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Abstract: Bifurcations have been studied with an extensive analysis of boundary curves of red,
fixed components in the parametric space for a uniparametric family of simple-root finders under
the Möbius conjugacy map applied to a quadratic polynomial. An elementary approach from the
perspective of a plane curve theory properly describes the geometric figures resembling a circle or
cardioid to characterize the underlying boundary curves that are parametrically expressed. Moreover,
exact bifurcation points for satellite components on the boundaries have been found, according to the
fact that the tangent line at a bifurcation point simultaneously touches the red fixed component and
the satellite component. Computational experiments implemented with examples well reflect the
significance of the theoretical backgrounds pursued in this paper.
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1. Introduction

Iterative root-finding approximate methods naturally arise due to the infeasibility of the
exact methods under general circumstances to solve the nonlinear governing equations frequently
encountered in the fields of social and engineering sciences. Newton’s method has been widely
accepted in view of its simplicity and quadratic convergence. Development of higher-order iterative
root-finding schemes [1–8] has been a primary topic among the scholars and researchers working in
this area.

Recently, an optimal family of fourth-order simple-root finders locating a zero of f (x) ∈ Cm have
been studied by Cordero et al. [9] in the form:®

yn = xn − 2
3 · f ′(xn)

−1 f (xn),
xn+1 = xn − H(t) f ′(xn)

−1 f (xn), with t = f ′(xn)
−1 f ′(yn), for n ∈ N∪ {0},

(1)

where f : D ⊆ Cm → Cm has a zero α ∈ D and is holomorphic [10,11] in a region containing α; H is a
matrix function defined on Cm×m.

When m = 1 and H(t) = 1
2 (3t− 1)−1(3t + 1), iterative scheme (1) reduces to so-called Jarratt’s

method for a single scalar equation f (x) = 0 ∈ C.
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An iterative scheme can be regarded as a discrete dynamical system, by treating the iteration
index as the time-evolving variable. The iterative solution process indeed implies the investigation of
the long-term behavior underlying the dynamical system. For a single scalar equation with

m = 1, H(t) =
23
8
− 3t +

9
8

t2 +
λ

6
(t− 1)3 and λ ∈ C, (2)

Cordero et al. [9] have presented some dynamical aspects on the Riemann sphere C for the
conjugated map via Möbius conjugacy [12] map M(z) = z−a

z−b , (a 6= b) with f (z) = (z− a)(z− b) in
the λ-parameter space, a detailed analysis of which has been strengthened by Geum-Kim [13].

To characterize such dynamical aspects underlying the long-term behavior of iterative scheme (1),
we concentrate our current analysis on the study of geometric properties of the boundary curves of
attracting red fixed components shown in Figure 1, for a λ-value selected in which the corresponding
critical orbit attracts to a λ-dependent fixed point. In addition, we focus on the location of bifurcation
points of satellite or primitive components [14] budded along the boundaries.
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Figure 1. Parameter space P associated with critical point ζ1(λ).

Further analyses, investigations and developments are pursued in the remaining sections.
Section 2 describes preliminary studies on orbit behavior, perturbational stability and bifurcations
occurring on the stability unit circle [13]. Section 3 discusses some properties of the fixed and
critical points of the conjugated map. Section 4 deals with the parameter space and the long-term
behavior of a critical orbit under the conjugated map. Besides, governing equations for locating and
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counting bifurcation points are established based on an elementary theory of plane curves and the
Farey [15] sequence. Section 5 explores theoretical backgrounds for developing parametric boundary
equations and the location of bifurcation points occurring along the boundaries. In the final section,
we summarize overall current developments and propose the forthcoming exploration.

2. Preliminary Studies

2.1. Orbit Behavior

Perceiving the notion of conjugacy h [16,17] between two dynamical systems F and G, we follow
invariances of topological and diffeomorphic conjugacies from Theorem 2.1 of [17]. Furthermore,
we find an isomorphism between the orbits of F and G that behaves similarly under h, in view of the
fact that the two n-fold compositions Fn and Gn satisfy the relation Fn = h ◦ Gn ◦ h−1 for any integer n.

Lemma 1. Assume that f : Ω ⊆ C → Ω is analytic [10] on Ω and has a fixed point ξ ∈ Ω satisfying
| f ′(ξ)| < 1. Then the sequence {zn+1 = f (zn)}∞

0 converges to a unique fixed point ξ for given z0 ∈ Ω.

Proof. The property of being analytic at ξ allows us to write

zn+1 − ξ = f (zn)− f (ξ) = (zn − ξ)( f ′(ξ) + η), (3)

where η → 0 as zn → ξ. We now choose a sufficiently large integer N > 0 and a constant β > 0 such
that | f ′(ξ)|+ |η| = β < 1 whenever n ≥ N. Then, for any k ∈ N∪ {0},

|zN+k+1 − ξ| = | f (zN+k − f (ξ)| = |zN+k − ξ| | f ′(ξ) + η| ≤ |zN+k − ξ|
(
| f ′(ξ)|+ |η|

)
= β|zN+k − ξ| ≤ β2|zN+k−1 − ξ| ≤ · · · ≤ βN+k+1|z0 − ξ|, (4)

from which we obtain limk→∞ |zN+k+1 − ξ| = 0; i.e., limn→∞ zn = ξ.
Suppose that µ 6= ξ is another fixed point satisfying limn→∞ zn = µ. Since a convergent sequence

must have a unique limit, µ = ξ, contradicting the hypothesis. Hence the fixed point ξ is unique.

Lemma 1 with z0 = z∗ such that f ′(z∗) = 0 results in the following corollary.

Corollary 1. Every critical orbit of f approaches the fixed point ξ.

2.2. Linear Stability Theory and Local Bifurcations

Let T : Cm ×C→ Cm for m ∈ N define a discrete dynamical system: for n ∈ N∪ {0},

zn+1 = T (zn, λ), given z0 ∈ Cm, (5)

where λ ∈ C is a control parameter; moreover, let ξ ∈ Cm be a fixed point of T for a given λ. Taking
into account a small perturbation δn around ξ, we construct: for n ∈ N∪ {0},

zn = ξ + δn, with δ0 6= 0. (6)

Letting λ be fixed, we expand (5) about ξ in δn to obtain:

ξ + δn+1 = T (ξ + δn, λ) = T (ξ, λ) + Γδn + O(|δn|2), (7)

with Γ = Γ(ξ, λ) as the Jacobian matrix of T evaluated at (ξ, λ). Hence, the linear stability about ξ

will characterize the limit behavior of the sequence:

δn+1 = Γδn. (8)
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By virtue of Lemmas 2 and 3 of [13], we obtain following proposition:

Proposition 1. (i) When all eigenvalues of Γ are simple,
limn→∞ δn = 0 if and only if ρ(Γ) < 1;

| limn→∞ δn| = ∞ if and only if ρ(Γ) > 1;

0 < | limn→∞ δn| ≤ M with some finite M > 0 if and only if ρ(Γ) = 1.

(ii) When some eigenvalues of Γ are multiple,{
limn→∞ δn = 0 if and only if ρ(Γ) < 1;

| limn→∞ δn| = ∞ if and only if ρ(Γ) ≥ 1.

In view of Proposition 1, the limit behavior of T is characterized by the value of ρ(Γ). Such
a long-term orbit behavior will often experience a bifurcation [18] when ρ(Γ) = 1. That is to say,
ρ(Γ) on the stability unit circle plays a significant role in stability and bifurcation analysis. We first
denote |ω| = ρ(Γ(ξ, λ)) and employ the three types of fold, flip and Neimark–Sacker bifurcations [18],
as ω = ω∗, respectively, crosses the stability unit circle with ω∗ = 1,−1 and a purely complex number.

Bifurcation point λ∗ = λ(ω∗) in the parameter space can be found such that |ω∗| = ρ(Γ(ξ, λ∗) = 1
holds based on its type of the aforementioned bifurcation.

3. Properties of Fixed and Critical Points under the Möbius Conjugacy Map

In this section, we treat one-dimensional iterative map (1) along with (2) as a discrete dynamical
system with a control parameter λ ∈ C represented by:

xn+1 = Φ(xn; λ), for n ∈ N∪ {0}, given x0 ∈ C, (9)

where Φ is a fixed point operator [19]. Hence, the iterative solution process indeed yields an orbit of x0

under Φ of the form:
{x0, Φ(x0; λ), Φ2(x0; λ), · · · , Φk(x0; λ), · · · }, (10)

with Φk as a k-fold composition of Φ.
Let Φ be conjugate to a map J through M(z) with f (z) = (z− a)(z− b). Then J takes the form

which is favorably independent of a and b but only dependent on λ as follows:

J(z; λ) =
z4(405 + 32λ + 1134z + 1134z2 + 486z3 + 81z4)

81 + 486z + 1134z2 + 1134z3 + z4(405 + 32λ)
=

z4 ·W(z; λ)

q(z; λ)
=

z8 · q(1/z; λ)

q(z; λ)
, (11)

where q(z; λ) = 81 + 486z + 1134z2 + 1134z3 + z4(405 + 32λ) and W(z; λ) = 405 + 32λ + 1134z +
1134z2 + 486z3 + 81z4 = z4 · q(1/z; λ). We will seek some properties of fixed and critical points of
J(z; λ), as λ ∈ C varies to better discuss the underlying dynamics in Section 4.

We obtain the derivative of J from (11):

J′(z; λ) =
324z3(z + 1)6Q(z; λ)

q(z; λ)2 , (12)

where Q(z; λ) = 405 + 32λ + z(810− 48λ) + z2(405 + 32λ). Consulting Sections 3.1 and 3.2 of [17],
we state following proposition for properties of J and J′:

Proposition 2. (a) If ξ ∈ C is a fixed point of J, then 1/ξ is another.
(b) If ζ ∈ C is a critical point of J, then 1/ζ is another.
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(c) Relation J(1/z; λ) = 1
J(z;λ) remains valid for any λ ∈ C and any z ∈ C.

(d) Relation J′(ξ; λ) = J′(1/ξ; λ) remains valid for any λ ∈ C and any fixed point ξ ∈ C of J.

We first seek the fixed points ξ of J such that J(ξ; λ) = ξ by considering the relation

J(z; λ)− z =
z(z− 1) · T(z; λ)

q(z; λ)
, (13)

with T(z; λ) = 81 + 567z + 1701z2 + z3(2430− 32λ) + 1701z4 + 567z5 + 81z6.
It is clear that z = 1 is a λ-free strange fixed point whose dynamical behavior was studied in [13].

Other λ-dependent strange fixed points ξλ can be located such that T(ξλ; λ) = 0 for a fixed λ ∈ C.
According to Proposition 2-(a), T(z; λ) can be written in the form: T(z; λ) = 81

∏ 3
k=1(z

2 + ckz+ 1) = 0;

i.e., z = − 1
2
(
ck +

»
c2

k − 4
)
, where ck, (1 ≤ k ≤ 3) are the roots satisfying

16(2λ− 81) + 1458c− 567c2 + 81c3 = 0. (14)

Hence, we are able to express all the desired λ-dependent strange fixed points of J as ξ
(k)
λ and

1/ξ
(k)
λ with the notation ξ

(k)
λ = − 1

2
(
ck +

»
c2

k − 4
)

for 1 ≤ k ≤ 3.

In view of (12), the λ-dependent stability of the strange fixed point z = 1 gives us the theorem
below by employing the similar proof of Theorem 3.5 in [17].

Theorem 1. Let Y = {λ ∈ C : |λ + 405
4 | > 324}, S = {λ ∈ C : |λ + 405

4 | = 324} and M = {λ ∈
C : |λ + 405

4 | < 324}. Then, the strange fixed point z(λ) = 1 becomes attractive, parabolic and repulsive,
respectively, whenever λ ∈ Y , λ ∈ S and λ ∈ M.

Remark 1. According to the discussion of [13], the circle S is called the stability circle since the fixed point
z = 1 with λ near S becomes either repulsive or attractive. The region Y is colored in yellow in Figure 1.
The finite boundary of Y is indeed the circle S.

4. Bifurcation in the Parameter Space

4.1. Parameter Space and Critical Orbit Behavior under the Conjugated Map J(z; λ)

We introduce the following notion of the parameter space P [13] to treat the underlying dynamics
of J as λ varies continuously on C:

P = {λ ∈ C : an orbit of a critical point z tends to a number γ ∈ C under the action of J(z; λ)}.

We will concentrate on the long-term behavior of the orbit of a λ-dependent critical point ζλ

satisfying Q(ζλ; λ) = 0 under the action of the conjugated map J(ζλ; λ). Suppose that the long-term
orbit of J(ζλ; λ) tends to a number γ ∈ C. Such γ will be either ∞ or finite. Since ∞ is only a single
point on C, it draws very little attention to the limit behavior. On the other hand, the finite γ will cause
the limit behavior to exhibit diverse patterns of convergence as λ varies on C.

To be more specific for the finite γ with its boundedness, in view of Bolzano–Weierstass Theorem,
there exists a convergent subsequence of the critical orbit under J(ζλ; λ). That is to say, there exists a
q-periodic point ξ(λ) for some q ∈ N such that

ξ(λ) = lim
`→∞

J`(ζλ; λ) = lim
j→∞

Jpj+q(ζλ; λ) = Jq ◦ ( lim
j→∞

Jpj(ζλ; λ) = Jq(ξ(λ); λ), (15)

by expressing ` = p j + q for any `, p, j ∈ N with p < ` and q ∈ {0, 1, 2, · · · , p− 1}; note that q = 0
implies the existence of a non-periodic bounded orbit. In view of the discussion in Section 3, we find
the possible fixed points ξ(λ) ∈ {0, 1, ∞, ξ

(k)
λ , 1/ξ

(k)
λ , (1 ≤ k ≤ 3)}. If, for any given q ∈ N, we let
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G(z; λ) = Jq(z; λ)− z, then G(z; λ) defines a bivariate rational function of z and λ on C. Hence, G(z; λ)

has a finite number of zeros z = ξ(λ) being the fixed points of Jq(z; λ) for any given q ∈ N, which
implies that there exists a λ for any periodic-point in the critical orbit of J(z; λ).

We now discuss the stability of the q-periodic point ξ(λ). Let us consider the case when q = 1
first. For the fixed points ξ(λ) ∈ {0, ∞}, we find J(0; λ) = 0 and J(∞; λ) = ∞ and recognize that both
fixed points 0 and ∞ are super-attractive. Regions of corresponding λ-values are respectively colored
in cyan and magenta in the parameter space P shown in Figure 1. For the fixed point ξ(λ) = 1, we
have J(1; λ) = 1 and J′(1; λ) < 1 for λ ∈ Y in view of Theorem 1. The region Y is colored in yellow
shown in Figure 1. For the λ-dependent fixed points ξ(λ) ∈ {ξ(k)λ , 1/ξ

(k)
λ and (1 ≤ k ≤ 3)}, we find

J(ξ(k)λ ; λ) = ξ
(k)
λ and J(1/ξ

(k)
λ ; λ) = 1/ξ

(k)
λ for 1 ≤ k ≤ 3. Regions of λ-values for these fixed points

ξ(λ) are colored in red, as indicated in Figure 1. Boundaries of such regions are expected to consist
of six branches associated with ξ

(k)
λ , 1/ξ

(k)
λ for 1 ≤ k ≤ 3. Next, we consider the case when q ≥ 2.

Observe that the attracting fixed point ξ(λ) = 1 maintains its stability for λ ∈ Y . As λ crosses the finite
boundary of Y ; i.e., the circle S, the fixed point ξ(λ), loses its stability, but other attracting q-periodic
points satisfying

Jq(ξ(λ); λ) = ξ(λ),
∣∣∣∣ d
dz

Jq(z; λ)

∣∣∣∣
z=ξ(λ)

< 1, for q ≥ 2

begin to emerge along the circle S. Regions of λ-values for these q-periodic points are painted according
to the coloring scheme in Table 1 of [13]. The following corollary and proposition state useful properties
of a q-periodic point of J.

Corollary 2. If z ∈ C is a q-periodic point of J, then 1
z is another.

Proof. In view of Proposition 2-(c) and fixed point invariance property [17] under conjugacy h(z) = 1
z

for q-fold composition of J, we find that Jq( 1
z ; λ) = 1

Jq(z;λ) =
1
z for any given λ ∈ C.

According to Remark 4 of [13], the orbit behavior of only one branch ζ1 would suffice to explore
the dynamics under J. Figure 1 displays a parameter space P associated with free critical points ζ1(λ).
If an orbit of J(ζ1; λ) attracts to a q-periodic point for a given λ ∈ P , then λ is colored with code cq

defined by Table 1 of [13] and illustrated in Figure 3 of [13]. The computing error bound of 10−6 has
been assigned with maximal 3000 iterations to obtain the convergence of a q-periodic orbit in P .

Theorem 3 of [13] is useful to describe the property of symmetry on the parameter space P . As we
can see P in Figure 1, some of q-periodic components are indicated by arrow numbers. If λ is chosen
in such a q-periodic component, then the orbit of critical point ζλ is attracted to a q-periodic point of J.
Recall that the fixed points of J(z; λ) from (13) are 0, 1, ∞ and ξ(λ) satisfying T(ξ(λ); λ) = 0. Having
found λ-dependent critical points ζλ from the roots of Q(z; λ) = 0, we need attention to their orbit
behavior as λ ∈ P varies.

4.2. Locating and Counting Bifurcation Points of Satellite Components’ Budding along S

The recent work of Geum-Kim [13] has shown an extensive study on locating and counting
bifurcation points of satellite components’ budding along S associated with fixed point ξ = 1.
The current work will focus on the bifurcation of the satellite components born along the boundary
of the red fixed components denoted by Ω, as shown in Figure 2, associated with the λ-dependent
fixed points ξ

(k)
λ and 1/ξ

(k)
λ for 1 ≤ k ≤ 3. According to the analysis described in Section 5.1.1 of

Geum-Kim [13], we state the governing equation for the bifurcation of a q-periodic component Hq,

identified by an arrow number q in Figure 2, budding from Ω as follows: with ξ ∈ {ξ(k)λ , 1/ξ
(k)
λ : 1 ≤

k ≤ 3} as a typical λ-dependent fixed point of T(z; λ) described in Section 3.
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Figure 2. The three red fixed components Ω.{
J q
λ (ξ) = Jλ(ξ) = ξ,
d
dz J q

λ (z)|z=ξ = βq = 1,
(16)
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where Jλ(ξ) denotes J(ξ; λ) and β = J ′λ (ξ) is the derivative of J(z; λ) evaluated at z = ξ. Given q ∈ N,
by solving βq = 1 for β, we have

J ′λ (ξ) = β = ei2π`/q, (17)

with ` ∈ {0, 1, 2, · · · , q− 1} and gcd(`, q) = 1 for ` 6= 0. Solving for λ from the first and last
relations in (16), we can locate λ = λ`,q; that is, the so-called `/q-bifurcation point [13] of Ω. Besides,
the nature of integers ` and q enables us to perceive the number of bifurcation points λ`,q as the length
|Fn| of the Farey [15] sequence Fn of order n. In view of Theorem 4 in [13], |Fn| is given by:

|Fn| = 1 +
n∑

k=1

φ(k), (18)

with φ(k) as Euler’s totient function.
In view of Proposition 2-(a), we expect three red fixed components Ω, each boundary of which

consists of two analytic branches forming a piecewise, smooth, closed curve. Details of such a boundary
curve along with the location of bifurcation points will be discussed in the next section.

5. Boundary Curves of Red Fixed Components Ω

5.1. Parametric Boundary Equations of Ω

In this section, we seek a boundary equation for an attracting red fixed component Ω associated
with a typical λ-dependent fixed point ξ given by a root of T(z; λ) = 0. On the boundary, the fixed
point ξ will satisfy, in view of (12) and (13),

T(z; λ)
∣∣
z=ξ

= 81
3∏

k=1

(z2 + ckz + 1)
∣∣
z=ξ

= 0,

324
∣∣ z3(z+1)6Qλ(z)

qλ(z)2

∣∣ =
∣∣J′λ(z)∣∣z=ξ

= 1,

(19)

where Qλ(z), qλ(z) and Jλ(z), respectively, denote Q(z; λ), q(z; λ) and J(z; λ) for convenience.
Rewriting (19) with i =

√
−1 and t as a real parameter, we obtain

3∏
k=1

(z2 + ckz + 1)
∣∣
z=ξ

= 0 and
324 z3(z + 1)6Qλ(z)

qλ(z)2

∣∣
z=ξ

= e i t, 0 ≤ t ≤ 2π, (20)

where ck are the three roots being dependent on λ from Relation (14). To express J′λ(ξ) in terms of ck,
we first let ξ = z, ck = c for brevity of notation, for the time being, and recall from (14) that

λ = λ(c) = −81
32

(−16 + 18c− 7c2 + c3), (21)

which comprises the boundary curves of Ω. Since three λ-values exist depending on c1, c2, c3, we
expect three red fixed components Ω. Now we write, with the help of Mathematica [20]:®

324 z3(z + 1)6Qλ(z) = (z2 + cz + 1) ·Φq(z) + Φr(z),
qλ(z)2 = (z2 + cz + 1) ·Ψq(z) + Ψr(z),

(22)

where Φq(z) and Ψq(z) are polynomials of degree 9 and degree 6 in z, respectively; Φr(z) = −13122(c−
2)4(14+ c− 7c2 + 2c3)η(z) and Ψr(z) = −6561(c− 2)7η(z) with η(z) = c(c− 1)(c+ 1)(c2− 3)+ (c3−
c2 − 2c + 1)(c3 + c2 − 2c− 1)z.

In view of the fact that (z2 + cz + 1) = 0 and the second relation of (20), we obtain

J′λ(ξ) =
Φr(z)
Ψr(z)

∣∣∣∣
z=ξ

=
2(2c3 − 7c2 + c + 14)

(c− 2)3 = e i t, 0 ≤ t ≤ 2π, (23)
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where c = ck can be expressed in terms of λ by the three roots of Relation (14) for any given λ. In fact,
we are able to exactly find ck = ck(t) for 1 ≤ k ≤ 3 and 0 ≤ t ≤ 2π by solving the cubic equation given
by the last relation of (23) as follows:

c1(t) =
14−6e i t−22/3(9e i t−86)σ(t)−1/3+21/3σ(t)1/3

3(4−e i t)
,

c2(t) =
14−6e i t+(−1)1/322/3(9e i t−86)σ(t)−1/3+(−1)2/321/3σ(t)1/3

3(4−e i t)
,

c3(t) =
14−6e i t−(−2)2/3(9e i t−86)σ(t)−1/3−(−2)1/3σ(t)1/3

3(4−e i t)
,

(24)

where σ(t) = −1904 + 567e i t − 54e 2i t + 3(e i t − 4)
√

16341− 4050e i t + 324e 2i t.
Hence, using (24), we can express λk = λ(ck(t)) for 1 ≤ k ≤ 3 in (21) as a function of t and trace

the boundaries of Ω parametrically as t ∈ [0, 2π] varies without difficulty. From an elementary theory
of complex analysis, points at which a complex function f (z) is not analytic on C are called singular
points or singularities of f (z). We remark that the unit circle e i t, t ∈ [0, 2π) has singular points at
t = 0 and t = π. Therefore, ck(t) and λ(ck(t)) have also such singular points at t = 0 and t = π.

We denote Fk(t) = λ(ck(t)) for t ∈ [0, 2π) for ease of continuing discussion of parametric curves.
Due to the singularities, Fk(t) consists of two piecewise analytic branches, one and the other of which
trace along the curves for t ∈ [0, π] and t ∈ (π, 2π), respectively. By means of elaborate computations,
we find the following: 

c1(π + t) = c1(π − t), for t ∈ [0, π],

c3(π − t) = c2(π + t), for t ∈ [0, π],

c2(t) = c3(2π − t), for t ∈ [0, π],

(25)

where β indicates the complex conjugate of β. Hence Fk(t) = λ(ck(t)) given by (21) satisfies the
following relations among their six branches of Ω:

F1(π + t) = F1(π − t), for t ∈ [0, π],

F3(π − t) = F2(π + t), for t ∈ [0, π],

F2(t) = F3(2π − t), for t ∈ [0, π].

(26)

We further observe that the following relations hold at the singular points t = 0 and t = π:®
F3(0) = F1(2π−), F3(π) = F1(π+), F1(0) = F2(2π−),
F1(π) = F2(π+), F2(0) = F3(2π−), F2(π) = F3(π+),

(27)

where a+ and b− indicate the approaches from the above of a and the below of b, respectively. This
observation would suggest us to define three closed boundary curves γj(t), (1 ≤ j ≤ 3) of Ω:

γ1(t) =

{
F3(t), t ∈ [0, π],

F1(t), t ∈ (π, 2π),
γ2(t) =

{
F1(t), t ∈ [0, π],

F2(t), t ∈ (π, 2π),
γ3(t) =

{
F2(t), t ∈ [0, π],

F3(t), t ∈ (π, 2π),
(28)

each of which consists of two piecewise analytic arcs having singular branch points at t = 0 and t = π.
The boundary curves γj(t), (1 ≤ j ≤ 3) are parametrically plotted for t ∈ [0, 2π) in Figure 3. We will
denote the red fixed component Ω with boundary curve γj(t) by Ωj, as shown in Figure 2. The blue
arcs are indeed the reflections of magenta arcs with respect to the real axis of the parameter space P ,
which is expected in view of Theorem 3 of [13], and thus, yields the relation γ2(t) = γ1(t).
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Figure 3. Boundary curves of the three red fixed components Ω.

5.1.1. Some Geometric Properties of Boundary Curves of Ω

We further investigate some geometric properties of γj(t), including their arc lengths and
bounding areas. Let xj(t) = <(Fj(t)) and yj(t) = =(Fj(t)). Then the arc lengths of γj(t) are given by:

|γ̆1(t)| =
∫ π

0

»
x′3(t)

2 + y′3(t)
2dt + lim

ε→0

∫ 2π−ε

π+ε

»
x′1(t)

2 + y′1(t)
2dt ≈ 0.05285834292,

|γ̆2(t)| = |γ̆1(t)|, and |γ̆3(t)| = 2
∫ π

0

»
x′2(t)

2 + y′2(t)
2dt ≈ 457.0267546,

(29)

with approximately 10 digits of accuracy.
Let Aj denote the area enclosed by γj(t). Then, A3 = 2

∫ π
0 y2(t) x′2(t)dt ≈ 16613.1610359. It can

be shown that y2(t) has a maximum 73.8923472569 at t = 0.825122565614 and a length 142.75 of the
diametral chord connecting two points at t = 0 and t = π. Hence, γ3(t) is not a circle. To find A2,
we consider Figure 4.

(a2,b2 )

(a1,b1 )

t1

0

π

L

t2

t3

2π

(a) γ2(t)

L

(b) Horizontalized γ2(t)

Figure 4. γ2(t) and the horizontalized γ2(t).

Let (a2, b2) = (−1.4999999999999747,−2.096313728906051) and (a1, b1) = (−1.501660908323884,
−2.083261023446004) denote the points on γ2(t) at t = 0 and t = π, respectively. Note that
the diametral chord L connecting points (a2, b2) and (a1, b1) is parametrically represented by( 1

π (a1 − a2)t + a2, 1
π (b1 − b2)t + b2

)
for t ∈ [0, π]. Let t1, t2 and t3 be, respectively, the points such that

x1(t1) is a maximum of x1(t), and x2(t2) is a minimum of x2(t) and x2(t3) = a1, along with computed
values: t1 = 1.893100565129962, t2 = 4.241197476773221 and t3 = 5.478620432252566. Let A2a denote
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an area of the portion bounded by the blue arc and the diametral chord L and A2b an area of the other
remaining portion in Figure 4a. Then we find:

A2a =
∫ π

t1
y1(t)x′1(t)dt−

∫ t1
0 y1(t)x′1(t)dt−

∫ π
0 ( 1

π (b1 − b2)t + b2)
1
π (a1 − a2)dt

≈ 0.00009026914890.

A2b = lim
ε→0

( ∫ t2

π+ε
y2(t)x′2(t)dt−

∫ 2π−ε

t2

y2(t)x′2(t)dt +
∫ π

0
(

1
π
(b1 − b2)t + b2)

1
π
(a1 − a2)dt

)
≈ 0.0001155066503.

Hence we have A2 = A2a +A2b = A1 ≈ 0.0002057757992. We consider a translation and rotation
of γ2(t) such that its diametral chord L lies along the horizontal axis and the point (a2, b2) matches the
origin, as shown in Figure 4b. Let γc(t) be a boundary curve of a cardioid shown by a dotted line in
Figure 4b and be parametrically represented by x(t) = a(1− cos t) cos t and y(t) = a(1− cos t) sin t
for t ∈ [0, 2π], with a as the half of the same length of L. The length of γc(t) and its bounding area
are approximately given by 0.05263181338 and 0.0002039660215, respectively. Evidently, the red fixed
component Ω2 or Ω1 is slightly larger than the cardioid with boundary curve γc(t).

5.2. Location and Number of Bifurcation Points along the Boundaries of Ω

Tables 1 and 2 list typical values of λ`,q for 1 ≤ q ≤ 10 on γ1(t) and γ3(t), respectively. In the sense
of bifurcations discussed in [18], `/q–bifurcation points are types of flip, fold and Neimark–Sacker,
respectively, when q = 1, q = 2 and q ≥ 3. It is remarkable to note that the largest Hq for q ∈ N are born
at the desired bifurcation points in the order of Farey sequence along the upper branch of γ3(t) and
along the left branch of γ1(t) or along the right branch of γ2(t). The 0/1-bifurcation point is the one
where the red fixed component Ω is budded from itself or from other fixed component; its location was
found to be −1.5 + 2.09631 i for γ1(t), and 222.75 for γ3(t). These locations are, respectively, regarded
as a bifurcation point for a red fixed primitive component, and as a bifurcation point for a red fixed
satellite component budded from a yellow fixed component Y .

The number of bifurcation points is determined by the length of the Farey sequence mentioned in
(18) of the preceding section.

Table 1. Typical `/q–bifurcation points λ`,q for 1 ≤ q ≤ 10 along γ1(t).

q `

0 1 2 3 4 5 6 7 8 9

1
Å
−1.5

2.09631

ã∗
2

Å
−1.50166
2.08326

ã
3

Å
−1.50985
2.09112

ã Å
−1.49305
2.08925

ã
4

Å
−1.50805
2.09671

ã Å
−1.49342
2.09409

ã
5

Å
−1.50538
2.09853

ã Å
−1.50803
2.08654

ã Å
−1.49527
2.08558

ã Å
−1.49499
2.09616

ã
6

Å
−1.50349
2.09885

ã Å
−1.49631
2.09695

ã
7

Å
−1.5023
2.09868

ã Å
−1.50935
2.09456

ã Å
−1.50651
2.08505

ã Å
−1.49683
2.08441

ã Å
−1.49285
2.09213

ã Å
−1.49726
2.09723

ã
8

Å
−1.50154
2.09838

ã Å
−1.50903
2.08813

ã Å
−1.49419
2.08684

ã Å
−1.49793
2.09728

ã
9

Å
−1.50106
2.09809

ã Å
−1.50664
2.09792

ã Å
−1.50553

2.0844

ã Å
−1.49781
2.08392

ã Å
−1.4942
2.09536

ã Å
−1.4984
2.09724

ã
10

Å
−1.50075
2.09783

ã Å
−1.50966
2.09357

ã Å
−1.49279
2.09128

ã Å
−1.49874
2.09718

ã
∗—
Ä −1.5

2.09631

ä
≡ −1.5 + 2.09631 i, i =

√
−1.



Mathematics 2020, 8, 51 12 of 13

Table 2. Typical `/q–bifurcation points λ`,q for 1 ≤ q ≤ 10 along γ3(t).

q `

0 1 2 3 4 5 6 7 8 9

1 222.75

2 79.9533

3
Å

86.8564
32.5726

ã Å
86.8564
−32.5726

ã
4

Å
99.9319
52.1701

ã Å
99.9319
−52.1701

ã
5

Å
114.967
64.2308

ã Å
82.1455
18.7639

ã Å
82.1455
−18.7639

ã Å
114.967
−64.2308

ã
6

Å
129.717
70.7847

ã Å
129.717
−70.7847

ã
7

Å
143.019
73.5133

ã Å
92.962
43.4756

ã Å
81.0346
13.2477

ã Å
81.0346
−13.2477

ã Å
92.962
−43.4756

ã Å
143.019
−73.5133

ã
8

Å
154.482
73.7669

ã Å
83.5158
23.7661

ã Å
83.5158
−23.7661

ã Å
154.482
−73.7669

ã
9

Å
164.133
72.5165

ã Å
107.372
59.0033

ã Å
80.5984
10.2542

ã Å
80.5984
−10.2542

ã Å
107.372
−59.0033

ã Å
164.133
−72.5165

ã
10

Å
172.175
70.4101

ã Å
90.8087
40.1095

ã Å
90.8087
−40.1095

ã Å
172.175
−70.4101

ã
6. Conclusions

We have analyzed the boundary curves of red fixed components Ω in the parameter space for
uniparametric Jarratt-type simple-root finders (1) with H(t) in (2), under the Möbius conjugacy map
applied to a simple quadratic polynomial. Extensive investigation has been done on the parametric
the boundary equations of Ω to explore bifurcation phenomena underlying the limit behavior of the
iteration dynamics under conjugated map J(z; λ). The desired bifurcation points have been successfully
found and some of them are listed in Tables 1 and 2. Despite that the boundary curves of Ω2 and
Ω3, respectively, appear to be a cardioid and a circle, they were found to be merely the cardioid-like
and circle-like curves. It is interesting that the Farey sequence gives theoretical backgrounds on the
number of bifurcation points and the manner of positioning of satellite components’ budding along
the boundary curves.

Our next study primarily aims to analyze the boundary curves of higher-periodic components
and to explore the bifurcation phenomena occurring along the boundary curves.
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