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Abstract: In this paper, we first find the properties of the generalized Tanaka—Webster connection
in a contact Lorentzian manifold. Next, we find that a necessary and sufficient condition for the
V-geodesic is a magnetic curve (for V) along slant curves. Finally, we prove that when ¢ < 0, there
does not exist a non-geodesic slant Frenet curve satisfying the V-Jacobi equations for the V-geodesic
vector fields in M. Thus, we construct the explicit parametric equations of pseudo-Hermitian
pseudo-helices in Lorentzian space forms M3 (H) for H = 2c > 0.
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1. Introduction

The notion of slant curves was introduced in [1] for a contact Riemannian three-manifold, that is,
a curve in a contact three-manifold is said to be slant if its tangent vector field has a constant angle with
the Reeb vector field. In [2], we showed that proper biharmonic curves are helices in three-dimensional
Sasakian space forms of constant holomorphic sectional curvature H(= 2c — 3). In particular, if
H # 1, then it is a slant helix; that is, a helix such that 77(7’) = cosag is a constant, with K2+ 12 =
1+ (FI —-1) sin? ag. In [3], we studied slant curves satisfying V-Jacobi equations for a v—geodesic
vector field in Sasakian space forms with respect to the Tanaka—Webster connection V. In [4], we
showed that proper biharmonic Frenet curves are pseudo-helices in three-dimensional Lorentzian
Sasakian space forms of constant holomorphic sectional curvature H(= 2c + 3). In particular, if
H # —1, then it is a slant pseudo-helix; that is, a pseudo-helix such that 7(7') is a constant, with
K2 — 1> =1+ (H+1)(1+¢ea%) fora=n(y).

In this paper, we study the slant curves in Lorentzian Sasakian space forms of constant
holomorphic sectional curvature H = 2c for the Tanaka-Webster connection V.

D. Perrone [5,6] showed that the notion of non-degenerate almost CR structures is equivalent
to the notion of contact pseudo-metric structures. Thus, he defined the generalized Tanaka—Webster
connection V in a contact pseudo-metric manifold.

In Section 3, we find the properties of the Tanaka—Webster connection in a contact Lorentzian
manifold. In Section 4.1, we find that a necessary and sufficient condition for a V-geodesic is a magnetic
curve (for V) along slant curves.

Next, we investigate the V-Jacobi equation for a V-geodesic vector field in contact Lorentzian

manifolds:
Vo =b(y),
{ @g ( ) . 1)
¥

where the torsion T(X,Y) = [X,Y] — VxY + VyX and pseudo-Hermitian curvature R(X,Y) =
@[X,y] — [Vx, Vy]. Then, in Section 4.2, we prove that when ¢ < 0, there does not exist a non-geodesic
slant Frenet curve satisfying the V-Jacobi equations for the V-geodesic vector fields in M. Thus, we
obtain the explicit parametric equations satisfying (1) in Lorentzian space forms M3 (H) for H = 2c > 0.
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2. Preliminaries

2.1. Contact Lorentzian Manifold

An almost contact structure (¢,&, 1) on a (2n + 1)-dimensional differentiable manifold M has a
tensor field ¢ of (1,1), a global vector field ¢, and a 1-form # such that

p*=-1+7®¢ () =1, ¢)
@) =0, nogp=0. 3)

If a (2n + 1)-dimensional smooth manifold M with almost contact structure (¢, ¢, 77) admits a
compatible Lorentzian metric such that

89X, ¢Y) = g(X,Y) + 3 (X)n(Y), )
then we say that M has an almost contact Lorentzian structure (1, ¢, ¢, g). Setting Y = &, we have
1(X) = —8(X,6). ®)
Next, if the compatible Lorentzian metric g satisfies
(X, Y) = g(X, 9Y), (©)

then 7 is a contact form on M, ¢ is the associated Reeb vector field, g is an associated metric, and
(M, 9,&,1,8) is called a contact Lorentzian manifold.
For a contact Lorentzian manifold M, one may naturally define an almost complex structure | on

M x R by

JXFS) = (pX — fEn(X) S,

where X is a vector field tangent to M, t is the coordinate of R, and f is a function on M x R. If the
almost complex structure ] is integrable, then the contact Lorentzian manifold M is called normal or
Sasakian. It is known that a contact Lorentzian manifold M is normal if and only if M satisfies

lp, 9] +2dp @& =0,
where [¢, ¢] is the Nijenhuis torsion of ¢.
Proposition 1 ([7,8]). An almost contact Lorentzian manifold (M?*"*1,4,&, ¢, ¢) is Sasakian if and only if
(Vxe)Y =g(X, Y)¢ +n(Y)X. @)
Using similar arguments and computations to those of [9], we obtain:
Proposition 2 ([7,8]). Let (MZ”H, 1,8, ¢, 8) be a contact Lorentzian manifold. Then
Vxé = ¢X — ghX, ®)
where h = %ngo.

If ¢ is a killing vector field with respect to the Lorentzian metric g, that is, M2+ g a K-contact
Lornetzian manifold. Then
Vx¢=¢X. )
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Proposition 3. Let {T, N, B} be orthonormal Frame fields in a Lorentzian three-manifold. Then
T/\LN:£3B, N/\LB:£1T, BALTZSQN.

2.2. Lorentzian Bianchi—Cartan—Vranceanu Model Space

The one-parameter family of Riemannian three-manifolds { M?>(H)} Fcr 18 classically known by
L. Bianchi [10], E. Cartan [11], and G. Vranceanu [12] . The model M?(H) of the Sasakian three-space
form is called the Bianchi—Cartan—Vranceanu model of the three-dimensional Sasakian space form. Cartan
classified all three-dimensional spaces with four-dimensional isometry groups in [11]. Thus, he proved
that they are all homogeneous. Moreover, parallel surfaces in Bianchi-Cartan—Vranceanu spaces are
classified in [13].

On the other hand, G. Calvaruso [7] proved that there is a one-to-one correspondence
between homogeneous contact Riemannian three-manifolds and homogeneous contact Lorentzian
three-manifolds.

Now, we construct a Lorentzian Bianchi—Cartan—Vranceanu model of three-dimensional Lorentzian
Sasakian space forms.

Let ¢ be a real number, and set

D= {(x,y,z) € R3(x,y,2) | 1+%(x2+y2) > 0}.

Note that D is the whole R3 (x,y,z) for ¢ > 0. In the region D, we take the contact form

Then, the Reeb vector field of 7 is § = %.
Next, we equip D with the Lorentzian metric g. as follows:

dx? + dy? ydx — xdy 2
= —(dz+ L)
et eAr T )

We take the following orthonormal frame field on (D, g):

_ Co2ond 9 C2omd 9 9
ul—{l—l—z(x +y)}ax Ut uz—{l—i-z(x +y7) ay—i—xaz, U3 = o

Then, the endomorphism field ¢ is defined by
Qu1 = Uz, ux = —uq, puz = 0.

The Levi—Civita connection V of this Lorentzian three-manifold is described as

Vi uy = cyuy, Vyup = —cyuy +uz, Vyuz=1uy,
Vi1 = —cxuy —uz, Viyup =cxuy, Vyuz = —1uq, (10)
Vusy = up, Vyyty = —uy, Vyyuz =0.
(U1, up] = —cyuy + ¢ xup + 2uz, [up,uz] = [usz,ui] =0.

The contact form 7 on D satisfies

dn(X,Y) = g(X, ¢Y). (11)
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Moreover, the structure (¢,,7,8c) is Sasakian. The curvature tensor R(X,Y) = V(xy| —
[Vx, Vy] on (M3,1,¢& ¢,8c) is given by

R(uy, up)up = —(2c+3)uy, R(uy,uz)us = —uy,

R(”Z/ Ml)u1 = *(20+3)M2, R(uz, 1/[3)1,[3 = —1Up,
R(uz,ui)uy = u3, R(uz, uz)uy = us.

The sectional curvature ([7]) is given by

K(C/ui) = —R(@,ui,é’,ui) =-1, fOT i=1,2,

and
K(uy,up) = R(uq, up, uq,u) = 2¢ + 3.

Hence, (D, g¢) is of constant holomorphic sectional curvature H = 2¢ + 3.

Hereafter, we denote this model (D, g.) of a Lorentzian Sasakian space form by M3 (H).

The harmonic maps ¢ : (M™, g) — (N", h) between two pseudo-Riemannian manifolds as critical
points of the energy E(¢) = [}, |dp|>dv. The tension field 74 is defined by

T = traceVPdp = X e, (VEdp(e;) — dp(Vee;)),

where V% and {¢;} denote the induced connection by ¢ on the bundle ¢$*TN". A smooth map ¢ is
called a harmonic map if its tension field vanishes.

Next, the bienergy E;(¢) of a map ¢ is defined by E>(¢) = [, |7|*dv,; ¢ is biharmonic if it is a
critical point of the bienergy. Harmonic maps are clearly biharmonic. Non-harmonic biharmonic maps
are called proper biharmonic maps. We define the bitension field T (¢) by

() = Ee((VEVE = VT, )t — RN (%, dp(e)dp(er)),

where R is the curvature tensor of N” and is defined by RN (X, Y) = Vixy — [Vx, Vy] (see [14]).

We now restrict our attention to isometric immersions y : I — (M, g) from an interval I to
a pseudo-Riemannian manifold. The image C = <(I) is the trace of a curve in M, and 7 is a
parametrization of C by arc length. In this case, the tension field becomes 7, = £,V and the
biharmonic equation reduces to

n(y) = 51(V%/Tw —R(7y,7")7") = 0.

Note that C = (I) is part of a geodesic of M if and only if 7 is harmonic. Moreover, from the
biharmonic equation, if <y is harmonic, geodesics are a subclass of biharmonic curves.

In [4], we showed that proper biharmonic Frenet curves are pseudo-helices in three-dimensional
Lorentzian Sasakian space forms of constant holomorphic sectional curvature H(= 2c + 3).
In particular, in [15], we studied proper biharmonic spacelike curves in Lorentzian Heisenberg space.

3. Almost CR Manifold

We recall the notions of CR structure and pseudo-Hermitian geometry.
Let (M, H(M ), J,0) bea non-degenerate almost CR manifold. If we extend ] to an endomorphism
¢ of the tangent bundle by ¢ |y )= ] and ¢(P) = 0, where P is the Reeb vector field of 6, then

@* = —1 + 0 ® P. The Webster metric gg is given by

80(X,Y) = (d0)(X,]Y), go(X,P) =0, go(P,P)=¢e(=+1),
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forany X,Y € H(M). gy is a pseudo-Riemannian metric on M. Hence,

¢, C=-P, n=-0, g=gp

is a contact pseudo-metric structure on M. Conversely, a contact pseudo-metric structure (¢, ¢, 1, )
defines a non-degenerate almost CR structure on M given by (H (M), ],0), where H(M) = kery,
0 = —nand ] = ¢ [3(m) - Then, we have

Proposition 4 ([5]). The notion of a non-degenerate almost CR structure is equivalent to the notion of a contact
pseudo-metric structure.

Tanaka ([16]) defined the canonical affine connection, called the Tanaka—Webster connection, on
a non-degenerate CR manifold. D. Perrone defined the generalized Tanaka—Webster connection [5] on a
contact pseudo-metric manifold M = (M?"*1,5,¢,¢,9).

In this section, we consider the generalized Tanaka—Webster connection on a contact Lorentzian
manifold M.

The generalized Tanaka—Webster connection V is defined by (cf. [3], [16])
VxY = VxY = (X)pY + (V) (Y)§ = 7(Y)VxE,
for all vector fields X,Y on M. V may be rewritten as
VxY = VxY + A(X,Y).
Then, using (5) and (8), we have
AX,Y) = =n(X)pY = n(Y)(¢X — phX) — g(¢X — ¢hX,Y)C. (12)

Next, if we define the torsion T(X,Y) = (X, Y] — VxY + VyX for the Tanaka—Webster connection
Vin M ([17]), then we get

T(X,Y) = 28(¢X, Y) + (X)phY — 5 (Y)phX. (13)
In particular, for a K-contact manifold, (12) and the above equation reduce as follows:

AXY) = —n(X)eY —n(Y)eX — g(¢X,Y)¢,
T(X,Y) = 22(¢X,Y)E

~—

Using (2)-(9), we have

Theorem 1. The generalized Tanaka—Webster connection NV on a contact Lorentzian manifold M =
(M?"+1;51,&, 9, ¢) is the unique linear connection satisfying the following conditions:
(a) Vi =0,V&=0,
b) Vg=0,
©  T(X,Y)=28(¢X,Y);, X, Y€ D,
@ 1@ eY)=—¢T(Y) YED,
(e) (Vx@)Y =Q(X,Y), X, Y € TM.
The Tanaka-Webster connection on a non-degenerate (integrable) CR manifold is defined as

the unique linear connection satisfying (a), (b), (c), (d), and Q = 0 (CR integrability), where Q is a
(1,2)-tensor field on M defined by Q(X,Y) = (Vx¢@)Y — (X —hX,Y)¢ — n(Y)(X — hX).

Thus, in [5] (page 217), we find:
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Corollary 1. Let (M?"*1,1,&, ¢, ¢) be a contact Lorentzian manifold. Then, the (M1, D) is a (strongly
pseudoconvex) CR manifold if and only if

(Vx@)Y = g(X = hX,Y)¢ +n(Y)(X - hX).

In particular, if M1 is a Lorentzian Sasakian manifold, then it satisfies (7). In fact,
every three-dimensional contact Lorentzian manifold is a (strongly pseudoconvex) CR manifold.
Thus, a three-dimensional K-contact manifold is Sasakian.

4. Slant Curves in Non-Degenerate CR Manifolds

Let v : I — M be a unit speed curve in Lorentzian three-manifolds M3 such that «/ satisfies
¢2(7',7") = &1 = £1. The constant ¢; is called the causal character of vy. A unit speed curve 7 is said to
be spacelike or timelike if its causal character is 1 or —1, respectively. A unit speed curve v is said to
be a Frenet curve if g(", ") # 0. A Frenet curve y admits an orthonormal frame field {T = v/, N, B}
along . Then, the Frenet-Serret equations, following [14] and [18], are:

VT = €k N,
?W«N = —eiRT —e3tB, (14)
V,YIB = Szf'N,

where & = |77/’y’ | is the geodesic curvature of v and T is its geodesic torsion for the Tanaka—Webster
connection V. The vector fields T, N, and B are called the tangent vector field, principal normal vector
field, and binormal vector field of -y, respectively.

The constants ¢; and ¢3 are defined by ¢(N, N) = ¢, and g(B, B) = €3, and are called the second
causal character and third causal character of <y, respectively. Thus, this satisfies €1, = —e3.

A Frenet curve v is a pseudo-Hermitian geodesic if and only if & = 0. A Frenet curve 7 with
constant geodesic curvature and zero geodesic torsion is called a pseudo-Hermitian pseudo-circle.
A pseudo-Hermitian pseudo-helix is a Frenet curve o whose geodesic curvature and torsion are constant.

4.1. Slant Curves

A one-dimensional integral submanifold of D in a three-dimensional contact manifold is called
a Legendre curve, especially to avoid confusion with an integral curve of the vector field . As a
generalization of the Legendre curve, the notion of slant curves was introduced in [1] for a contact
Riemannian three-manifold, that is, a curve in a contact three-manifold is said to be slant if its tangent
vector field has a constant angle with the Reeb vector field.

Similarly to in the contact Riemannian three-manifolds, a curve in a contact Lorentzian
three-manifold is said to be slant if its tangent vector field has a constant angle with the Reeb vector
field (i.e., g(7/, €) is a constant). In particular, if g(v/,¢) = 0 then v is a Legendre curve.

Let 7y be a Frenet curve in a Sasakian Lorentzian three-manifold M3. Then, we get

Vo =Vor' =2n(7") ey,

If 7 is a slant curve, then since 17(') = 4, a is a constant, ?7/7’ = 0if and only if V7" = 2a¢7’.
Hence, we have:

Proposition 5. A Frenet curve vy in a Sasakian Lorentzian three-manifold M® is a slant curve. Then, vy is a
geodesic for \V if and only if it is a magnetic curve (for V).

Recently, we studied slant curves and magnetic curves in Sasakian Lorentzian three-manifolds
(see [19]). If a curve v satisfies V.;y" = q¢7', then we call it a contact magnetic curve in a contact
Riemannian and Lorentzian manifold; we proved that -y is a slant curve if and only if M is Sasakian.
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Now, we assume that #(T) = a, where a is a function. Using (5) and differentiating ¢(T,¢) = —a
along 1 for a Tanaka-Webster connection V, then

—a' = g(e2kN, ) +g(T, V1¢) = —eakn(N).
This equation implies:

Proposition 6. A non-geodesic Frenet curve «y for V in a Sasakian Lorentzian three-manifold M is a slant
curve if and only if n(N) = 0.

Moreover, we have:

Lemma 1. Let 7y be a non-geodesic slant curve in the three-dimensional almost contact Lorentzian manifold M.
Then, we find an orthonormal frame field in M as follows:

I N = eT B:§+81QT

T: ’)// - -
Ver + a2 ey + a2
and & = —e1aT + /&1 + a?B.

Thus, vy is a spacelike curve with a spacelike normal vector field or timelike curve.
Differentiating & = —ejaT + /e; + a2B along 7y for V and using (14), we have:

Proposition 7. A non-geodesic Frenet curve <y in a Sasakian Lorentzian three-manifold M3 is a slant curve.
Then, the ratio of k and T is constant.

4.2. V-Jacobi Equations

We find that the non-vanishing Tanaka-Webster connections V of the Bianchi-Cartan-Vranceanu
model space are

Vi iy = cyup, Vy iy = —cyuy, Vit = —CXup, Vy,ly = CXUj.

By using the above data, we calculate the Tanaka-Webster curvature tensor R(X,Y)Z = V xY]Z —
Vx(VyZ)+ Vy(VxZ). Then, we find that

R(uy, up)up = —2cuq, R(uq,up)uy = 2cuy, (15)
and all others are zero.

As H = H-— 3, we find that constant holomorphic sectional curvature H = 2¢ for the
Tanaka—Webster connection V. Hereafter, we denote the Lorentzian Bianchi—-Cartan—Vranceanu model
space for V by M3(H).

Using (14), we get

VAT = 3e3kR'T + &2 (R — exk(e1% + e31%))N 4 &1 (28T + &1')B.
From the curvature tensor (15) and Proposition 3, we have

R(&N,T)T
:kR(Nlel + Naey + Nzes, Ther + Toen + Tses) (Tier + Toep + Tae3)
= — 2cesk[B3N — N3B3B]
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and

VAT —eaR(RN, T)T = 3e3ki'T + [ear” — R(e1k* + €32 — 2cB3)|N
+[e1(28'1 + &1') — 2ckRN3 B3] B.

—

Hence, we have:

Proposition 8. Let y : I — M be a non-geodesic slant Frenet curve in the Lorentzian Sasakian space forms
M3 (H) for the Tanaka—Webster connection V. Then, v satisfies V3T — R(V 1T, T)T = 0 if and only if 7y is
a pseudo-Hermitian pseudo-helix with ®2 — % = 2ce1n(B)>.

Using (14), we calculate
VAT = e3#%T + 2k N — 1k 1B,

and we get

Thus, we have:

Proposition 9. A non-geodesic slant Frenet curve <y in a three-dimensional Sasakian Lorentzian manifold
M3 (H) satisfies g(V2T, pv') = 0 if and only if & is a non-zero constant.

Hence, we obtain:

Theorem 2. Let v : I — M be a non-geodesic slant Frenet curve in the Lorentzian Sasakian space forms
M3 (H) for the Tanaka—Webster connection V. Then,  satisfies the \/-Jacobi equation for a VV-geodesic vector
field if and only if it is a pseudo-Hermitian pseudo-helix with k> — t2 = 2ce15(B)?.

Let v be a slant Frenet curve in Lorentzian Sasakian space forms M3(H) parametrized by
arc-length. Then, the tangent vector field T has the form

T = = V&1 +a%cos Buy + /&1 + a2 sin Buy + aus, (16)

where a = constant, p = B(s). Using (10), since vy is a non-geodesic, we may assume that & =

Ver+ a2 (B + cyv/er + a%cos B — cxy/e1 + a%sin B) > 0 without loss of generality. Then, we get the

normal vector field
N = —sin Buq + cos Bus.

The binormal vector field e3B = T AL N = —acosBuy — asinfuy — /€1 + a?uz. From the
Lemma 1, we see that e = 1, so we have ¢35 = —¢1. Hence, we have the binormal vector field

B = ¢e1(acos Buy + asin Buy + /&1 + a%us).
Using the Frenet-Serret Equation (14), we have:

Lemma 2. Let vy be a slant Frenet curve in Lorentzian Sasakian space forms M3 (H) parametrized by arc-length.
Then, y admits an orthonormal frame field {T, N, B} along vy and

R =+/e1+a?{B +c\/e1+a%(ycos B — xsinp)}, (17)
T = —e1a{B + c\/e1 +a%(ycos p — xsinp)}.

From this, we find that 2 — 2 = 2ce17(B)? if and only if {8’ + c\/e1 + a%(ycos p — xsin B) }2 =
2c(e1 + a?). Hence, we have:
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Corollary 2. Let M3(H) be a Lorentzian Sasakian space form with ¢ < 0. Then, there does not exist a
non-geodesic slant Frenet curve satisfying the NV-Jacobi equations for \V-geodesic vector fields.

Since for ¢ > 0, we get H=H-3=2c> 0, we now construct a non-geodesic slant Frenet curve
v satisfying (1) in Lorentzian space forms M3 (H) for H = 2c > 0.

Let 7(s) = (x(s),y(s), z(s)) be a curve in Lorentzian space forms M3 (H) for H = 2c > 0. Then,
the tangent vector field T of v is

dx dy d=\ _dvo dyo  dzd
ds'ds’ds) dsdx dsdy dsoz’

using the relations:

0 1 0 1

% = AT SGEE Ty TV 5y = T SR Ty

0
Uy — xugz), 5, = U

If 7 is a slant Frenet curve in Lorentzian space forms M3 (H) for H = 2c > 0, then from (16), the
system of differential equations for <y is given by

o) = Vet aeospls){1+ (x5, (18)
Z—Z(s) = Ve +a%sinf(s){1+ %(x(s)2 +y(s)H)}, (19)
%(s) = a++e1+a%(x(s)sinB(s) — y(s) cos B(s)). (20)

From the Theorem 2 and (17), we have:

Corollary 3. Let vy : I — M3(H) be a non-geodesic slant Frenet curve satisfying the V-Jacobi equations for
the V-geodesic in Lorentzian space forms M3(H) for H = 2c > 0. Then

B’ +cver +a2(ycos B — xsinB) = £4/2c(eq + a?). (21)

Together with (21), we see that the Equation (20) becomes

% = %([S’i \/2c(e1 4+ a?)) +a.
2(5) = TB(s) + {a+ -/ 2c(er +@))s + 20,

where z is a constant. We now compute the x and y coordinates. We put h(s) := 1+ 5(x(s)? +y(s)?).
Then, (18) and (19) become

dx _ Ve1 + a? cos B(s)h(s), dy _ Ver + a2 sin B(s)h(s),

ds ds

Thus, we have

respectively. We note that the function /(s) satisfies the following Ordinary Differential Equation:

d

R log |h(s)| = cv/e1 + a%(cos B(s)x(s) + sin B(s)y(s)).

Differentiating (21), we have

d2
“5Bls) = 22 () - 1og h(s)).
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First, if dB/ds = 0 for all s, then (x(s),y(s)) is a line in the orbit space. Hence, we have the
following parametrization:

x(s) = \/e1 +a?cos By [ h(s)ds
y(s) = &1 +a?sin By [ h(s)ds,
z(s) = {a £ 1\/2c(e; +a2)}s + zo,

where [ h(s)ds = 1/—mnt{pexp( V—2c(e1 +a2)s) — /- ”1”2 11 peR,and c < 0.So,

we conclude that j is not constant along 7.
Next, we assume that % |s=s, 7 O for some s = sg. Then, we get hi(s) = r%s, r € R. Thus, we
have

x(s) = ry/e1 +a%sin B(s) + xo,
y(s) = —r\/e1 +a?%cos B(s) + yo.

Since ¢ > 0, the orbit space is the whole plane R?(x,y). The projected curve ¥(s) is a circle
(x —x0)% + (y — yo)* = r*(e1 + a*). We may assume that 7 is a circle centered at (0,0). Then, the angle
function B is given by

Bs) = (S +a) 1) s+ fo

Therefore, we obtain:

Theorem 3. Let v : I — M3 (H) be a non geodeszc slant Frenet curve satisfying the \/-Jacobi equations for the
V-geodesic in Lorentzian space forms M3 (H) for H = 2c > 0. Then, its parametric equations are given by

x(s) = ry/eq + aZsin(L (§7%( 1+a +1)s+/3o)+XO,
y(s) = —rv/e1 +a2cos(L (5r2(e1 +a%) +1) s + Bo) + vo,
2(5) = [a+ L7 (37 (e1 +0%) +1) &/ 2cler +a?) s + 20,

where r € R and By, xo, Yo, 2o are constants.

If «y is a timelike curve, then ¢ = —1 and a = coshayp. If ¢ is a spacelike curve, then ¢ = 1 and
a = sinhay. In particular, if e = 1 and 57(7’) = a = 0, then we have:

Example 1 (Legendre curves). Lety: I — M3( H)bea non-geodeszc Legendre Frenet curve satisfying the
V-Jacobi equations for the \V-geodesic in Lorentzian space forms M3 (H) for H = 2c > 0. Then, its parametric
equations are given by
x(s) = rsin(L (§72 4+ 1) s+ o) + x0,
y(s) = =rcos(y (572 +1) s+ Bo) + o,
2(s) = 47 (57 +1) £ V2e}s + 20,

where r € R and By, xo, Yo, 2o are constants.
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