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Abstract: In this paper, our purpose is to investigate the vector equilibrium problem of whether
the approximate solution representing bounded rationality can converge to the exact solution
representing complete rationality. An approximation theorem is proved for vector equilibrium
problems under some general assumptions. It is also shown that the bounded rationality is an
approximate way to achieve the full rationality. As a special case, we obtain some corollaries for
scalar equilibrium problems. Moreover, we obtain a generic convergence theorem of the solutions of
strictly-quasi-monotone vector equilibrium problems according to Baire’s theorems. As applications,
we investigate vector variational inequality problems, vector optimization problems and Nash
equilibrium problems of multi-objective games as special cases.
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1. Introduction

In the last two decades, the vector equilibrium problem (VEP) has received much attention
because it provides a unified framework for many important particular problems such as vector
variational inequality, vector optimization, vector saddle points, multiobjective games, multiobjective
transportation equilibrium problems, and so forth. A large amount of research on VEP mainly
focuses on the following aspects—the existence of solution (see References [1–6]), property of
solution (including connection and continuity, see References [7–12]), stability of solution (including
well-posedness and sensitivity analysis, see References [13–17]) and various algorithms for solving
VEP (see References [6,18–22] and the references therein). However, the approximation theorem of
VEP has hardly been seen from the perspective of algorithms.

As we know, the approximation theorems are central to many computing problems and the
related theory provides insight as well as a foundation for algorithms. Various iterative methods for
solving equilibrium problems have been developed, which can be divided into several classes—fixed
point methods, extragradient methods, descent methods, proximal point and Tykhonov-Browder
regularization methods (see the recent survey in Reference [6]). On the one hand, we know that
an exact solution of a VEP may not exist in practice if the data of the VEP model are not “regular”
and so the VEP model is generally solved by numerical methods (iterative procedures or heuristic
algorithms), producing approximations to the exact solutions. Thus, in general, obtaining exact
solutions to many practical problems is not possible. Naturally, it is interesting and important to
investigate some characterizations for approximate solutions of VEP. On the other hand, from the view
of Simon’s bounded rationality theory [23], the decision is to seek the satisfactory solution rather than
the exact optimal solution. Indeed, the satisfactory solution corresponds to the approximate solution,
which reflects the bounded rationality and the exact optimal solution corresponds to the full rationality.
However, the exact optimal solution is hardly obtained in the specific calculation process. We always
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obtain the approximate solution by means of iterative algorithms. Therefore, it is very important that
the approximate solution approaches the exact optimal solution which implies that the full rationality
can be approached by the bounded rationality.

In this paper, we aim to give an approximation theorem for VEP under some general assumptions
and frames. Some corollaries and remarks will be obtained under some conditions. This paper
is organized as follows—in Section 2, some definitions and two necessary lemmas are introduced.
In Section 3, an approximation theorem and some corollaries are proved, and we give the details
proofs and notations. In Section 4, the generic convergence theorem on monotone VEP is obtained.
Some applications of the approximation theorem for vector equilibrium problems are given in Section 5.
Section 6 provides a conclusion.

2. Preliminaries

Definition 1 ([24]). Let X be a Hausdorff topological space and φ : X → R be a function.

(i) φ is called upper pseudocontinuous (lower pseudocontinuous) at x0 ∈ X iff for all x ∈ X such that
φ(x0) < φ(x) (φ(x) < φ(x0)), we have

lim sup
y→x0

φ(y) < φ(x) (φ(x) < lim inf
y→x0

φ(y)). (1)

(ii) φ is called pseudocontinuous at x ∈ X iff φ is both upper pseudocontinuous and lower pseudocontinuous
at x.

(iii) Let Φ : X→ Rk be a vector-valued mapping, where Φ = {φ1, . . . , φk}. Then Φ is Rk
+− pseudocontinuous

(resp.upper pseudocontinuous, lower pseudocontinuous) iff φi is pseudocontinuous (resp.upper pseudocontinuous,
lower pseudocontinuous) for every i = 1, . . . , k.

Remark 1. Each upper(resp.lower) semicontinuous function is also upper(resp.lower) pseudocontinuous.
But the converse is not true.

Let X = [0, 2], φi : X → R, i = 1, 2,

φ1(x) =

{
1− x, 0 ≤ x < 1,
−1, 1 ≤ x ≤ 2.

; φ2(x) =

{
x− 1, 0 ≤ x < 1,
2, 1 ≤ x ≤ 2.

(2)

It is obvious that φ1 is not upper semicontinuous but upper pseudocontinuous at x = 1 and that φ2 is not
lower semicontinuous but lower pseudocontinuous at x = 1.

Definition 2 ([14]). A vector-valued function φ : X×X → Rk is called Rk-strictly-quasi-monotone on X×X
iff for any x, y ∈ X with x 6= y, φ(x, y) ∈ −intRk implies φ(y, x) ∈ −Rk.

Let (X, d) be a metric space, the following two lemmas are important to prove the approximation
theorem for VEP in Section 3.

Lemma 1 ([25]). Assume that there is a sequence {An} of a nonempty bounded subset of X and a nonempty
compact subset A of X. If xn ∈ An for any n = 1, 2, · · · and h(An, A) → 0, where h(An, A) means the
Hausdorff metric on X, then there exists a subsequence {xnk} of {xn} such that xnk → x∗ ∈ A.

Lemma 2 ([25]). Assume that there is a sequence {An} of a nonempty bounded subset of X and a nonempty
subset A of X. Let G be an open set of X, if A

⋂
G 6= ∅ and h(An, A)→ 0, then there exists a positive integer

N such that for any n ≥ N, An
⋂

G 6= ∅.
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3. Approximation Theorem

In this section, we are interested in the approximation of both the constraint set and the bifunction
of (VEP). To this purpose, we introduce a definition of an approximate equilibrium point. We start our
analysis with (VEP).

Let X be a nonempty subset of Rn, let A be a nonempty compact subset of X and let φ : X× X →
Rk be defined by φ(x, y) = (φ1(x, y), · · · , φk(x, y)), φi : X×X → R for all x, y ∈ X where each function
φi is pseudocontinuous and satisfies the condition φi(x, x) = 0 for all x ∈ X.

Problem (VEP) consists in finding x∗ ∈ X such that

φ(x∗, y) 6∈ −intRk
+, ∀y ∈ X. (3)

Definition 3. Given φ : X × X → Rk and ε = (ε1, ε2, · · · , εk), εi > 0, i = 1, 2, · · · , k, x∗ is said to be an
ε− equilibrium point of φ if

φ(x∗, y) + εb 6∈ −intRk
+, ∀y ∈ X, (4)

where b = (1, 1, · · · , 1)T .
For solving this problem, we propose approximating the function φ by a sequence of vector-valued functions

{φn} such that for all n,
φn : X× X → Rk

and

sup
(x,y)∈X×X

‖φn(x, y)− φ(x, y)‖ → 0 (n→ ∞). (5)

Furthermore, the compact subset A is approximated by means of a sequence {An} of subsets of X with

h(An, A)→ 0 (n→ ∞) (6)

where h(An, A) denotes the Hausdorff metric on X between the sets An and A.

Theorem 1. Let {xn} be a sequence in X and let {εn} be a sequence of positive numbers such that for all n and
y ∈ An,

φn(xn, y) + εnb 6∈ −intRk
+

where b = (1, 1, · · · , 1) ∈ Rk. If d(xn, An)→ 0 and {εn} → 0 as n→ ∞, then

(i) There exists a subsequence {xnj} of {xn} which converges to some x∗ ∈ A;
(ii) For any y ∈ A, φ(x∗, y) 6∈ −intRk

+.

Proof. (i) Since d(xn, An)→ 0(n→ ∞), there exists a sequence x
′
n ∈ An such that d(xn, x

′
n)→ 0. Since

the compactness of A and (6), by Lemma 1, there exists a subsequence x
′
nk

of x
′
n such that x

′
nk
→ x∗ ∈ A.

Hence there exists a subsequence {xnj} of {xn} which converges to some x∗ ∈ A.
(ii) Without loss of generality, it follows from (i) that we may assume that xn → x∗. If the statement

of (ii) was false, then there exists some point y0 ∈ A such that φ(x∗, y0) ∈ −intRk
+. Since φ(x∗, x∗) = 0,

then ∀i = 1, 2, · · · , k, φi(x∗, y0) < φi(x∗, x∗) = 0. By the definition of pseudocontinuity of φi at (x∗, y0),
for each i = 1, 2, · · · , k, we have

lim sup
x′→x∗ ,y′→y0

φi(x′, y′) < φi(x∗, x∗) = 0. (7)
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Hence there exists σ0 > 0 such that

lim sup
x′→x∗ ,y′→y0

φi(x′, y′) < −σ0. (8)

By Proposition 2.1 of Reference [24], there exists a neighborhood O(x∗) of x∗ and a neighborhood
O(y0) of y0 such that φi(x′, y′) < −σ0 for any x′ ∈ O(x∗) and any y′ ∈ O(yo).

Notice that the condition (5) and εn → 0 (n→ ∞), there exists a positive integer N1 such that for
any n ≥ N1,

sup
(x,y)∈X×X

‖φn(x, y)− φ(x, y)‖ < σ0

2
, εn <

σ0

2
. (9)

Since n → ∞, xn → x∗, h(An, A) → 0 and y0 ∈ A, by Lemma 2, there exists a positive integer
N2 ≥ N1 such that for any n ≥ N2, xn ∈ O(x∗) and O(y0)

⋂
An 6= ∅. We take yn ∈ O(y0)

⋂
An. Hence

we have

φi(xn, yn) < −σ0 (10)

and

φn
i (xn, yn) < φi(xn, yn) +

σ0

2
< −σ0

2
< −εn. (11)

Consequently φn(xn, yn) + εnb ∈ −intRk
+. This leads to a contradiction that xn is an

εn-equilibrium point of φn. Thus the proof is finished.

Remark 2. In Theorem 1, if φi is continuous for each n = 1, 2, 3, · · · , then Theorem 1 holds; if xn ∈ An for
each n = 1, 2, 3, · · · , then Theorem 1 also holds.

Remark 3. It is obvious that Theorem 1 reflects the theoretical significance—the bifunctions are approximate,
the constraint sets are approximate, and the solutions of VEP are also approximate. In that case, there exists
{xnk} ⊂ {xn} such that xnk → x∗ ∈ A. If we see the solutions of φ as the optimal solutions under full
rationality and εn-equilibrium points of φn as the approximate solutions under bounded rationality, Theorem 1
reflects that the full rationality can be approached by the bounded rationality.

Notice that the above approximation theorem for vector equilibrium problems can be weakened
by the following Corollary 1.

Corollary 1. Let X be a nonempty subset of Rn and all the following assumptions are satisfied:

(i) For any n = 1, 2, · · · , the vector-valued function sequence φn : X × X → Rk is satisfied with
sup

(x,y)∈X×X
‖φn(x, y)− φ(x, y)‖ → 0, where the function φ : X× X → Rk is upper pseudocontinuous

at the first variable on X;
(ii) A is a nonempty compact subset of X and φ(x, x) = 0 for any x ∈ A;

(iii) For any n = 1, 2, · · · , xn ∈ A is εn−equilibrium point of φn, that is, φn(xn, y) + εnb 6∈ −intRk
+ for

any y ∈ A, where εn > 0 and εn → 0(n→ ∞).

Then

(i) there exists a subsequence {xnj} of {xn} which converges to some x∗ ∈ A;
(ii) for any y ∈ A, φ(x∗, y) 6∈ −intRk

+.

Proof. In Theorem 1, let An = A, n = 1, 2, · · · , then Corollary 1 can be completed in the similar
method as shown in Theorem 1.
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For scalar equilibrium problems, we can obtain the following Corollary 2, which can be seen
Theroem A in Reference [26].

Corollary 2. Let X be a metric space and all the following assumptions are satisfied:

(i) For any n = 1, 2, · · · , the function sequence f n : X × X → R is satisfied with sup
(x,y)∈X×X

| f n(x, y)−

f (x, y)| → 0, where the function f : X× X → R is upper pseudocontinuous;
(ii) For any n = 1, 2, · · · , An is a subset sequence of X with h(An, A) → 0(n → ∞), where A is a

nonempty compact subset of X and f (x, x) = 0 for any x ∈ A;
(iii) For any n = 1, 2, · · · , xn ∈ An is εn−equilibrium point of f n, that is, f n(xn, y) ≥ −εn for any

y ∈ An, where εn > 0 and εn → 0(n→ ∞).

Then

(i) there exists a subsequence {xnj} of {xn} which converges to some x∗ ∈ A;
(ii) for any y ∈ A, f (x∗, y) ≥ 0.

4. Generic Convergence

In this section, we will study the generic convergence of VEP. Firstly we construct a space of VEP
under some assumptions and study the property of the set of solutions.

Let a space M of VEP be defined by

M =

u = (φ, A) :

φ : X× X → Rk is Rk − upper− semicontinuous on X× X;
φ is Rk − strictly− quasi−monotone on X× X;
A is a monempty compact subset of X;
and ∃x∗ ∈ A such that φ(x, y) 6∈ −intRk

+, ∀y ∈ A.


For any U1 = (φ1, A1), U2 = (φ2, A2), denote

ρ(U1, U2) = sup
(x,y)∈X×X

‖φ1(x, y)− φ2(x, y)‖+ h(A1, A2), (12)

where h is the Hausdorff distance on X.
Denote by S(u) the set of all solutions to VEP in A. Then it yields a set-valued mappings S : M→ 2X,

that is, S(u) = {x ∈ A : φ(x, y) 6∈ −intRk
+,∀y ∈ A} for all u ∈ M.

By Reference [14], the authors obtain an important result using the way of set-valued analysis.

Lemma 3. There exists a dense everywhere residual subset Q of M such that S(u) = {x ∈ A : φ(x, y) 6∈
−intRk

+, ∀y ∈ A} is a singleton for each u = (φ, A) ∈ Q, that is, VEP has a unique solution in A.

Lemma 4. If the solution of VEP is a singleton set, then {xn} → x∗.

Proof. By contradiction, assume that {xn} does not converge to x∗, then there exists δ > 0 and a
subsequence {xnk} of {xn} such that d(x∗, xnk ) ≥ δ, ∀k. By Theorem 1, there exists a subsequence
{xnkt

} of {xnk}, xnkt
→ x ∈ A, we may suppose that xnk → x, that is d(xnk , x) → 0. x satisfies

φ(x, y) 6∈ −intRk
+ for each y ∈ A. Since the solution is singleton set, then x = x∗, d(x, xnk ) ≥ δ which

is a contradiction. Thus, the result holds.

Remark 4. In fact, the convergence of Lemma 4 is better than Theorem 1, Corollary 1 and Corollary 2.
In Lemma 4, there exists the convergence sequence xn → x∗ ∈ A but not the convergence subsequence
xnj → x∗ ∈ A if the solution of VEP is a singleton set.

Next, we can obtain the generic convergence theorem of solutions of VEP.
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Theorem 2. Let {xn} be εn − solution of φn with the convergence function φ under the uniform metric. There
exists a dense residual subset Q of M such that for any u = (φ, A) ∈ Q, then φ has a unique solution x∗ with
{xn} → x∗ and φ(x∗, y) 6∈ −intRk

+, ∀y ∈ A.

Proof. It is obvious that Theorem 2 can be deduced by combining Lemma 4 with Lemma 3.

Remark 5. Note that φ : X × X → Rk is Rk-upper-continuouson X × X. If φ : X × X → Rk is
Rk-pseudocontinuous on X× X, then Theorem 2 also holds. All the proofs are similar and so we omit it.

5. Applications

In this section, we obtain some applications of the approximation theorem for vector
equilibrium problems.

5.1. Vector Variational Inequality Problems

Let X and Y be topological vector spaces and K be a nonempty subset of X. Let T : K → L(X, Y)
be an operator, for each l ∈ L(X, Y), the value of l at x is denoted by < l, x >. The vector variational
inequality problems (VVIPs) are defined as follows:

Find x∗ ∈ K such that < T(x∗), y− x∗ >/∈ −intRk
+, for all y ∈ K.

Set

φ(x, y) =< T(x), y− x >, ∀ x, y ∈ K. (13)

Then VVIPs are equivalent to the corresponding VEPs. By Theorem 1, we can obtain the following
Proposition 1.

Proposition 1. If the following conditions are satisfied:

(i) For any n = 1, 2, · · · , the operator sequence Tn : K → L(X, Y) is satisfied with supx∈K ‖Tn(x)−
T(x)‖ → 0, where the operator T : K → L(X, Y) is pseudocontinuous;

(ii) For any n = 1, 2, · · · , An is a subset sequence of K with h(An, A) → 0(n → ∞), where A is a
nonempty compact subset of K;

(iii) For any n = 1, 2, · · · , xn ∈ K and d(xn, An)→ 0(n→ ∞), there holds < Tn(xn), y− xn > +εnb 6∈
−intRk

+, ∀y ∈ An, where b = (1, 1, · · · , 1) ∈ Rk
+, εn > 0 and εn → 0(n→ ∞).

Then

(i) there exists a subsequence {xnj} of {xn} which converges to some x∗ ∈ A;
(ii) for any y ∈ K, < T(x∗), y− x∗ > 6∈ −intRk

+.

5.2. Vector Optimization Problems

Let X be a topological vector space and K be a nonempty subset of X. Let f : K → Rk be a vector
function. The vector optimization problems (VOPs) are defined as follows:

Find x∗ ∈ K such that f (y)− f (x∗) /∈ −intRk
+, for all y ∈ K.

Set

φ(x, y) = f (y)− f (x), ∀ x, y ∈ K. (14)

Then VOPs are equivalent to the corresponding VEPs. By Theorem 1, we can obtain the following
Proposition 2.

Proposition 2. If the following conditions are satisfied:
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(i) For any n = 1, 2, · · · , the function sequence Fn : K → Rk is satisfied with supx∈K ‖Fn(x)− F(x)‖ →
0, where the function F : K → Rk is pseudocontinuous;

(ii) For any n = 1, 2, · · · , An is a subset sequence of K with h(An, A) → 0(n → ∞), where A is a
nonempty compact subset of K;

(iii) For any n = 1, 2, · · · , xn ∈ K and d(xn, An) → 0(n → ∞), there holds Fn(y)− Fn(xn) + εnb 6∈
−intRk

+, ∀y ∈ An, where b = (1, 1, · · · , 1) ∈ Rk
+, εn > 0 and εn → 0(n→ ∞).

Then

(i) There exists a subsequence {xnj} of {xn} which converges to some x∗ ∈ A;
(ii) For any y ∈ A, F(y)− F(x∗) 6∈ −intRk

+.

5.3. Nash Equilibrium Problems of Multiobjective Games (In Short, NEPs)

Let N = {1, ..., n} denote the set of players. For each i ∈ N, assume that the strategy set of the
ith player is denoted by Ki. Now denote the players’ strategy profile x = (xi, x−i) ∈ K = ∏i∈N Ki,
where xi ∈ Ki and x−i ∈ K−i = ∏j∈N,j 6=i Kj.

For each i ∈ N, let Φi = {φi
1, φi

2, . . . , φi
l} : Ki × K−i → Rk denote the objective function of the ith

player. A point x∗ = (x∗i , x∗−i) ∈ K is called to be a weakly Pareto-Nash equilibrium of multiobjective
games, that is, for each i ∈ N, Φi(x∗i , x∗−i)−Φi(xi, x∗−i) /∈ −intRk

+, for all xi ∈ Ki.
Set

φ(x, y) =
n

∑
i=i

[Φi(xi, x−i)−Φi(yi, x−i)], ∀ x, y ∈ K. (15)

Then NEPs are equivalent to the corresponding VEPs. By Theorem 1, we can obtain the following
Proposition 3.

Proposition 3. If the following conditions are satisfied:

(i) For any i ∈ N, the function sequence Φm
i : K → Rk is satisfied with supx∈K ‖Φm

i (x)−Φi(x)‖ →
0(m→ ∞), where the operator Φi : K → Rk is pseudocontinuous for each i = 1, 2, . . . , n;

(ii) For any i ∈ N, Am
i is a subset sequence of Ki with h(Am

i , Ai)→ 0(m→ ∞), where Ai is a nonempty
compact subset of Ki;

(iii) For any m = 1, 2, · · · , xm ∈ K and d(xm, ∏n
i=1 Am

i ) → 0(n → ∞), there holds Φm
i (yi, xm

−i) −
Φm

i (xm
i , xm

−i) + εnb 6∈ −intRk
+, for any i ∈ N, ∀yi ∈ Am

i , where b = (1, 1, · · · , 1) ∈ Rk, εn > 0 and
εn → 0(n→ ∞).

Then

(i) There exists a subsequence {xmj} of {xm} which converges to some x∗ ∈ ∏n
i=1 Ai;

(ii) For any yi ∈ Ai, Φi(yi, x∗−i)−Φi(x∗i , x∗−i) 6∈ −intRk
+ for each i = 1, 2, . . . , n.

6. Conclusions

In this paper, we propose an approximate theorem (Theorem 1) for vector equilibrium problems
under bounded rationality. According to the theorem, we illustrate the Simon’s bounded rationality
theory from the perspective of the vector equilibrium problems. That means the bounded rationality is
an approximate way to full rationality. In Theorem 1, we can obtain the convergent subsequence of
approximate solutions on VEPs and prove that the limitation of the subsequence belongs to the set of
solutions of objective functions. This theory provides a basis for the algorithm of the vector equilibrium
problem. Moreover, we also get the generic convergence of solutions of strictly-quasi-monotone vector
equilibrium problems in the sense of the Baire category. Some examples, such as VVIPs, VOPs and
NEPs, are given to investigate our results.
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