l7jP”m’ (53)
2 1

where we take into consideration that P]l is symmetric, with respect to (18).

By substituting from (18) into the previous equation and arranging, one obtains

s
1§jmn -

i i 1 i 1
Rjmn 0 0jn = 209" 8jn) = Onlpjm = 5Pp0" = &jm)

- 1 - 1
+8%8jn 0y = 3010 8pm) = 878 (0pn = 5010 Gpm) (54)
+ 0,07 61n&jn — Ppp" O &jm + D}

jmn’
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where
Dipn = Tin + Tnjfm + 8 8mn T, 0. (55)

From (55), it is obtained that

Consider, further, the concircular transformation for the tensor 1§§mn in the following manner.

Taking
pij = ?(x)gij(x)/ =12 (57)
i y
we obtain from (56)
I§jmn = 1§;mn + zg)éingjﬁ - (J;zgﬂ) + D;mn' (58)
Putting i = n, we get ‘ ‘
§jm = 1§jm + 2%)51111gﬁ - (5zlgﬂ) + Djm/ (59)

and contracting with p2g/" = gjﬂ on the left and the right sides correspondingly in (59), we get
p21;< =R+20(1-N)N (60)

because

D = Djug™ = D}y, (55) (T + T jom + 87 gmiTjpps)g™

= Thupig™ +0+ g8 Tj p, = T, p,8™ (1)
= Tijmp'8"™ = ~ Ty = —Thip" = 0.

By the further procedure as in the case of 11{, we obtain

i
O(x) = “NoDN (62)

Consider, further, the tensor D;mn. By virtue of (35), one gets

. 1 _— o .
Divn = 5y [Tim (& = 8n) + Ty (&m — gm) + 87 gmn T}, (& — g5)], (63)

where the equitorsion is taken into consideration.
Substituting from (62), (63) into (58), it follows that

, - PR-R ‘
Rl' — Rl- s 9 (51 L (51 3
3]mn 3]mn (N*l)N( mgﬂ ng@> (64)

1. - i
+ o [Tim (& = 8n) + T (@m — gm) + 878 T (&5 — 85)]-

from where we conclude that the next theorem is valid.
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Theorem 4. The tensor ) )
1;(5%8]‘71 - 5;1gjm)
(N—1)N (65)

1 ) ) )
— o (Tim&n + Thj&m + 8 8mn Tj,85)

i

%l]‘mn :1§jmn +

is an invariant in GR with respect to an equitorsion concircular transformation, i.e., it is
5i _ i
%jmn - %jmn' (66)

The tensor % is an equitorsion concircular tensor of the 3rd kind at GRy.

3.4. The Fourth Curvature Tensor

For the tensor {42 in GRy, we have [13,14,17]

5;""" = r;im,n - r;].,m + r;?'mr;;p -1 ].r;m + rfnnT;;]., (67)
where T; j is torsion tensor in local coordinates. For §;m , on the base of (18), it is obtained
L , . ;o p . p ;
R =K+ Py = Py + BBl — PP+ TP @)
2 1
From (53), (68), it follows that
Ri ~_Ri R _RI P Ti. —R. _RE
Ejmn I§]mn - Iijmn 1§]mn + zpﬂ‘l/ﬂTp] - §]mn 1§]mn
because P, = 0. Thus, we have
v
Iz;mn - E}mn = I?:{;mn - 1§;mn
(69)

:51',_51'. e Dl:,
(56) mg]” "Fl)del_(l)mgm fz)ng]m“‘ imn

where D;mn is given in (55). For the concircular transformation for the tensor lgmn, we put

g,l = f(x)gi]-(x), 6=1,2,

and, by the same procedure as in the previous case, the next theorem is obtained.

Theorem 5. The tensor . .
5(5;137& - §£tg]'ﬂ)
(N—1)N (70)

T}u&n + Tiigm + 8P 8mn TH,8s)

7t =R 4

gimn T jmn

2N (
is an invariant in GRy with respect to an equitorsion concircular transformation, i.e., in force is

%}mn = %;‘mn' (71)
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The tensor % is an equitorsion concircular tensor of the 4th kind at GRy.
3.5. The Fifth Curvature Tensor
Finally, consider the 5th curvature tensor 15€§mn in GRy (in [12] 15? is denoted with I;%) We have
according to [12,17]
i _ 1 i i i
I;jmn ) (rjm,n + Iﬂmj,n - Iﬂjn,m - rnj,m 72)
P i P i P i P i
+ l"].ml";m + Fm].l"ﬁw - l"jnl"’mp - l"n].l"’pm),
which can be written in the form [17]:
Ri_Ri +1( i _pi o 4pi _pi
mn mn
5] 5] 2 ]mén ]nlm mjln n]im (73)
P pi P pi P pi P pi
+ ijP;,n - P].nP,lnp + ijP;,p - Pan;,m),
where P;k is given in (18). With substitution of P from (18) into (73), one obtains
R _QRi Lisi
5 jmn = Tjmn + E[ ](pm\n “ Pulm ~ Pmin _pn\m)
2 1 1 2
+ 0 (0510 + 0510 — 2000 + 0p0"gjn)
o2 ! (74)
= 0n (0w + 0jm = 20i0m + PpO" &jm)
1 2
+ 8in (O} + 01— 20'0m) = &jm (0}, + 0], — 20'0,)]-
1 2 1 2
Using (23) and (44) and introducing the denotation
1 1
0ij = 5 (03 0115 = 2010 + 0p07 81j) = 5 (03 + i) = Pjir (75)
1 2 1 2 5
Equation (74) obtains the form
E;‘mn = Ié;mn + 51111115)]11 - &lg]m
i i p(si i (76)
+On8in = Onjm + PpP (68jm — Om&jm)-
Let us apply a concircular transformation for the tensor Igémn. By virtue of (75), we put
pij = P(x)gij (%) = pjis (77)
5 - 5

into (76) and we get

1§§mn = I;;mn + 2%)<5;ngﬂ - 5:’1gﬂ> - pppp((singﬂ - 5;1g]ﬁ) (78)
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Contracting by i = 1, we obtain

Rim = Rjm + (1 = N)gjm (28 — pyp").

Multiplying this equation with p?g/" = gjﬂ, it follows that

"3
— 4
2P==m)N T OrF

and substituting this value into (78), one gets that the following theorem is valid.

Theorem 6. The tensor , ,
Z’ _ Rl ((S’I”gﬂ - 5;1gm 7
5 jmn ]mn (N _ 1)N (79)
is an invariant in GRy with respect to an equitorsion concircular transformation, i.e., in force is
zi =17t (80)

5 jmn 5 jmn

The tensor % is an equitorsion concircular tensor of the 5th kind at GRy.

Remark 1. In [19], is K;mn = R;mn, I§;mn = 13{;m while Ri gE {K ]mn, Kl ]mn} 6 = 2,4,5. However,
because of different procedures, it is Z]mn & {Z]mn,.. ]mn} 9 ., 5, where Z;mn are from [19]. Thus, Z]mn

are new invariants of the considered transformations.

Remark 2. In the case of Rn(8ij = gjis T;k = 0), each of the obtained tensors %;mn reduces to a known concircular

_ R(3,8ju—0%8jm)
tensor [2] Z]lmn R;mn + W

4. Conclusions

Conformal equitorsion concircular transformations are investigated and corresponding invariants-5
concircular tensors of concircular transformations are found.
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