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Abstract: In the paper, we consider canonical almost geodesic mappings of type π2(e). We have found
the conditions that must be satisfied for the mappings to preserve the Riemann tensor. Furthermore,
we consider canonical almost geodesic mappings of type π2(e) of spaces with affine connections
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of Cauchy-type Partial Differential Equations. We have found the maximum number of essential
parameters which the solution of the system depends on.
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1. Introduction

The paper develops some new ideas in the theory of almost geodesic mappings of spaces with the
affine connection. This theory can be dated back to the paper [1] of T. Levi-Civita, where he formulated
and solved the problem of finding a Riemannian space with common geodesics, note that the problem
was solved in a special coordinate system. It is worth noting that this problem is related to the study of
equations of dynamics of mechanical systems.

Other problems and ideas in the theory of geodesic mappings were developed by T. Thomas,
H. Weyl, P.A. Shirokov, A.S. Solodovnikov, N.S. Sinyukov, A.V. Aminova, J. Mikeš, and others.

Issues, arisen by the exploration, were studied by V.F. Kagan, G. Vrançeanu, Ya.L. Shapiro, and
D.V. Vedenyapin et al. The authors discovered special classes of (n− 2)-flat spaces.

The first person to introduce the notion of quasi-geodesic mappings was Petrov, see [2]. Principally,
the holomorphically projective mappings of Kählerian spaces are special quasi-geodesic mappings;
these were examined by T. Otsuki and Y. Tashiro, M. Prvanović, and others.

The class of almost geodesic mappings is a natural generalization of the class of geodesic mappings.
Sinyukov defined almost geodesic mappings (see [3–6]) and he also specified three kinds of these
mappings, in particular, π1, π2, π3.

The theory of almost geodesic mappings was developed by V.S. Sobchuk [7,8], V.S. Shadnyi [9],
N.V. Yablonskaya [10], V.E. Berezovski, J. Mikeš et al. [11–25], M.Z. Petrović, Lj.S. Velimirović, N. Vesić,
M.S. Stankovič, and M.L. Zlatanović [26–32] et al. The results that follow were presented in the
monographs [33,34] and in the review [19,35,36].

In 1962, A.Z. Petrov [2] studied quasi-geodesic mappings, where he showed that it is possible to
simulate physical processes and electromagnetic fields. Similar results are presented in the paper of
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C.-L. Bejan and O. Kowalski [37]. The mappings π2(e) are similar to those mentioned above. All these
spaces are connected with some affinor structure F which can be interpreted as a force field.

In a 2019 paper [38] by A. Kozak and A. Borowiec, the authors studied a new physical interpretation
of almost geodesic mappings, that are special transformations which genuinely preserve geodesics on
the space-time.

In 1954, N.S. Sinyukov [39] (see [5,33,34]) proved that a (pseudo-) Riemannian space which admits
geodesic mapping onto an equiaffine symmetric space is space of constant curvature. This result was
generalized by V.E. Fomin [40] for infinity dimension spaces and by I. Hinterleitner and J. Mikeš [41]
for geodesic mappings of Weyl space onto symmetric space. Almost geodesic mappings of symmetric
mappings were studied by V.S. Sobchuk [7] and V.S. Sobchuk, J. Mikeš, and O. Pokorná [8].

Special almost geodesic mappings π2 are mappings of type π2(e), which are related to e-structure F
(F2 = e · Id, e = ±1, 0), defined on the manifold, see [5]. The paper is devoted to studying the
conditions guaranteeing that the Riemann tensor is invariant with respect to the canonical almost
geodesic mappings of type π2(e). Additionally, we study canonical almost geodesic mappings of
type π2(e) of spaces with affine connections onto symmetric spaces. The main equations for the
mappings are obtained as a closed, mixed system of Cauchy-type Partial Differential Equations in
covariant derivatives.

The investigations use local coordinates. We assume that all functions under consideration are
sufficiently differentiable.

2. Basic Definitions of Almost Geodesic Mappings of Spaces with Affine Connections

Let us recall the basic definition, formulas, and theorems of the theory presented in [5,6,33–35].
Consider a space An with an affine connection ∇ without torsion. The space is referred to with
coordinates x = (x1, x2, . . . , xn).

A curve `: x = x(t) in the space An is a geodesic when its tangent vector λ(t) = dx(t)/dt satisfies
the equations ∇tλ = ρ(t) · λ, where ρ(t) is a certain function of t and ∇t is a derivative along `.
Now, more often used are equations in the form ∇tλ = 0. From our point of view, the parameter t is
canonical, for more detail see [34] (pp. 118–121). A curve ` in the space An is an almost geodesic when
its tangent vector λ satisfies the equations

∇t∇tλ = a(t)λ + b(t)∇tλ,

where a(t) and b(t) are certain functions of t.
A diffeomorphism f : An → An is called a geodesic mapping if any geodesic of An is mapped under

f onto a geodesic in An.
A diffeomorphism f : An → An is called an almost geodesic if any geodesic curve of An is mapped

under f onto an almost geodesic curve in An.
Suppose that a space An with affine connection ∇ admits a mapping f onto space An with affine

connection ∇, and the spaces are referred to with the common coordinate system x = (x1, x2, . . . , xn).
The tensor P = ∇̄ −∇ is called the deformation tensor of the connections ∇ and ∇̄ with respect to

the mapping f ; in common coordinates x, components of P have the following form:

Ph
ij(x) = Γh

ij(x)− Γh
ij(x),

where Γh
ij(x) and Γh

ij(x) are components of affine connections of the spaces An and An, respectively.

According to [5], a necessary and sufficient condition for the mapping f : An → An to be almost
geodesic is that the deformation tensor Ph

ij(x) of the mapping f must satisfy the condition

Ah
αβγλαλβλγ = a · Ph

αβλαλβ + b · λh,
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where λh is an arbitrary vector and a and b are certain functions of variables x1, x2, . . . , xn and
λ1, λ2, . . . , λn. The tensor Ah

ijk is defined as

Ah
ijk = Ph

ij,k + Pα
ij P

h
αk.

We denote by comma “ , ” a covariant derivative with respect to the connection of the space An.
Almost geodesic mappings of spaces with affine connections were introduced by N. S. Sinyukov

in [5]. He distinguished three kinds of almost geodesic mappings, namely, π1, π2, and π3, characterized
by following conditions for the deformation tensor P:

π1 : Ah
(ijk) = δh

(iajk) + b(iPh
jk) ,

π2 : Ph
ij = δh

(iψj) + Fh
(i ϕj), Fh

(i,j) + Fh
α Fα

(i ϕj) = δh
(iµj) + Fh

(iρj) ,

π3 : Ph
ij = δh

(iψj) + θhaij, θh
,i = ρ · δh

i + θhai,

where δh
i is the Kronecker symbol, the round parentheses of indices denote an operation called

symmetrization without division, and Fh
i , θh, aij, ai, ψi, ϕi, µi, ρi, ρ are tensors.

The types of almost geodesic mappings π1, π2, π3 can intersect. The problem of completeness of
classification had long remained unresolved. Berezovsky and Mikeš [14] proved that, for n > 5, other
types of almost geodesic mappings except π1, π2, and π3 do not exist.

3. Almost Geodesic Mappings π2(e), e = ±1, 0

A mapping π2 satisfies the mutuality condition if the inverse mapping is also an almost geodesic of
type π2 and corresponds to the same affinor Fh

i (x).
The mappings π2 satisfying mutuality condition will be denoted as π2(e), where e = ±1, 0, see [5],

and is characterized by the following equations:

Ph
ij = δh

(iψj) + Fh
(i ϕj), (1)

Fh
(i,j) = Fh

(iµj) − δh
(iF

α
j)µα and Fh

α Fα
i = eδh

i . (2)

We remind that F-planar mappings are characterized by Equation (1), these mappings were
studied in [33–35,42,43]. These mappings generalize the quasi-geodesic mappings by A.Z. Petrov [2].

As it was proved in [25], in case e = ±1, the basic equations of the mappings π2(e) can be written
as Equation (1), and

Fh
i,j = Fh

ij , Fh
ij,k =

6
Θ

h
ijk, µi,j = µij, µij,k =

7
Θijk, (3)

Fh
(ij) = Fh

(iµj) − δh
(iF

α
j)µα, Fh

α Fα
i = eδh

i , µ(ij) =
5
Θij, (4)

where
1
Θ

h
ijk ≡

2
Θ

h
ijk+

2
Θ

h
kji−

2
Θ

h
jki + 2Fh

α Rh
kji − Fα

i Rh
αjk + Fα

j Rh
αik + Fα

k Rh
αij,

2
Θ

h
ijk ≡ µ(iF

k
j)k − δh

(iF
α
j)kµα,

3
Θ

h
ijk ≡

2
Θ

h
ijk−

2
Θ

h
kji + Fα

j Rh
αik − Fh

α jRα
jik,
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4
Θjk ≡ Fα

β

1
Θ

β

αjk + 2Fα
βjF

β
αk,

5
Θjk ≡

1
(n− 1− Fα

α )
2 − 1

((
n− 1− Fα

α

) 4
Θij +

4
ΘαβFα

i Fβ
j
)
,

6
Θ

h
ijk ≡

1
2
(

Fh
i µ(jk) + Fh

j µ[jk] + Fh
k µ[ij] − δh

i m(jk) − δh
j m[ik] − δh

k m[ij]+
2
Θ

h
ikj

)
,

7
Θijk ≡ µαRα

kji +
1
2
( 5
Θij,k +

5
Θik,j +

5
Θjk,i

)
, mij ≡ Fα

i µαj,

Fh
i , Fh

ij , µi, µij are unknown functions, and Rh
ijk is the Riemann tensor of the space An. We denote by the

brackets [i, k], an operation called antisymmetrization (or alternation) without division with respect to
the indices i and k.

Obviously, right-hand sides of Equation (3) depend on unknown functions Fh
i , Fh

ij , µi, µij and on

the components Γh
ij of the space An. Then, Equations (3) and (4) form a closed, mixed system of PDEs of

Cauchy-type with respect to functions Fh
i , Fh

ij , µi, µij. The general solution of the system, Equations (3)

and (4), depends on no more than 1
2 n(n + 1)2 essential parameters. In addition, the mapping π2(e)

depends on unknown functions ψi, ϕj (see Equation (1)).

4. Canonical Almost Geodesic Mappings π2(e) (e = ±1) Preserving the Riemann Tensor

An almost geodesic mapping π2 for which ψi = 0 is called canonical. It is known that any almost
geodesic mapping π2 can be written as the composition of a canonical almost geodesic mapping and a
geodesic mapping. The latter may be referred to as a trivial almost geodesic mapping.

Hence, a canonical almost geodesic mapping π2(e) (e = ±1) is determined by the equation

Ph
ij = Fh

i ϕj + Fh
j ϕi, (5)

and also by Equations (3) and (4).
We proved [11] that Riemann tensor is preserved by the diffeomorphism if and only if the tensor

Ah
ijk satisfies the conditions

Ah
ijk = Ah

ikj. (6)

If the deformation tensor Ph
ij is expressed by Equation (5), then for π2(e) (e = ±1) taking account

of (2), (3), and (4) we get

Ah
ijk = ϕi,kFh

j + ϕj,kFh
i + ϕi

(
Fh

jk + ϕαFα
j Fh

k + eδh
j ϕk

)
+ ϕj

(
Fh

ik + ϕαFα
i Fh

k + eδh
i ϕk

)
.

Now, we require that Ah
ijk satisfies (6). Hence,

ϕi,kFh
j − ϕi,jFh

k + ϕj,kFh
i − ϕk,jFh

i = Bh
ijk, (7)

where
Bh

ijk = ϕk
(

Fh
ij + ϕαFα

i Fh
j + eδh

i ϕj
)
− ϕj

(
Fh

ik + ϕαFα
i Fh

k + eδh
i ϕk

)
+ϕi

(
Fh

kj + ϕαFα
k Fh

j + eδh
k ϕj − Fh

jk − ϕαFα
j Fh

k − eδh
j ϕk

)
.

Let us multiply (7) by Fj
h and contract for indices h and j. Hence, we have

nϕi,k − ϕk,i = eBα
iβkFβ

α . (8)

Symmetrizing (8) in i and k, we obtain

ϕi,k + ϕk,i =
e

n− 1
Fβ

α

(
Bα

iβk + Bα
kβi

)
. (9)
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Equations (8) and (9) can be written as

ϕi,k =
e

n + 1
Fβ

α

(
Bα

iβk +
1

n− 1
(

Bα
iβk + Bα

kβi
))

. (10)

Hence, we get the theorem.

Theorem 1. In order for space An, with affine connection preserving the Riemann tensor, to admit an almost
geodesic mappings of type π2(e) (e = ±1) onto space An with affine connection, it is necessary and sufficient
that the mixed system of differential equations of Cauchy-type in covariant derivatives (3) and (10) has a solution
with respect to unknown functions Fh

i , Fh
ij , µi, µij, ϕi which must satisfy the algebraic conditions (4).

The general solution of the system (3), (4), and (10) depends on no more than 1
2 n(n + 1)2 + n

essential parameters.

5. Canonical Almost Geodesic Mappings π2(e) of Spaces with Affine Connection onto
Symmetric Spaces

A space An with affine connection is called (locally) symmetric if its Riemann tensor is absolutely
parallel. Symmetric spaces were introduced by É. Cartan in 1932 [44]. These spaces are also described
in many monographs, i.e., S. Helgason [45]. Let us note that in the 1920’s, P.A. Shirokov studied spaces
where the Riemannian tensor is absolutely parallel, see reference paper [46]. Thus, the symmetric
spaces An are characterized by

Rh
ijk|m = 0, (11)

where Rh
ijk is the Riemann tensor of the space An. By the symbol “ | ” we denote covariant derivative

with respect to the connection of the space An.
Let us consider the canonical almost geodesic mappings of type π2(e) (e = ±1) of spaces An

with affine connection onto symmetric spaces An, which are determined by Equations (5), (3), and (4).
Suppose that the spaces are referred to the common coordinate system x1, x2, . . . , xn.

Since

Rh
ijk|m =

∂Rh
ijk

∂xm + Γh
mαRα

ijk − Γα
miR

h
αjk − Γα

mjR
h
iαk − Γα

mkRh
ijα,

then taking account of (2) we can obtain

Rh
ijk|m = Rh

ijk,m + Ph
mαRα

ijk − Pα
miR

h
αjk − Pα

mjR
h
iαk − Pα

mkRh
ijα. (12)

In what follows, we understand that the space An is symmetric. Taking account of (5) and (11),
we have from (12) that

Rh
ijk,m = ϕ(iF

α
m)R

h
αjk + ϕ(jF

α
m)R

h
iαk + ϕ(kFα

m)R
h
ijα − ϕ(mFh

α)R
α
ijk. (13)

It is known [5] that the Riemann tensors of the spaces An and An are related to each other by
the equations

Rh
ijk = Rh

ijk + Pk
ik,j − Ph

ij,k + Pα
ikPh

αj − Pα
ij P

h
αk. (14)

Since the deformation tensor of the mapping Ph
ij(x) is represented by Equation (5), it follows from

(14) that
ϕi,jFh

k + ϕk,jFh
i − ϕi,kFh

j − ϕj,kFh
i = Dh

ijk, (15)

where
Dh

ijk = Rh
ijk − Rh

ijk − ϕi
(

Fh
kj + ϕαFα

k Fh
j + eδh

k ϕj − Fh
jk − ϕαFα

j Fh
k − eδh

j ϕk
)

+ϕk
(

Fh
ij + ϕαFα

i Fh
j
)
− ϕj

(
Fh

ik + ϕαFα
i Fh

k
)
.
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Let us multiply (15) by Fk
h and contract for h and k. Hence, we have

nϕi,j − ϕj,i = eDα
iβjF

β
α . (16)

Symmetrizing (16) in i and j, we obtain

ϕi,j + ϕj,i =
e

n− 1
Fβ

α

(
Dα

iβj + Dα
jβi
)
. (17)

Equations (16) and (17) can be written as

ϕi,j =
e

n + 1
Fβ

α

(
Dα

iβj +
1

n− 1
(

Dα
iβj + Dα

jβi
))

. (18)

Obviously, Equations (3), (13), and (18) form a closed, mixed system of PDEs of Cauchy-type with

respect to functions Fh
i , Fh

ij , µi, µij, Rh
ijk, ϕi, and the functions Fh

i , Fh
ij , µi, µij must satisfy the algebraic

conditions (4). The algebraic conditions for the functions Rh
ijk are the Bianci identity

Rh
ijk + Rh

ikj = 0, and Rh
ijk + Rh

jki + Rh
kij = 0. (19)

Hence, we have proved the theorem.

Theorem 2. In order for space An with affine connection to admit an almost geodesic mappings of type π2(e)
(e = ±1) onto symmetric space An, it is necessary and sufficient that the mixed system of differential equations
of Cauchy-type in covariant derivatives (3), (13), and (18) has a solution with respect to unknown functions Fh

i ,

Fh
ij , µi, µij, Rh

ijk, ϕi which must satisfy the algebraic conditions (4) and (19).

It is obvious that the general solution of the mixed system of Cauchy-type depends on no
more than

1
3

n2(n2 − 1) +
1
2

n(n + 1)2 + n

essential parameters.
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