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Abstract

:

In this paper, we first find the properties of the generalized Tanaka–Webster connection in a contact Lorentzian manifold. Next, we find that a necessary and sufficient condition for the   ∇ ^  -geodesic is a magnetic curve (for ∇) along slant curves. Finally, we prove that when   c ≤ 0  , there does not exist a non-geodesic slant Frenet curve satisfying the   ∇ ^  -Jacobi equations for the   ∇ ^  -geodesic vector fields in M. Thus, we construct the explicit parametric equations of pseudo-Hermitian pseudo-helices in Lorentzian space forms    M 1 3   (  H ^  )    for    H ^  = 2 c > 0  .
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1. Introduction


The notion of slant curves was introduced in [1] for a contact Riemannian three-manifold, that is, a curve in a contact three-manifold is said to be slant if its tangent vector field has a constant angle with the Reeb vector field. In [2], we showed that proper biharmonic curves are helices in three-dimensional Sasakian space forms of constant holomorphic sectional curvature    H ˜   ( = 2 c − 3 )   . In particular, if    H ˜  ≠ 1  , then it is a slant helix; that is, a helix such that   η  (  γ ′  )  = cos  α 0    is a constant, with    κ 2  +  τ 2  = 1 +  (  H ˜  − 1 )   sin 2   α 0   . In [3], we studied slant curves satisfying   ∇ ^  -Jacobi equations for a   ∇ ^  -geodesic vector field in Sasakian space forms with respect to the Tanaka–Webster connection   ∇ ^  . In [4], we showed that proper biharmonic Frenet curves are pseudo-helices in three-dimensional Lorentzian Sasakian space forms of constant holomorphic sectional curvature   H ( = 2 c + 3 )  . In particular, if   H ≠ − 1  , then it is a slant pseudo-helix; that is, a pseudo-helix such that   η (  γ ′  )   is a constant, with    κ 2  −  τ 2  = − 1 +  ( H + 1 )   ( 1 +  ε 1   a 2  )    for   a = η (  γ ′  ) .  



In this paper, we study the slant curves in Lorentzian Sasakian space forms of constant holomorphic sectional curvature    H ^  = 2 c   for the Tanaka–Webster connection    ∇ ^  .  



D. Perrone [5,6] showed that the notion of non-degenerate almost CR structures is equivalent to the notion of contact pseudo-metric structures. Thus, he defined the generalized Tanaka–Webster connection   ∇ ^   in a contact pseudo-metric manifold.



In Section 3, we find the properties of the Tanaka–Webster connection in a contact Lorentzian manifold. In Section 4.1, we find that a necessary and sufficient condition for a   ∇ ^  -geodesic is a magnetic curve (for ∇) along slant curves.



Next, we investigate the   ∇ ^  -Jacobi equation for a   ∇ ^  -geodesic vector field in contact Lorentzian manifolds:


        ∇ ^   γ ′    γ ′  =  σ ^   ( γ )  ,         ∇ ^   γ ′  2   σ ^   ( γ )  −   ∇ ^   γ ′    T ^   (  σ ^   ( γ )  ,  γ ′  )  −  R ^   (  σ ^   ( γ )  ,  γ ′  )   γ ′  = 0 ,      



(1)




where the torsion    T ^   ( X , Y )  =  [ X , Y ]  −   ∇ ^  X  Y +   ∇ ^  Y  X   and pseudo-Hermitian curvature    R ^   ( X , Y )  =   ∇ ^   [ X , Y ]   −  [   ∇ ^  X  ,   ∇ ^  Y  ]  .   Then, in Section 4.2, we prove that when   c ≤ 0  , there does not exist a non-geodesic slant Frenet curve satisfying the   ∇ ^  -Jacobi equations for the   ∇ ^  -geodesic vector fields in M. Thus, we obtain the explicit parametric equations satisfying (1) in Lorentzian space forms    M 1 3   (  H ^  )    for    H ^  = 2 c > 0  .




2. Preliminaries


2.1. Contact Lorentzian Manifold


An almost contact structure   ( φ , ξ , η )   on a   ( 2 n + 1 )  -dimensional differentiable manifold M has a tensor field  φ  of   ( 1 , 1 )  , a global vector field  ξ , and a 1-form  η  such that


      φ 2  = − I + η ⊗ ξ ,  η  ( ξ )  = 1 ,     



(2)






     φ ( ξ ) = 0 ,  η ∘ φ = 0 .     



(3)







If a   ( 2 n + 1 )  -dimensional smooth manifold M with almost contact structure   ( φ , ξ , η )   admits a compatible Lorentzian metric such that


  g ( φ X , φ Y ) = g ( X , Y ) + η ( X ) η ( Y ) ,  



(4)




then we say that M has an almost contact Lorentzian structure   ( η , ξ , φ , g )  . Setting   Y = ξ  , we have


  η ( X ) = − g ( X , ξ ) .  



(5)







Next, if the compatible Lorentzian metric g satisfies


  d η ( X , Y ) = g ( X , φ Y ) ,  



(6)




then  η  is a contact form on M,  ξ  is the associated Reeb vector field, g is an associated metric, and   ( M , φ , ξ , η , g )   is called a contact Lorentzian manifold.



For a contact Lorentzian manifold M, one may naturally define an almost complex structure J on   M × R   by


  J  ( X , f  d  d t   )  =  ( φ X − f ξ , η  ( X )   d  d t   )  ,  








where X is a vector field tangent to M, t is the coordinate of  R , and f is a function on   M × R  . If the almost complex structure J is integrable, then the contact Lorentzian manifold M is called normal or Sasakian. It is known that a contact Lorentzian manifold M is normal if and only if M satisfies


  [ φ , φ ] + 2 d η ⊗ ξ = 0 ,  








where   [ φ , φ ]   is the Nijenhuis torsion of  φ .



Proposition 1

([7,8]). An almost contact Lorentzian manifold   (  M  2 n + 1   , η , ξ , φ , g )   is Sasakian if and only if


   (  ∇ X  φ )  Y = g  ( X , Y )  ξ + η  ( Y )  X .  



(7)









Using similar arguments and computations to those of [9], we obtain:



Proposition 2

([7,8]). Let   (  M  2 n + 1   , η , ξ , φ , g )   be a contact Lorentzian manifold. Then


   ∇ X  ξ = φ X − φ h X ,  



(8)




where   h =  1 2   L ξ  φ .  





If  ξ  is a killing vector field with respect to the Lorentzian metric g, that is,   M  2 n + 1    is a K-contact Lornetzian manifold. Then


   ∇ X  ξ = φ X .  



(9)







Proposition 3.

Let   { T , N , B }   be orthonormal Frame fields in a Lorentzian three-manifold. Then


   T  ∧ L  N =  ε 3  B ,  N  ∧ L  B =  ε 1  T ,  B  ∧ L  T =  ε 2  N .   














2.2. Lorentzian Bianchi–Cartan–Vranceanu Model Space


The one-parameter family of Riemannian three-manifolds    {  M 3   (  H ˜  )  }    H ˜  ∈ R    is classically known by L. Bianchi [10], E. Cartan [11], and G. Vranceanu [12]. The model    M 3   (  H ˜  )    of the Sasakian three-space form is called the Bianchi–Cartan–Vranceanu model of the three-dimensional Sasakian space form. Cartan classified all three-dimensional spaces with four-dimensional isometry groups in [11]. Thus, he proved that they are all homogeneous. Moreover, parallel surfaces in Bianchi–Cartan–Vranceanu spaces are classified in [13].



On the other hand, G. Calvaruso [7] proved that there is a one-to-one correspondence between homogeneous contact Riemannian three-manifolds and homogeneous contact Lorentzian three-manifolds.



Now, we construct a Lorentzian Bianchi–Cartan–Vranceanu model of three-dimensional Lorentzian Sasakian space forms.



Let c be a real number, and set


  D =   ( x , y , z )  ∈  R 3    ( x , y , z )   |  1 +   c 2   (  x 2  +  y 2  )  > 0   .  











Note that  D  is the whole    R 3   ( x , y , z )    for   c ≥ 0  . In the region  D , we take the contact form


  η = d z +   y d x − x d y   1 +  c 2   (  x 2  +  y 2  )    .  











Then, the Reeb vector field of  η  is   ξ =  ∂  ∂ z   .  



Next, we equip  D  with the Lorentzian metric   g c   as follows:


   g c  =   d  x 2  + d  y 2     { 1 +  c 2   (  x 2  +  y 2  )  }  2   −   d z +   y d x − x d y   1 +  c 2   (  x 2  +  y 2  )     2  .  











We take the following orthonormal frame field on   ( D ,  g c  )  :


   u 1  =  { 1 +  c 2   (  x 2  +  y 2  )  }   ∂  ∂ x   − y  ∂  ∂ z   ,   u 2  =  { 1 +  c 2   (  x 2  +  y 2  )  }   ∂  ∂ y   + x  ∂  ∂ z   ,   u 3  =  ∂  ∂ z   .  











Then, the endomorphism field  φ  is defined by


  φ  u 1  =  u 2  ,  φ  u 2  = −  u 1  ,  φ  u 3  = 0 .  











The Levi–Civita connection ∇ of this Lorentzian three-manifold is described as


   ∇  u 1    u 1  = c  y  u 2  ,    ∇  u 1    u 2  = − c  y  u 1  +  u 3  ,    ∇  u 1    u 3  =  u 2  ,  










   ∇  u 2    u 1  = − c  x  u 2  −  u 3  ,    ∇  u 2    u 2  = c  x  u 1  ,    ∇  u 2    u 3  = −  u 1  ,  



(10)






   ∇  u 3    u 1  =  u 2  ,    ∇  u 3    u 2  = −  u 1  ,    ∇  u 3    u 3  = 0 .  










   [  u 1  ,  u 2  ]  = − c  y  u 1  + c  x  u 2  + 2  u 3  ,    [  u 2  ,  u 3  ]  =  [  u 3  ,  u 1  ]  = 0 .  











The contact form  η  on  D  satisfies


  d η ( X , Y ) = g ( X , φ Y ) .  



(11)







Moreover, the structure   ( φ , ξ , η ,  g c  )   is Sasakian. The curvature tensor   R  ( X , Y )  =  ∇  [ X , Y ]   −  [  ∇ X  ,  ∇ Y  ]    on   (  M 3  , η , ξ , φ ,  g c  )   is given by


  R  (  u 1  ,  u 2  )   u 2  = −  ( 2 c + 3 )   u 1  ,  R  (  u 1  ,  u 3  )   u 3  = −  u 1  ,  










  R  (  u 2  ,  u 1  )   u 1  = −  ( 2 c + 3 )   u 2  ,  R  (  u 2  ,  u 3  )   u 3  = −  u 2  ,  










  R  (  u 3  ,  u 1  )   u 1  =  u 3  ,  R  (  u 3  ,  u 2  )   u 2  =  u 3  .  











The sectional curvature ([7]) is given by


  K  ( ξ ,  u i  )  = − R  ( ξ ,  u i  , ξ ,  u i  )  = − 1 ,   f o r   i = 1 , 2 ,  








and


  K  (  u 1  ,  u 2  )  = R  (  u 1  ,  u 2  ,  u 1  ,  u 2  )  = 2 c + 3 .  











Hence,   ( D ,  g c  )   is of constant holomorphic sectional curvature   H = 2 c + 3  .



Hereafter, we denote this model   ( D ,  g c  )   of a Lorentzian Sasakian space form by    M 1 3   ( H )   .



The harmonic maps   ϕ :  (  M m  , g )  →  (  N n  , h )    between two pseudo-Riemannian manifolds as critical points of the energy   E  ( ϕ )  =  ∫ M    | d ϕ |  2  d v .   The tension field   τ ϕ   is defined by


   τ ϕ  = t r a c e  ∇ ϕ  d ϕ =  ∑  i = 1  m   ε i   (  ∇   e i   ϕ  d ϕ  (  e i  )  − d ϕ  (  ∇  e i    e i  )  )  ,  








where   ∇ ϕ   and   {  e i  }   denote the induced connection by  ϕ  on the bundle    ϕ *  T  N n   . A smooth map  ϕ  is called a harmonic map if its tension field vanishes.



Next, the bienergy    E 2   ( ϕ )    of a map  ϕ  is defined by    E 2   ( ϕ )  =  ∫ M    |  τ ϕ  |  2  d v ,  ;  ϕ  is biharmonic if it is a critical point of the bienergy. Harmonic maps are clearly biharmonic. Non-harmonic biharmonic maps are called proper biharmonic maps. We define the bitension field    τ 2   ( ϕ )    by


   τ 2   ( ϕ )  : =  ∑  i = 1  m   ε i   (  (  ∇   e i   ϕ   ∇   e i   ϕ  −  ∇   ∇  e i    e i   ϕ  )   τ ϕ  −  R N   (  τ ϕ  , d ϕ  (  e i  )  )  d ϕ  (  e i  )  )  ,  








where   R N   is the curvature tensor of   N n   and is defined by    R N   ( X , Y )  =  ∇  [ X , Y ]   −  [  ∇ X  ,  ∇ Y  ]    (see [14]).



We now restrict our attention to isometric immersions   γ : I → ( M , g )   from an interval I to a pseudo-Riemannian manifold. The image   C = γ ( I )   is the trace of a curve in M, and  γ  is a parametrization of C by arc length. In this case, the tension field becomes    τ γ  =  ε 1   ∇  γ ′    γ ′    and the biharmonic equation reduces to


   τ 2   ( γ )  =  ε 1   (  ∇   γ  ′  2   τ γ  − R  (  τ γ  ,   γ  ′  )    γ  ′  )  = 0 .  











Note that   C = γ ( I )   is part of a geodesic of M if and only if  γ  is harmonic. Moreover, from the biharmonic equation, if  γ  is harmonic, geodesics are a subclass of biharmonic curves.



In [4], we showed that proper biharmonic Frenet curves are pseudo-helices in three-dimensional Lorentzian Sasakian space forms of constant holomorphic sectional curvature   H ( = 2 c + 3 )  . In particular, in [15], we studied proper biharmonic spacelike curves in Lorentzian Heisenberg space.





3. Almost CR Manifold


We recall the notions of CR structure and pseudo-Hermitian geometry.



Let   ( M , H ( M ) , J , θ )   be a non-degenerate almost CR manifold. If we extend J to an endomorphism  φ  of the tangent bundle by   φ  ∣  H ( M )   = J   and   φ ( P ) = 0 ,   where P is the Reeb vector field of   θ ,   then    φ 2  = − I + θ ⊗ P  . The Webster metric   g θ   is given by


   g θ   ( X , Y )  =  ( d θ )   ( X , J Y )  ,   g θ   ( X , P )  = 0 ,   g θ   ( P , P )  = ε  ( = ± 1 )  ,  








for any   X , Y ∈ H ( M ) .     g θ   is a pseudo-Riemannian metric on   M .   Hence,


  φ ,   ξ = − P ,   η = − θ ,   g =  g θ   








is a contact pseudo-metric structure on   M .   Conversely, a contact pseudo-metric structure   ( φ , ξ , η , g )   defines a non-degenerate almost CR structure on M given by   ( H ( M ) , J , θ )  , where   H ( M ) = k e r η  ,   θ = − η   and   J = φ  ∣  H ( M )   .   Then, we have

Proposition 4

([5]). The notion of a non-degenerate almost CR structure is equivalent to the notion of a contact pseudo-metric structure.







Tanaka ([16]) defined the canonical affine connection, called the Tanaka–Webster connection, on a non-degenerate CR manifold. D. Perrone defined the generalized Tanaka–Webster connection [5] on a contact pseudo-metric manifold   M = (  M  2 n + 1   , η , ξ , φ , g )  .



In this section, we consider the generalized Tanaka–Webster connection on a contact Lorentzian manifold   M .  



The generalized Tanaka–Webster connection   ∇ ^   is defined by (cf. [3,16] )


    ∇ ^  X  Y =  ∇ X  Y − η  ( X )  φ Y +  (  ∇ X  η )   ( Y )  ξ − η  ( Y )   ∇ X  ξ ,  








for all vector fields   X , Y   on M.   ∇ ^   may be rewritten as


    ∇ ^  X  Y =  ∇ X  Y + A  ( X , Y )  .  











Then, using (5) and (8), we have


  A ( X , Y ) = − η ( X ) φ Y − η ( Y ) ( φ X − φ h X ) − g ( φ X − φ h X , Y ) ξ .  



(12)







Next, if we define the torsion    T ^   ( X , Y )  =  [ X , Y ]  −   ∇ ^  X  Y +   ∇ ^  Y  X   for the Tanaka–Webster connection   ∇ ^   in M ([17]), then we get


   T ^   ( X , Y )  = 2 g  ( φ X , Y )  ξ + η  ( X )  φ h Y − η  ( Y )  φ h X .  



(13)







In particular, for a K-contact manifold, (12) and the above equation reduce as follows:


     A ( X , Y )    =    − η ( X ) φ Y − η ( Y ) φ X − g ( φ X , Y ) ξ ,        T ^   ( X , Y )     =    2 g ( φ X , Y ) ξ .     











Using (2)–(9), we have

Theorem 1.

The generalized Tanaka–Webster connection   ∇ ^   on a contact Lorentzian manifold   M = (  M  2 n + 1   ; η , ξ , φ , g )   is the unique linear connection satisfying the following conditions:




	(a)

	
   ∇ ^  η = 0  ,    ∇ ^  ξ = 0  ,




	(b)

	
   ∇ ^  g = 0  ,




	(c)

	
   T ^   ( X , Y )  = 2 g  ( φ X , Y )  ξ  ,   X ,  Y ∈ D  ,




	(d)

	
   T ^   ( ξ , φ Y )  = − φ  T ^   ( ξ , Y )   ,   Y ∈ D  ,




	(e)

	
   (   ∇ ^  X  φ )  Y = Q  ( X , Y )   ,   X ,  Y ∈ T M  .









The Tanaka–Webster connection on a non-degenerate (integrable) CR manifold is defined as the unique linear connection satisfying (a), (b), (c), (d), and   Q = 0   (CR integrability), where Q is a   ( 1 , 2 )  -tensor field on M defined by   Q  ( X , Y )  =  (  ∇ X  φ )  Y − g  ( X − h X , Y )  ξ − η  ( Y )   ( X − h X )  .  







Thus, in [5] (page 217), we find:

Corollary 1.

Let   (  M  2 n + 1   , η , ξ , φ , g )   be a contact Lorentzian manifold. Then, the   (  M  2 n + 1   , D )   is a (strongly pseudoconvex) CR manifold if and only if


   (  ∇ X  φ )  Y = g  ( X − h X , Y )  ξ + η  ( Y )   ( X − h X )  .  















In particular, if   M  2 n + 1    is a Lorentzian Sasakian manifold, then it satisfies (7). In fact, every three-dimensional contact Lorentzian manifold is a (strongly pseudoconvex) CR manifold. Thus, a three-dimensional K-contact manifold is Sasakian.




4. Slant Curves in Non-Degenerate CR Manifolds


Let   γ : I →  M 3    be a unit speed curve in Lorentzian three-manifolds   M 3   such that   γ ′   satisfies   g  (  γ ′  ,  γ ′  )  =  ε 1  = ± 1 .   The constant   ε 1   is called the causal character of  γ . A unit speed curve  γ  is said to be spacelike or timelike if its causal character is 1 or   − 1  , respectively. A unit speed curve  γ  is said to be a Frenet curve if   g (  γ ″  ,  γ ″  ) ≠ 0  . A Frenet curve  γ  admits an orthonormal frame field   { T =  γ ′  , N , B }   along  γ . Then, the Frenet–Serret equations, following [14,18], are:


        ∇ ^    γ  ′   T =    ε 2   κ ^  N ,         ∇ ^    γ  ′   N = −  ε 1   κ ^  T  −  ε 3   τ ^  B ,         ∇ ^    γ  ′   B =    ε 2   τ ^  N ,      



(14)




where    κ ^  =  |   ∇ ^    γ  ′    γ ′  |    is the geodesic curvature of  γ  and   τ ^   is its geodesic torsion for the Tanaka–Webster connection   ∇ ^  . The vector fields T, N, and B are called the tangent vector field, principal normal vector field, and binormal vector field of  γ , respectively.



The constants   ε 2   and   ε 3   are defined by   g  ( N , N )  =  ε 2    and   g  ( B , B )  =  ε 3  ,   and are called the second causal character and third causal character of  γ , respectively. Thus, this satisfies    ε 1   ε 2  = −  ε 3   .



A Frenet curve  γ  is a pseudo-Hermitian geodesic if and only if    κ ^  = 0  . A Frenet curve  γ  with constant geodesic curvature and zero geodesic torsion is called a pseudo-Hermitian pseudo-circle. A pseudo-Hermitian pseudo-helix is a Frenet curve  γ  whose geodesic curvature and torsion are constant.



4.1. Slant Curves


A one-dimensional integral submanifold of D in a three-dimensional contact manifold is called a Legendre curve, especially to avoid confusion with an integral curve of the vector field  ξ . As a generalization of the Legendre curve, the notion of slant curves was introduced in [1] for a contact Riemannian three-manifold, that is, a curve in a contact three-manifold is said to be slant if its tangent vector field has a constant angle with the Reeb vector field.



Similarly to in the contact Riemannian three-manifolds, a curve in a contact Lorentzian three-manifold is said to be slant if its tangent vector field has a constant angle with the Reeb vector field (i.e.,   g (  γ ′  , ξ )   is a constant). In particular, if   g (  γ ′  , ξ ) = 0   then  γ  is a Legendre curve.



Let  γ  be a Frenet curve in a Sasakian Lorentzian three-manifold   M 3  . Then, we get


    ∇ ^   γ ′    γ ′  =  ∇  γ ′    γ ′  − 2 η  (  γ ′  )  φ  γ ′  .  











If  γ  is a slant curve, then since   η (  γ ′  ) = a  , a is a constant,     ∇ ^   γ ′    γ ′  = 0   if and only if    ∇  γ ′    γ ′  = 2 a φ  γ ′   . Hence, we have:

Proposition 5.

A Frenet curve γ in a Sasakian Lorentzian three-manifold   M 3   is a slant curve. Then, γ is a geodesic for   ∇ ^   if and only if it is a magnetic curve (for ∇).







Recently, we studied slant curves and magnetic curves in Sasakian Lorentzian three-manifolds (see [19]). If a curve  γ  satisfies    ∇  γ ′    γ ′  = q φ  γ ′   , then we call it a contact magnetic curve in a contact Riemannian and Lorentzian manifold; we proved that  γ  is a slant curve if and only if M is Sasakian.



Now, we assume that   η ( T ) = a  , where a is a function. Using (5) and differentiating   g ( T , ξ ) = − a   along  γ  for a Tanaka–Webster connection   ∇ ^  , then


  −  a ′  = g  (  ε 2   κ ^  N , ξ )  + g  ( T ,   ∇ ^  T  ξ )  = −  ε 2   κ ^  η  ( N )  .  











This equation implies:

Proposition 6.

A non-geodesic Frenet curve γ for   ∇ ^   in a Sasakian Lorentzian three-manifold   M 3   is a slant curve if and only if   η ( N ) = 0  .







Moreover, we have:

Lemma 1.

Let γ be a non-geodesic slant curve in the three-dimensional almost contact Lorentzian manifold M. Then, we find an orthonormal frame field in M as follows:


  T =  γ ′  ,  N =   φ T     ε 1  +  a 2     ,  B =   ξ +  ε 1  a T     ε 1  +  a 2     ,  








and   ξ = −  ε 1  a T +    ε 1  +  a 2    B .  



Thus, γ is a spacelike curve with a spacelike normal vector field or timelike curve.







Differentiating   ξ = −  ε 1  a T +    ε 1  +  a 2    B   along  γ  for   ∇ ^   and using (14), we have:

Proposition 7.

A non-geodesic Frenet curve γ in a Sasakian Lorentzian three-manifold   M 3   is a slant curve. Then, the ratio of   κ ^   and   τ ^   is constant.








4.2.   ∇ ^  -Jacobi Equations


We find that the non-vanishing Tanaka–Webster connections   ∇ ^   of the Bianchi–Cartan–Vranceanu model space are


    ∇ ^   u 1    u 1  = c  y  u 2  ,     ∇ ^   u 1    u 2  = − c  y  u 1  ,     ∇ ^   u 2    u 1  = − c  x  u 2  ,     ∇ ^   u 2    u 2  = c  x  u 1  .  











By using the above data, we calculate the Tanaka–Webster curvature tensor    R ^   ( X , Y )  Z =   ∇ ^   [ X , Y ]   Z −   ∇ ^  X   (   ∇ ^  Y  Z )  +   ∇ ^  Y   (   ∇ ^  X  Z )  .   Then, we find that


   R ^   (  u 1  ,  u 2  )   u 2  = − 2 c  u 1  ,    R ^   (  u 1  ,  u 2  )   u 1  = 2 c  u 2  ,  



(15)




and all others are zero.



As    H ^  = H − 3  , we find that constant holomorphic sectional curvature    H ^  = 2 c   for the Tanaka–Webster connection    ∇ ^  .   Hereafter, we denote the Lorentzian Bianchi–Cartan–Vranceanu model space for   ∇ ^   by    M 1 3   (  H ^  )   .



Using (14), we get


       ∇ ^  T 3  T = 3  ε 3   κ ^    κ ^  ′  T +  ε 2   (   κ ^   ″   −  ε 2   κ ^   (  ε 1    κ ^  2  +  ε 3    τ ^  2  )  )  N +  ε 1   ( 2   κ ^  ′   τ ^  +  κ ^    τ ^  ′  )  B .     











From the curvature tensor (15) and Proposition 3, we have


         R ^   (  κ ^  N , T )  T      =     κ ^   R ^   (  N 1   e 1  +  N 2   e 2  +  N 3   e 3  ,  T 1   e 1  +  T 2   e 2  +  T 3   e 3  )   (  T 1   e 1  +  T 2   e 2  +  T 3   e 3  )       =    − 2 c  ε 2   κ ^    B 3 2  N −  N 3   B 3  B      








and


        ∇ ^   T 3  T −  ε 2   R ^   (  κ ^  N , T )  T    =    3  ε 3   κ ^    κ ^  ′  T +   ε 2    κ ^   ″   −  κ ^   (  ε 1    κ ^  2  +  ε 3    τ ^  2  − 2 c  B 3 2  )   N         +   ε 1   ( 2   κ ^  ′   τ ^  +  κ ^    τ ^  ′  )  − 2 c  κ ^   N 3   B 3   B .     











Hence, we have:

Proposition 8.

Let   γ : I → M   be a non-geodesic slant Frenet curve in the Lorentzian Sasakian space forms    M 1 3   (  H ^  )    for the Tanaka–Webster connection   ∇ ^  . Then, γ satisfies      ∇ ^   T 3  T −  R ^   (   ∇ ^  T  T , T )  T = 0   if and only if γ is a pseudo-Hermitian pseudo-helix with      κ ^   2  −    τ ^   2  = 2 c  ε 1  η   ( B )  2  .  







Using (14), we calculate


    ∇ ^  T 2  T =  ε 3    κ ^  2  T +  ε 2   κ ^  N −  ε 1   κ ^   τ ^  B ,  








and we get


  g  (   ∇ ^  T 2  T , φ  γ ′  )  =  ε 2    κ ^  ′     ε 1  +  a 2    .  











Thus, we have:

Proposition 9.

A non-geodesic slant Frenet curve γ in a three-dimensional Sasakian Lorentzian manifold    M 1 3   (  H ^  )    satisfies   g (   ∇ ^  T 2  T , φ  γ ′  ) = 0   if and only if   κ ^   is a non-zero constant.







Hence, we obtain:

Theorem 2.

Let   γ : I → M   be a non-geodesic slant Frenet curve in the Lorentzian Sasakian space forms    M 1 3   (  H ^  )    for the Tanaka–Webster connection   ∇ ^  . Then, γ satisfies the   ∇ ^  -Jacobi equation for a   ∇ ^  -geodesic vector field if and only if it is a pseudo-Hermitian pseudo-helix with      κ ^   2  −    τ ^   2  = 2 c  ε 1  η   ( B )  2  .  







Let  γ  be a slant Frenet curve in Lorentzian Sasakian space forms    M 1 3   (  H ^  )    parametrized by arc-length. Then, the tangent vector field T has the form


  T =  γ ′  =    ε 1  +  a 2    cos β  u 1  +    ε 1  +  a 2    sin β  u 2  + a  u 3  ,  



(16)




where   a = c o n s t a n t ,   β = β ( s ) .   Using (10), since  γ  is a non-geodesic, we may assume that    κ ^  =    ε 1  +  a 2     (  β ′  + c y    ε 1  +  a 2    cos β − c x    ε 1  +  a 2    sin β )  > 0   without loss of generality. Then, we get the normal vector field


  N = − sin β  u 1  + cos β  u 2  .  











The binormal vector field    ε 3  B = T  ∧ L  N = − a cos β  u 1  − a sin β  u 2  −    ε 1  +  a 2     u 3  .   From the Lemma 1, we see that    ε 2  = 1  , so we have    ε 3  = −  ε 1   . Hence, we have the binormal vector field


  B =  ε 1   ( a cos β  u 1  + a sin β  u 2  +    ε 1  +  a 2     u 3  )  .  











Using the Frenet–Serret Equation (14), we have:

Lemma 2.

Let γ be a slant Frenet curve in Lorentzian Sasakian space forms    M 1 3   (  H ^  )    parametrized by arc-length. Then, γ admits an orthonormal frame field   { T , N , B }   along γ and


      κ ^  =    ε 1  +  a 2     {  β ′  + c    ε 1  +  a 2     ( y cos β − x sin β )  }  ,        τ ^  = −  ε 1  a  {  β ′  + c    ε 1  +  a 2     ( y cos β − x sin β )  }  .     



(17)











From this, we find that      κ ^   2  −    τ ^   2  = 2 c  ε 1  η   ( B )  2    if and only if     {  β ′  + c    ε 1  +  a 2     ( y cos β − x sin β )  }  2  = 2 c  (  ε 1  +  a 2  )  .   Hence, we have:

Corollary 2.

Let    M 1 3   (  H ^  )    be a Lorentzian Sasakian space form with   c ≤ 0  . Then, there does not exist a non-geodesic slant Frenet curve satisfying the   ∇ ^  -Jacobi equations for   ∇ ^  -geodesic vector fields.







Since for   c > 0  , we get    H ^  = H − 3 = 2 c > 0  , we now construct a non-geodesic slant Frenet curve  γ  satisfying (1) in Lorentzian space forms    M 1 3   (  H ^  )    for    H ^  = 2 c > 0  .



Let   γ ( s ) = ( x ( s ) , y ( s ) , z ( s ) )   be a curve in Lorentzian space forms    M 1 3   (  H ^  )    for    H ^  = 2 c > 0  . Then, the tangent vector field T of  γ  is


  T =    d x   d s   ,   d y   d s   ,   d z   d s    =   d x   d s    ∂  ∂ x   +   d y   d s    ∂  ∂ y   +   d z   d s    ∂  ∂ z   ,  








using the relations:


   ∂  ∂ x   =  1  { 1 +  c 2   ( x   ( s )  2  + y   ( s )  2  )  }    (  u 1  + y  u 3  )  ,   ∂  ∂ y   =  1  { 1 +  c 2   ( x   ( s )  2  + y   ( s )  2  )  }    (  u 2  − x  u 3  )  ,   ∂  ∂ z   =  u 3  .  











If  γ  is a slant Frenet curve in Lorentzian space forms    M 1 3   (  H ^  )    for    H ^  = 2 c > 0  , then from (16), the system of differential equations for  γ  is given by


       d x   d s    ( s )     =       ε 1  +  a 2    cos β  ( s )   { 1 +  c 2   ( x   ( s )  2  + y   ( s )  2  )  }  ,     



(18)






       d y   d s    ( s )     =       ε 1  +  a 2    sin β  ( s )   { 1 +  c 2   ( x   ( s )  2  + y   ( s )  2  )  }  ,     



(19)






       d z   d s    ( s )     =    a +    ε 1  +  a 2     ( x  ( s )  sin β  ( s )  − y  ( s )  cos β  ( s )  )  .     



(20)







From the Theorem 2 and (17), we have:

Corollary 3.

Let   γ : I →  M 1 3   (  H ^  )    be a non-geodesic slant Frenet curve satisfying the   ∇ ^  -Jacobi equations for the   ∇ ^  -geodesic in Lorentzian space forms    M 1 3   (  H ^  )    for    H ^  = 2 c > 0  . Then


   β ′  + c    ε 1  +  a 2     ( y cos β − x sin β )  = ±   2 c (  ε 1  +  a 2  )   .  



(21)











Together with (21), we see that the Equation (20) becomes


    d z   d s   =  1 c   (  β ′  ±   2 c (  ε 1  +  a 2  )   )  + a .  











Thus, we have


  z  ( s )  =  1 c  β  ( s )  +  { a ±  1 c    2 c (  ε 1  +  a 2  )   }  s +  z 0  ,  








where   z 0   is a constant. We now compute the x and y coordinates. We put   h  ( s )  : = 1 +  c 2   ( x   ( s )  2  + y   ( s )  2  )   . Then, (18) and (19) become


    d x   d s   =    ε 1  +  a 2    cos β  ( s )  h  ( s )  ,    d y   d s   =    ε 1  +  a 2    sin β  ( s )  h  ( s )  ,  








respectively. We note that the function   h ( s )   satisfies the following Ordinary Differential Equation:


   d  d s   log  | h  ( s )  |  = c    ε 1  +  a 2     ( cos β  ( s )  x  ( s )  + sin β  ( s )  y  ( s )  )  .  











Differentiating (21), we have


    d 2   d  s 2    β  ( s )  =   d β   d s    ( s )   d  d s   log  | h  ( s )  |  .  











First, if   d β / d s = 0   for all s, then   ( x ( s ) , y ( s ) )   is a line in the orbit space. Hence, we have the following parametrization:


      x  ( s )  =    ε 1  +  a 2    cos  β 0  ∫ h  ( s )  d s ,       y  ( s )  =    ε 1  +  a 2    sin  β 0  ∫ h  ( s )  d s ,       z  ( s )  =  { a ±  1 c    2 c (  ε 1  +  a 2  )   }  s +  z 0  ,      








where   ∫ h  ( s )  d s =   −  2  c (  ε 1  +  a 2  )     +   { p exp  (  −   − 2 c (  ε 1  +  a 2  )   s  )  −   −   c (  ε 1  +  a 2  )  8    }   − 1   ,  p ∈ R  , and   c < 0 .   So, we conclude that  β  is not constant along   γ .  



Next, we assume that     d β   d s    ∣  s =  s 0    ≠ 0   for some   s =  s 0   . Then, we get   h  ( s )  = r   d β   d s   s ,     r ∈ R .   Thus, we have


      x  ( s )  = r    ε 1  +  a 2    sin β  ( s )  +  x 0  ,       y  ( s )  = − r    ε 1  +  a 2    cos β  ( s )  +  y 0  .      











Since   c > 0  , the orbit space is the whole plane    R 2   ( x , y )   . The projected curve    γ ¯   ( s )    is a circle     ( x −  x 0  )  2  +   ( y −  y 0  )  2  =  r 2   (  ε 1  +  a 2  )   . We may assume that   γ ¯   is a circle centered at   ( 0 , 0 )  . Then, the angle function  β  is given by


  β  ( s )  =  1 r    c 2   r 2   (  ε 1  +  a 2  )  + 1  s +  β 0  .  











Therefore, we obtain:

Theorem 3.

Let   γ : I →  M 1 3   (  H ^  )    be a non-geodesic slant Frenet curve satisfying the   ∇ ^  -Jacobi equations for the   ∇ ^  -geodesic in Lorentzian space forms    M 1 3   (  H ^  )    for    H ^  = 2 c > 0  . Then, its parametric equations are given by


      x  ( s )  = r    ε 1  +  a 2    sin  (  1 r    c 2   r 2   (  ε 1  +  a 2  )  + 1  s +  β 0  )  +  x 0  ,       y  ( s )  = − r    ε 1  +  a 2    cos  (  1 r    c 2   r 2   (  ε 1  +  a 2  )  + 1  s +  β 0  )  +  y 0  ,       z  ( s )  =  [ a +  1 c   {  1 r    c 2   r 2   (  ε 1  +  a 2  )  + 1  ±   2 c (  ε 1  +  a 2  )   }  ]  s +  z 0  ,      








where   r ∈ R   and    β 0  ,  x 0  ,  y 0  ,  z 0    are constants.







If  γ  is a timelike curve, then   ε = − 1   and   a = cosh  α 0   . If  γ  is a spacelike curve, then   ε = 1   and   a = sinh  α 0   . In particular, if   ε = 1   and   η (  γ ′  ) = a = 0  , then we have:

Example 1

(Legendre curves). Let   γ : I →  M 1 3   (  H ^  )    be a non-geodesic Legendre Frenet curve satisfying the   ∇ ^  -Jacobi equations for the   ∇ ^  -geodesic in Lorentzian space forms    M 1 3   (  H ^  )    for    H ^  = 2 c > 0  . Then, its parametric equations are given by


      x  ( s )  = r sin  (  1 r    c 2   r 2  + 1  s +  β 0  )  +  x 0  ,       y  ( s )  = − r cos  (  1 r    c 2   r 2  + 1  s +  β 0  )  +  y 0  ,       z  ( s )  =  1 c   {  1 r    c 2   r 2  + 1  ±   2 c   }  s +  z 0  ,      








where   r ∈ R   and    β 0  ,  x 0  ,  y 0  ,  z 0    are constants.












Funding


The author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (NRF-2019R1l1A1A01043457).




Acknowledgments


The author would like to thank the reviewers for their valuable comments on this paper to improve the quality.




Conflicts of Interest


The author declares no conflict of interest.




References


	



Cho, J.T.; Inoguchi, J.; Lee, J.-E. On slant curves in Sasakian 3-manifolds. Bull. Aust. Math. Soc. 2006, 74, 359–367. [Google Scholar] [CrossRef]

	



Cho, J.T.; Inoguchi, J.; Lee, J.-E. Biharmonic curves in 3-dimensional Sasakian space form. Ann. Math. Pura Appl. 2007, 186, 685–701. [Google Scholar] [CrossRef]

	



Cho, J.T.; Lee, J.-E. Slant curves in contact pseudo-Hermitian 3-manifolds. Bull. Aust. Math. Soc. 2008, 78, 383–396. [Google Scholar] [CrossRef]

	



Lee, J.-E. Biharmonic curves in 3-dimensional Lorentzian Sasakian space forms. submitted.

	



Perrone, D. Contact pseudo-metric manifolds of constant curvature and CR geometry. Results Math. 2014, 66, 213–225. [Google Scholar] [CrossRef]

	



Perrone, D. On the pseudohermitian curvature of contact semi-Riemannian manifolds. Results Math. 2020, 75, 17. [Google Scholar] [CrossRef]

	



Calvaruso, G. Contact Lorentzian manifolds. Differ. Geom. Appl. 2011, 29, 541–551. [Google Scholar] [CrossRef]

	



Calvaruso, G.; Perrone, D. Contact pseudo-metric manifolds. Differ. Geom. Appl. 2010, 28, 615–634. [Google Scholar] [CrossRef]

	



Blair, D.E. Riemannian Geometry of Contact and Symplectic Manifolds; Progress in Math. 203; Birkhäuser: Boston, MA, USA; Basel, Switzerland; Berlin, Germany, 2010. [Google Scholar]

	



Bianchi, L. Lezioni di Geometrie Differenziale; 3rd Italian Edition; Spoerri: Pisa, Italy, 1922. [Google Scholar]

	



Cartan, E. Leçon sur la Geometrie des Espaces de Riemann, 2nd ed.; Gauthier-Villards: Paris, France, 1946. [Google Scholar]

	



Vranceanu, G. Leçons de Géométrie Différentielle, 1st ed.; Académie de la République Populaire Roumaine: Bucarest, Romania, 1947.

	



Belkhelfa, M.; Dillen, F.; Inoguchi, J. Surfaces with parallel second fundamental form in Bianchi-Cartan-Vranceanu spaces. In PDEs, Submanifolds and Affine Differential Geometry; Banach Center Publ.: Warszawa, Poland, 2002; Volume 57, pp. 67–87. [Google Scholar]

	



Sasahara, T. Biharmonic submanifolds in normalflat Lorentz 3-space forms. Bull. Aust. Math. Soc. 2012, 85, 422–432. [Google Scholar] [CrossRef]

	



Lee, J.-E. Biharmonic spacelike curves in Lorentzian Heigenberg space. Commun. Korean Math. Soc. 2018, 33, 1309–1320. [Google Scholar]

	



Tanaka, N. On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections. Jpn. J. Math. 1976, 2, 131–190. [Google Scholar] [CrossRef]

	



O’Neill, B. Semi-Riemannian Geometry with Application to Relativity. Pure and Applied Mathematics; Academic Press Harcourt Brace Jovanovich: New York, NY, USA, 1983. [Google Scholar]

	



Inoguchi, J. Biharmonic curves in Minkowki 3-space. Int. J. Math. Math. Sci. 2003, 2003, 1365–1368. [Google Scholar] [CrossRef]

	



Lee, J.-E. Slant curves and contact magnetric curves in Sasakian Lorentzian 3-manifolds. Symmetry 2019, 1, 784. [Google Scholar] [CrossRef]







© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






nav.xhtml


  mathematics-08-00046


  
    		
      mathematics-08-00046
    


  




  





media/file0.png





