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Abstract: In this paper, we first find the properties of the generalized Tanaka–Webster connection
in a contact Lorentzian manifold. Next, we find that a necessary and sufficient condition for the
∇̂-geodesic is a magnetic curve (for ∇) along slant curves. Finally, we prove that when c ≤ 0, there
does not exist a non-geodesic slant Frenet curve satisfying the ∇̂-Jacobi equations for the ∇̂-geodesic
vector fields in M. Thus, we construct the explicit parametric equations of pseudo-Hermitian
pseudo-helices in Lorentzian space forms M3

1(Ĥ) for Ĥ = 2c > 0.
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1. Introduction

The notion of slant curves was introduced in [1] for a contact Riemannian three-manifold, that is,
a curve in a contact three-manifold is said to be slant if its tangent vector field has a constant angle with
the Reeb vector field. In [2], we showed that proper biharmonic curves are helices in three-dimensional
Sasakian space forms of constant holomorphic sectional curvature H̃(= 2c − 3). In particular, if
H̃ 6= 1, then it is a slant helix; that is, a helix such that η(γ′) = cos α0 is a constant, with κ2 + τ2 =

1 + (H̃ − 1) sin2 α0. In [3], we studied slant curves satisfying ∇̂-Jacobi equations for a ∇̂-geodesic
vector field in Sasakian space forms with respect to the Tanaka–Webster connection ∇̂. In [4], we
showed that proper biharmonic Frenet curves are pseudo-helices in three-dimensional Lorentzian
Sasakian space forms of constant holomorphic sectional curvature H(= 2c + 3). In particular, if
H 6= −1, then it is a slant pseudo-helix; that is, a pseudo-helix such that η(γ′) is a constant, with
κ2 − τ2 = −1 + (H + 1)(1 + ε1a2) for a = η(γ′).

In this paper, we study the slant curves in Lorentzian Sasakian space forms of constant
holomorphic sectional curvature Ĥ = 2c for the Tanaka–Webster connection ∇̂.

D. Perrone [5,6] showed that the notion of non-degenerate almost CR structures is equivalent
to the notion of contact pseudo-metric structures. Thus, he defined the generalized Tanaka–Webster
connection ∇̂ in a contact pseudo-metric manifold.

In Section 3, we find the properties of the Tanaka–Webster connection in a contact Lorentzian
manifold. In Section 4.1, we find that a necessary and sufficient condition for a ∇̂-geodesic is a magnetic
curve (for ∇) along slant curves.

Next, we investigate the ∇̂-Jacobi equation for a ∇̂-geodesic vector field in contact Lorentzian
manifolds: {

∇̂γ′γ
′ = σ̂(γ),

∇̂2
γ′ σ̂(γ)− ∇̂γ′ T̂(σ̂(γ), γ′)− R̂(σ̂(γ), γ′)γ′ = 0,

(1)

where the torsion T̂(X, Y) = [X, Y] − ∇̂XY + ∇̂YX and pseudo-Hermitian curvature R̂(X, Y) =

∇̂[X,Y] − [∇̂X , ∇̂Y]. Then, in Section 4.2, we prove that when c ≤ 0, there does not exist a non-geodesic
slant Frenet curve satisfying the ∇̂-Jacobi equations for the ∇̂-geodesic vector fields in M. Thus, we
obtain the explicit parametric equations satisfying (1) in Lorentzian space forms M3

1(Ĥ) for Ĥ = 2c > 0.

Mathematics 2020, 8, 46; doi:10.3390/math8010046 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://www.mdpi.com/2227-7390/8/1/46?type=check_update&version=1
http://dx.doi.org/10.3390/math8010046
http://www.mdpi.com/journal/mathematics


Mathematics 2020, 8, 46 2 of 11

2. Preliminaries

2.1. Contact Lorentzian Manifold

An almost contact structure (ϕ, ξ, η) on a (2n + 1)-dimensional differentiable manifold M has a
tensor field ϕ of (1, 1), a global vector field ξ, and a 1-form η such that

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, (2)

ϕ(ξ) = 0, η ◦ ϕ = 0. (3)

If a (2n + 1)-dimensional smooth manifold M with almost contact structure (ϕ, ξ, η) admits a
compatible Lorentzian metric such that

g(ϕX, ϕY) = g(X, Y) + η(X)η(Y), (4)

then we say that M has an almost contact Lorentzian structure (η, ξ, ϕ, g). Setting Y = ξ, we have

η(X) = −g(X, ξ). (5)

Next, if the compatible Lorentzian metric g satisfies

dη(X, Y) = g(X, ϕY), (6)

then η is a contact form on M, ξ is the associated Reeb vector field, g is an associated metric, and
(M, ϕ, ξ, η, g) is called a contact Lorentzian manifold.

For a contact Lorentzian manifold M, one may naturally define an almost complex structure J on
M×R by

J(X, f
d
dt

) = (ϕX− f ξ, η(X)
d
dt

),

where X is a vector field tangent to M, t is the coordinate of R, and f is a function on M×R. If the
almost complex structure J is integrable, then the contact Lorentzian manifold M is called normal or
Sasakian. It is known that a contact Lorentzian manifold M is normal if and only if M satisfies

[ϕ, ϕ] + 2dη ⊗ ξ = 0,

where [ϕ, ϕ] is the Nijenhuis torsion of ϕ.

Proposition 1 ([7,8]). An almost contact Lorentzian manifold (M2n+1, η, ξ, ϕ, g) is Sasakian if and only if

(∇X ϕ)Y = g(X, Y)ξ + η(Y)X. (7)

Using similar arguments and computations to those of [9], we obtain:

Proposition 2 ([7,8]). Let (M2n+1, η, ξ, ϕ, g) be a contact Lorentzian manifold. Then

∇Xξ = ϕX− ϕhX, (8)

where h = 1
2 Lξ ϕ.

If ξ is a killing vector field with respect to the Lorentzian metric g, that is, M2n+1 is a K-contact
Lornetzian manifold. Then

∇Xξ = ϕX. (9)
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Proposition 3. Let {T, N, B} be orthonormal Frame fields in a Lorentzian three-manifold. Then

T ∧L N = ε3B, N ∧L B = ε1T, B ∧L T = ε2N.

2.2. Lorentzian Bianchi–Cartan–Vranceanu Model Space

The one-parameter family of Riemannian three-manifolds {M3(H̃)}H̃∈R is classically known by
L. Bianchi [10], E. Cartan [11], and G. Vranceanu [12] . The modelM3(H̃) of the Sasakian three-space
form is called the Bianchi–Cartan–Vranceanu model of the three-dimensional Sasakian space form. Cartan
classified all three-dimensional spaces with four-dimensional isometry groups in [11]. Thus, he proved
that they are all homogeneous. Moreover, parallel surfaces in Bianchi–Cartan–Vranceanu spaces are
classified in [13].

On the other hand, G. Calvaruso [7] proved that there is a one-to-one correspondence
between homogeneous contact Riemannian three-manifolds and homogeneous contact Lorentzian
three-manifolds.

Now, we construct a Lorentzian Bianchi–Cartan–Vranceanu model of three-dimensional Lorentzian
Sasakian space forms.

Let c be a real number, and set

D =
{
(x, y, z) ∈ R3(x, y, z) | 1 + c

2
(x2 + y2) > 0

}
.

Note that D is the whole R3(x, y, z) for c ≥ 0. In the region D, we take the contact form

η = dz +
ydx− xdy

1 + c
2 (x2 + y2)

.

Then, the Reeb vector field of η is ξ = ∂
∂z .

Next, we equip D with the Lorentzian metric gc as follows:

gc =
dx2 + dy2

{1 + c
2 (x2 + y2)}2 −

(
dz +

ydx− xdy
1 + c

2 (x2 + y2)

)2
.

We take the following orthonormal frame field on (D, gc):

u1 = {1 + c
2
(x2 + y2)} ∂

∂x
− y

∂

∂z
, u2 = {1 + c

2
(x2 + y2)} ∂

∂y
+ x

∂

∂z
, u3 =

∂

∂z
.

Then, the endomorphism field ϕ is defined by

ϕu1 = u2, ϕu2 = −u1, ϕu3 = 0.

The Levi–Civita connection ∇ of this Lorentzian three-manifold is described as

∇u1 u1 = c yu2, ∇u1 u2 = −c yu1 + u3, ∇u1 u3 = u2,

∇u2 u1 = −c xu2 − u3, ∇u2 u2 = c xu1, ∇u2 u3 = −u1, (10)

∇u3 u1 = u2, ∇u3 u2 = −u1, ∇u3 u3 = 0.

[u1, u2] = −c yu1 + c xu2 + 2u3, [u2, u3] = [u3, u1] = 0.

The contact form η on D satisfies

dη(X, Y) = g(X, ϕY). (11)
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Moreover, the structure (ϕ, ξ, η, gc) is Sasakian. The curvature tensor R(X, Y) = ∇[X,Y] −
[∇X ,∇Y] on (M3, η, ξ, ϕ, gc) is given by

R(u1, u2)u2 = −(2c + 3)u1, R(u1, u3)u3 = −u1,

R(u2, u1)u1 = −(2c + 3)u2, R(u2, u3)u3 = −u2,

R(u3, u1)u1 = u3, R(u3, u2)u2 = u3.

The sectional curvature ([7]) is given by

K(ξ, ui) = −R(ξ, ui, ξ, ui) = −1, f or i = 1, 2,

and
K(u1, u2) = R(u1, u2, u1, u2) = 2c + 3.

Hence, (D, gc) is of constant holomorphic sectional curvature H = 2c + 3.
Hereafter, we denote this model (D, gc) of a Lorentzian Sasakian space form byM3

1(H).
The harmonic maps φ : (Mm, g)→ (Nn, h) between two pseudo-Riemannian manifolds as critical

points of the energy E(φ) =
∫

M |dφ|2dv. The tension field τφ is defined by

τφ = trace∇φdφ = Σm
i=1εi(∇

φ
ei dφ(ei)− dφ(∇ei ei)),

where ∇φ and {ei} denote the induced connection by φ on the bundle φ∗TNn. A smooth map φ is
called a harmonic map if its tension field vanishes.

Next, the bienergy E2(φ) of a map φ is defined by E2(φ) =
∫

M |τφ|2dv,; φ is biharmonic if it is a
critical point of the bienergy. Harmonic maps are clearly biharmonic. Non-harmonic biharmonic maps
are called proper biharmonic maps. We define the bitension field τ2(φ) by

τ2(φ) := Σm
i=1εi((∇

φ
ei∇

φ
ei −∇

φ
∇ei ei

)τφ − RN(τφ, dφ(ei))dφ(ei)),

where RN is the curvature tensor of Nn and is defined by RN(X, Y) = ∇[X,Y] − [∇X ,∇Y] (see [14]).
We now restrict our attention to isometric immersions γ : I → (M, g) from an interval I to

a pseudo-Riemannian manifold. The image C = γ(I) is the trace of a curve in M, and γ is a
parametrization of C by arc length. In this case, the tension field becomes τγ = ε1∇γ′γ

′ and the
biharmonic equation reduces to

τ2(γ) = ε1(∇2
γ′τγ − R(τγ, γ′)γ′) = 0.

Note that C = γ(I) is part of a geodesic of M if and only if γ is harmonic. Moreover, from the
biharmonic equation, if γ is harmonic, geodesics are a subclass of biharmonic curves.

In [4], we showed that proper biharmonic Frenet curves are pseudo-helices in three-dimensional
Lorentzian Sasakian space forms of constant holomorphic sectional curvature H(= 2c + 3).
In particular, in [15], we studied proper biharmonic spacelike curves in Lorentzian Heisenberg space.

3. Almost CR Manifold

We recall the notions of CR structure and pseudo-Hermitian geometry.
Let (M,H(M), J, θ) be a non-degenerate almost CR manifold. If we extend J to an endomorphism

ϕ of the tangent bundle by ϕ |H(M)= J and ϕ(P) = 0, where P is the Reeb vector field of θ, then
ϕ2 = −I + θ ⊗ P. The Webster metric gθ is given by

gθ(X, Y) = (dθ)(X, JY), gθ(X, P) = 0, gθ(P, P) = ε(= ±1),



Mathematics 2020, 8, 46 5 of 11

for any X, Y ∈ H(M). gθ is a pseudo-Riemannian metric on M. Hence,

ϕ, ξ = −P, η = −θ, g = gθ

is a contact pseudo-metric structure on M. Conversely, a contact pseudo-metric structure (ϕ, ξ, η, g)
defines a non-degenerate almost CR structure on M given by (H(M), J, θ), where H(M) = kerη,
θ = −η and J = ϕ |H(M) . Then, we have

Proposition 4 ([5]). The notion of a non-degenerate almost CR structure is equivalent to the notion of a contact
pseudo-metric structure.

Tanaka ([16]) defined the canonical affine connection, called the Tanaka–Webster connection, on
a non-degenerate CR manifold. D. Perrone defined the generalized Tanaka–Webster connection [5] on a
contact pseudo-metric manifold M = (M2n+1, η, ξ, ϕ, g).

In this section, we consider the generalized Tanaka–Webster connection on a contact Lorentzian
manifold M.

The generalized Tanaka–Webster connection ∇̂ is defined by (cf. [3], [16] )

∇̂XY = ∇XY− η(X)ϕY + (∇Xη)(Y)ξ − η(Y)∇Xξ,

for all vector fields X, Y on M. ∇̂may be rewritten as

∇̂XY = ∇XY + A(X, Y).

Then, using (5) and (8), we have

A(X, Y) = −η(X)ϕY− η(Y)(ϕX− ϕhX)− g(ϕX− ϕhX, Y)ξ. (12)

Next, if we define the torsion T̂(X, Y) = [X, Y]− ∇̂XY + ∇̂YX for the Tanaka–Webster connection
∇̂ in M ([17]), then we get

T̂(X, Y) = 2g(ϕX, Y)ξ + η(X)ϕhY− η(Y)ϕhX. (13)

In particular, for a K-contact manifold, (12) and the above equation reduce as follows:

A(X, Y) = −η(X)ϕY− η(Y)ϕX− g(ϕX, Y)ξ,

T̂(X, Y) = 2g(ϕX, Y)ξ.

Using (2)–(9), we have

Theorem 1. The generalized Tanaka–Webster connection ∇̂ on a contact Lorentzian manifold M =

(M2n+1; η, ξ, ϕ, g) is the unique linear connection satisfying the following conditions:

(a) ∇̂η = 0, ∇̂ξ = 0,
(b) ∇̂g = 0,
(c) T̂(X, Y) = 2g(ϕX, Y)ξ, X, Y ∈ D,
(d) T̂(ξ, ϕY) = −ϕT̂(ξ, Y), Y ∈ D,
(e) (∇̂X ϕ)Y = Q(X, Y), X, Y ∈ TM.

The Tanaka–Webster connection on a non-degenerate (integrable) CR manifold is defined as
the unique linear connection satisfying (a), (b), (c), (d), and Q = 0 (CR integrability), where Q is a
(1, 2)-tensor field on M defined by Q(X, Y) = (∇X ϕ)Y− g(X− hX, Y)ξ − η(Y)(X− hX).

Thus, in [5] (page 217), we find:
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Corollary 1. Let (M2n+1, η, ξ, ϕ, g) be a contact Lorentzian manifold. Then, the (M2n+1, D) is a (strongly
pseudoconvex) CR manifold if and only if

(∇X ϕ)Y = g(X− hX, Y)ξ + η(Y)(X− hX).

In particular, if M2n+1 is a Lorentzian Sasakian manifold, then it satisfies (7). In fact,
every three-dimensional contact Lorentzian manifold is a (strongly pseudoconvex) CR manifold.
Thus, a three-dimensional K-contact manifold is Sasakian.

4. Slant Curves in Non-Degenerate CR Manifolds

Let γ : I → M3 be a unit speed curve in Lorentzian three-manifolds M3 such that γ′ satisfies
g(γ′, γ′) = ε1 = ±1. The constant ε1 is called the causal character of γ. A unit speed curve γ is said to
be spacelike or timelike if its causal character is 1 or −1, respectively. A unit speed curve γ is said to
be a Frenet curve if g(γ′′, γ′′) 6= 0. A Frenet curve γ admits an orthonormal frame field {T = γ′, N, B}
along γ. Then, the Frenet–Serret equations, following [14] and [18], are:

∇̂γ′T = ε2κ̂N,
∇̂γ′N = −ε1κ̂T − ε3τ̂B,
∇̂γ′B = ε2τ̂N,

(14)

where κ̂ = |∇̂γ′γ
′| is the geodesic curvature of γ and τ̂ is its geodesic torsion for the Tanaka–Webster

connection ∇̂. The vector fields T, N, and B are called the tangent vector field, principal normal vector
field, and binormal vector field of γ, respectively.

The constants ε2 and ε3 are defined by g(N, N) = ε2 and g(B, B) = ε3, and are called the second
causal character and third causal character of γ, respectively. Thus, this satisfies ε1ε2 = −ε3.

A Frenet curve γ is a pseudo-Hermitian geodesic if and only if κ̂ = 0. A Frenet curve γ with
constant geodesic curvature and zero geodesic torsion is called a pseudo-Hermitian pseudo-circle.
A pseudo-Hermitian pseudo-helix is a Frenet curve γ whose geodesic curvature and torsion are constant.

4.1. Slant Curves

A one-dimensional integral submanifold of D in a three-dimensional contact manifold is called
a Legendre curve, especially to avoid confusion with an integral curve of the vector field ξ. As a
generalization of the Legendre curve, the notion of slant curves was introduced in [1] for a contact
Riemannian three-manifold, that is, a curve in a contact three-manifold is said to be slant if its tangent
vector field has a constant angle with the Reeb vector field.

Similarly to in the contact Riemannian three-manifolds, a curve in a contact Lorentzian
three-manifold is said to be slant if its tangent vector field has a constant angle with the Reeb vector
field (i.e., g(γ′, ξ) is a constant). In particular, if g(γ′, ξ) = 0 then γ is a Legendre curve.

Let γ be a Frenet curve in a Sasakian Lorentzian three-manifold M3. Then, we get

∇̂γ′γ
′ = ∇γ′γ

′ − 2η(γ′)ϕγ′.

If γ is a slant curve, then since η(γ′) = a, a is a constant, ∇̂γ′γ
′ = 0 if and only if ∇γ′γ

′ = 2aϕγ′.
Hence, we have:

Proposition 5. A Frenet curve γ in a Sasakian Lorentzian three-manifold M3 is a slant curve. Then, γ is a
geodesic for ∇̂ if and only if it is a magnetic curve (for ∇).

Recently, we studied slant curves and magnetic curves in Sasakian Lorentzian three-manifolds
(see [19]). If a curve γ satisfies ∇γ′γ

′ = qϕγ′, then we call it a contact magnetic curve in a contact
Riemannian and Lorentzian manifold; we proved that γ is a slant curve if and only if M is Sasakian.
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Now, we assume that η(T) = a, where a is a function. Using (5) and differentiating g(T, ξ) = −a
along γ for a Tanaka–Webster connection ∇̂, then

−a′ = g(ε2κ̂N, ξ) + g(T, ∇̂Tξ) = −ε2κ̂η(N).

This equation implies:

Proposition 6. A non-geodesic Frenet curve γ for ∇̂ in a Sasakian Lorentzian three-manifold M3 is a slant
curve if and only if η(N) = 0.

Moreover, we have:

Lemma 1. Let γ be a non-geodesic slant curve in the three-dimensional almost contact Lorentzian manifold M.
Then, we find an orthonormal frame field in M as follows:

T = γ′, N =
ϕT√

ε1 + a2
, B =

ξ + ε1aT√
ε1 + a2

,

and ξ = −ε1aT +
√

ε1 + a2B.
Thus, γ is a spacelike curve with a spacelike normal vector field or timelike curve.

Differentiating ξ = −ε1aT +
√

ε1 + a2B along γ for ∇̂ and using (14), we have:

Proposition 7. A non-geodesic Frenet curve γ in a Sasakian Lorentzian three-manifold M3 is a slant curve.
Then, the ratio of κ̂ and τ̂ is constant.

4.2. ∇̂-Jacobi Equations

We find that the non-vanishing Tanaka–Webster connections ∇̂ of the Bianchi–Cartan–Vranceanu
model space are

∇̂u1 u1 = c yu2, ∇̂u1 u2 = −c yu1, ∇̂u2 u1 = −c xu2, ∇̂u2 u2 = c xu1.

By using the above data, we calculate the Tanaka–Webster curvature tensor R̂(X, Y)Z = ∇̂[X,Y]Z−
∇̂X(∇̂YZ) + ∇̂Y(∇̂XZ). Then, we find that

R̂(u1, u2)u2 = −2cu1, R̂(u1, u2)u1 = 2cu2, (15)

and all others are zero.
As Ĥ = H − 3, we find that constant holomorphic sectional curvature Ĥ = 2c for the

Tanaka–Webster connection ∇̂. Hereafter, we denote the Lorentzian Bianchi–Cartan–Vranceanu model
space for ∇̂ byM3

1(Ĥ).
Using (14), we get

∇̂3
TT = 3ε3κ̂κ̂′T + ε2(κ̂

′′ − ε2κ̂(ε1κ̂2 + ε3τ̂2))N + ε1(2κ̂′τ̂ + κ̂τ̂′)B.

From the curvature tensor (15) and Proposition 3, we have

R̂(κ̂N, T)T

=κ̂R̂(N1e1 + N2e2 + N3e3, T1e1 + T2e2 + T3e3)(T1e1 + T2e2 + T3e3)

=− 2cε2κ̂
[
B2

3 N − N3B3B
]
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and

∇̂3
TT − ε2R̂(κ̂N, T)T = 3ε3κ̂κ̂′T +

[
ε2κ̂′′ − κ̂(ε1κ̂2 + ε3τ̂2 − 2cB2

3)
]
N

+
[
ε1(2κ̂′τ̂ + κ̂τ̂′)− 2cκ̂N3B3

]
B.

Hence, we have:

Proposition 8. Let γ : I → M be a non-geodesic slant Frenet curve in the Lorentzian Sasakian space forms
M3

1(Ĥ) for the Tanaka–Webster connection ∇̂ . Then, γ satisfies ∇̂3
TT− R̂(∇̂TT, T)T = 0 if and only if γ is

a pseudo-Hermitian pseudo-helix with κ̂2 − τ̂2 = 2cε1η(B)2.

Using (14), we calculate
∇̂2

TT = ε3κ̂2T + ε2κ̂N − ε1κ̂τ̂B,

and we get
g(∇̂2

TT, ϕγ′) = ε2κ̂′
√

ε1 + a2.

Thus, we have:

Proposition 9. A non-geodesic slant Frenet curve γ in a three-dimensional Sasakian Lorentzian manifold
M3

1(Ĥ) satisfies g(∇̂2
TT, ϕγ′) = 0 if and only if κ̂ is a non-zero constant.

Hence, we obtain:

Theorem 2. Let γ : I → M be a non-geodesic slant Frenet curve in the Lorentzian Sasakian space forms
M3

1(Ĥ) for the Tanaka–Webster connection ∇̂. Then, γ satisfies the ∇̂-Jacobi equation for a ∇̂-geodesic vector
field if and only if it is a pseudo-Hermitian pseudo-helix with κ̂2 − τ̂2 = 2cε1η(B)2.

Let γ be a slant Frenet curve in Lorentzian Sasakian space forms M3
1(Ĥ) parametrized by

arc-length. Then, the tangent vector field T has the form

T = γ′ =
√

ε1 + a2 cos βu1 +
√

ε1 + a2 sin βu2 + au3, (16)

where a = constant, β = β(s). Using (10), since γ is a non-geodesic, we may assume that κ̂ =√
ε1 + a2(β′ + cy

√
ε1 + a2 cos β− cx

√
ε1 + a2 sin β) > 0 without loss of generality. Then, we get the

normal vector field
N = − sin βu1 + cos βu2.

The binormal vector field ε3B = T ∧L N = −a cos βu1 − a sin βu2 −
√

ε1 + a2u3. From the
Lemma 1, we see that ε2 = 1, so we have ε3 = −ε1. Hence, we have the binormal vector field

B = ε1(a cos βu1 + a sin βu2 +
√

ε1 + a2u3).

Using the Frenet–Serret Equation (14), we have:

Lemma 2. Let γ be a slant Frenet curve in Lorentzian Sasakian space formsM3
1(Ĥ) parametrized by arc-length.

Then, γ admits an orthonormal frame field {T, N, B} along γ and

κ̂ =
√

ε1 + a2{β′ + c
√

ε1 + a2(y cos β− x sin β)}, (17)

τ̂ = −ε1a{β′ + c
√

ε1 + a2(y cos β− x sin β)}.

From this, we find that κ̂2 − τ̂2 = 2cε1η(B)2 if and only if {β′ + c
√

ε1 + a2(y cos β− x sin β)}2 =

2c(ε1 + a2). Hence, we have:
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Corollary 2. Let M3
1(Ĥ) be a Lorentzian Sasakian space form with c ≤ 0. Then, there does not exist a

non-geodesic slant Frenet curve satisfying the ∇̂-Jacobi equations for ∇̂-geodesic vector fields.

Since for c > 0, we get Ĥ = H − 3 = 2c > 0, we now construct a non-geodesic slant Frenet curve
γ satisfying (1) in Lorentzian space forms M3

1(Ĥ) for Ĥ = 2c > 0.
Let γ(s) = (x(s), y(s), z(s)) be a curve in Lorentzian space forms M3

1(Ĥ) for Ĥ = 2c > 0. Then,
the tangent vector field T of γ is

T =

(
dx
ds

,
dy
ds

,
dz
ds

)
=

dx
ds

∂

∂x
+

dy
ds

∂

∂y
+

dz
ds

∂

∂z
,

using the relations:

∂

∂x
=

1
{1 + c

2 (x(s)2 + y(s)2)} (u1 + yu3),
∂

∂y
=

1
{1 + c

2 (x(s)2 + y(s)2)} (u2 − xu3),
∂

∂z
= u3.

If γ is a slant Frenet curve in Lorentzian space forms M3
1(Ĥ) for Ĥ = 2c > 0, then from (16), the

system of differential equations for γ is given by

dx
ds

(s) =
√

ε1 + a2 cos β(s){1 + c
2
(x(s)2 + y(s)2)}, (18)

dy
ds

(s) =
√

ε1 + a2 sin β(s){1 + c
2
(x(s)2 + y(s)2)}, (19)

dz
ds

(s) = a +
√

ε1 + a2(x(s) sin β(s)− y(s) cos β(s)). (20)

From the Theorem 2 and (17), we have:

Corollary 3. Let γ : I → M3
1(Ĥ) be a non-geodesic slant Frenet curve satisfying the ∇̂-Jacobi equations for

the ∇̂-geodesic in Lorentzian space forms M3
1(Ĥ) for Ĥ = 2c > 0. Then

β′ + c
√

ε1 + a2(y cos β− x sin β) = ±
√

2c(ε1 + a2). (21)

Together with (21), we see that the Equation (20) becomes

dz
ds

=
1
c
(β′ ±

√
2c(ε1 + a2)) + a.

Thus, we have

z(s) =
1
c

β(s) + {a± 1
c

√
2c(ε1 + a2)}s + z0,

where z0 is a constant. We now compute the x and y coordinates. We put h(s) := 1 + c
2 (x(s)2 + y(s)2).

Then, (18) and (19) become

dx
ds

=
√

ε1 + a2 cos β(s)h(s),
dy
ds

=
√

ε1 + a2 sin β(s)h(s),

respectively. We note that the function h(s) satisfies the following Ordinary Differential Equation:

d
ds

log |h(s)| = c
√

ε1 + a2(cos β(s)x(s) + sin β(s)y(s)).

Differentiating (21), we have

d2

ds2 β(s) =
dβ

ds
(s)

d
ds

log |h(s)|.



Mathematics 2020, 8, 46 10 of 11

First, if dβ/ds = 0 for all s, then (x(s), y(s)) is a line in the orbit space. Hence, we have the
following parametrization: 

x(s) =
√

ε1 + a2 cos β0
∫

h(s)ds,
y(s) =

√
ε1 + a2 sin β0

∫
h(s)ds,

z(s) = {a± 1
c

√
2c(ε1 + a2)}s + z0,

where
∫

h(s)ds =
√
− 2

c(ε1+a2)
+ {p exp(−

√
−2c(ε1 + a2)s)−

√
− c(ε1+a2)

8 }−1, p ∈ R, and c < 0. So,

we conclude that β is not constant along γ.
Next, we assume that dβ

ds |s=s0 6= 0 for some s = s0. Then, we get h(s) = r dβ
ds s, r ∈ R. Thus, we

have {
x(s) = r

√
ε1 + a2 sin β(s) + x0,

y(s) = −r
√

ε1 + a2 cos β(s) + y0.

Since c > 0, the orbit space is the whole plane R2(x, y). The projected curve γ̄(s) is a circle
(x− x0)

2 + (y− y0)
2 = r2(ε1 + a2). We may assume that γ̄ is a circle centered at (0, 0). Then, the angle

function β is given by

β(s) =
1
r

( c
2

r2(ε1 + a2) + 1
)

s + β0.

Therefore, we obtain:

Theorem 3. Let γ : I → M3
1(Ĥ) be a non-geodesic slant Frenet curve satisfying the ∇̂-Jacobi equations for the

∇̂-geodesic in Lorentzian space forms M3
1(Ĥ) for Ĥ = 2c > 0. Then, its parametric equations are given by

x(s) = r
√

ε1 + a2 sin( 1
r
( c

2 r2(ε1 + a2) + 1
)

s + β0) + x0,
y(s) = −r

√
ε1 + a2 cos( 1

r
( c

2 r2(ε1 + a2) + 1
)

s + β0) + y0,
z(s) = [a + 1

c {
1
r
( c

2 r2(ε1 + a2) + 1
)
±
√

2c(ε1 + a2)}]s + z0,

where r ∈ R and β0, x0, y0, z0 are constants.

If γ is a timelike curve, then ε = −1 and a = cosh α0. If γ is a spacelike curve, then ε = 1 and
a = sinh α0. In particular, if ε = 1 and η(γ′) = a = 0, then we have:

Example 1 (Legendre curves). Let γ : I → M3
1(Ĥ) be a non-geodesic Legendre Frenet curve satisfying the

∇̂-Jacobi equations for the ∇̂-geodesic in Lorentzian space forms M3
1(Ĥ) for Ĥ = 2c > 0. Then, its parametric

equations are given by 
x(s) = r sin( 1

r
( c

2 r2 + 1
)

s + β0) + x0,
y(s) = −r cos( 1

r
( c

2 r2 + 1
)

s + β0) + y0,
z(s) = 1

c {
1
r
( c

2 r2 + 1
)
±
√

2c}s + z0,

where r ∈ R and β0, x0, y0, z0 are constants.
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