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Abstract: High-resolution coherent multidimensional spectroscopy is a technique that automatically
sorts rotationally resolved peaks by quantum number in 2D or 3D space. The resulting ability to
obtain a set of peaks whose J values are sequentially ordered but not known raises the question of
whether a method can be developed that yields a single unique solution that is correct. This paper
includes a proof based upon the method of combined differences that shows that the solution would
be unique because of the special form of the rotational energy function. Several simulated tests using
a least squares analysis of simulated data were carried out, and the results indicate that this method
is able to accurately determine the rotational quantum number, as well as the corresponding Dunham
coefficients. Tests that include simulated random error were also carried out to illustrate how error
can affect the accuracy of higher-order Dunham coefficients, and how increasing the number of points
in the set can be used to help address that.

Keywords: combination differences; CMDS; rotational energy; spectroscopy; multidimensional; gas;
quantum number; Dunham coefficient

1. Introduction

During the past two decades, coherent multidimensional spectroscopy (CMDS) has emerged as
a powerful tool that can overcome the limitations of traditional one-dimensional techniques [1–5].
High-resolution coherent multidimensional spectroscopy (HRCMDS) is a form of CMDS that is
designed to overcome congestion problems commonly found in the high-resolution spectra of
gas-phase molecules [6]. Above cryogenic temperatures, gas molecules can yield spectra that contain a
wealth of information (e.g., thousands or millions of peaks), but spectral congestion often precludes
the ability to resolve and assign these peaks. Assigning peaks by quantum number is needed in
order to calculate molecular constants that provide details on the structure and behavior of molecules.
Historically, strategies for assigning resolved peaks in 1D spectroscopy have typically involved
making initial guesses, trial and error, and pattern recognition. For example, the Loomis–Wood
rotational-branch-picking pattern-recognition scheme was developed in 1928 [7] and involves plotting
data from one-dimensional spectra onto a two-dimensional display, to help identify peaks that belong
to the same rotational branch [8]. High-resolution coherent two-dimensional spectroscopy (HRC2DS)
is a powerful new technique that improves spectral resolution while automatically organizing peaks
into easily recognizable 2D patterns, where they appear sorted sequentially by quantum number [9].
This new capability suggests that a new method can be developed to assign peaks that does not rely
upon things like initial guesses or trial and error.
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Figure 1 shows two kinds of patterns that are commonly observed in HRC2DS spectra. The basic
unit for both patterns is a rectangle, formed by four rotational peaks in 2D space [10]. Each of these
peaks forms the corner of a rectangle, and all four peaks have identical vibrational quantum numbers
and initial rotational quantum numbers. The peaks within each rectangle differ by whether they involve
a P or an R process for both the x and y axes, and the size of the rectangle increases with increasing
initial rotational quantum number, J. Throughout this paper, J is used (instead of the customary J”) to
represent the initial rotational quantum number.
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Figure 1. Rotational patterns observed in HRC2DS appear with the shape of an X (if the rotational
constants for upper and lower levels are similar) or a double parabola (if the rotational constants for
the upper and lower levels are different). Each dot represents a peak (coming out of the page) in 2D
space. In both cases, the basic pattern consists of four peaks that form a rectangle.

A three-dimensional form of HRCMDS has also been developed to provide even higher spectral
resolution than HRC2DS [11]. The improved resolution provided by high-resolution coherent 3D
spectroscopy (HRC3DS) can be useful when dealing with more complex molecular systems [12].
HRC3DS also provides selectivity by species and/or quantum number, and can therefore be useful
for mixtures [13]. Unlike the 2D basic rotational, unit which consists of four peaks in the shape of a
rectangle, the 3D basic rotational unit consists of six peaks that form two triangles that reside in parallel
planes in 3D space (see Figure 2). Both the 2D basic rotational pattern and the 3D basic rotational
pattern make assigning peaks convenient; for both techniques, all the peaks in that basic unit have the
same vibrational quantum numbers (v) and the same initial rotational quantum number (J), and the
size of the basic unit grows sequentially with the increasing J value.



Mathematics 2020, 8, 44 3 of 12Mathematics 2020, 8, x FOR PEER REVIEW 3 of 11 

 

 

Figure 2. The basic rotational pattern in HRC3DS consists of six peaks, all with the same J value, that 
form two triangles. The size of each triangle pair grows with increasing J. The above cartoon shows 
three pairs of triangles (small, medium, and large) for J = 1, 2, and 3. 

The main advantages of HRC2DS over conventional 1D spectroscopy are the dramatic 
improvement in spectral resolution and the automated peak organization and sorting capabilities. 
These capabilities make it relatively easy to identify peaks with the same vibrational and rotational 
quantum numbers. Furthermore, since the basic rotational units increase in size with J and are 
sequentially juxtaposed, the technique makes it easy to find series of basic rotational units that are 
sequentially ordered by J. As a result, if one unit has its peaks assigned by rotational and vibrational 
quantum numbers, then all the others can easily be assigned. For example, in HRC2DS, if the J value 
is determined for one rectangle, then the J values are easy to determine for all other rectangles that 
belong to the same pattern. Furthermore, all of the rectangles in that pattern will have the same 
vibrational quantum numbers. If multiple patterns are observed, then the assigned rectangles for one 
can be used to assign J values for the other pattern, since their peaks may have the same x-axis or y-
axis wavelengths. For example, nearly identical patterns that differ by one vibrational quantum 
number can often be seen adjacent to each other. Therefore, the successful assignment of just one 
rectangle could facilitate the assignment of all peaks in the entire 2D spectrum. 

In principle, one could assign all rectangles in an HRC2DS spectrum by looking for the smallest 
rectangle, which should be located at the center of the pattern, and assigning its peaks a J value of 1. 
In practice, however, the smaller rectangles can be difficult to resolve, especially if the rotational 
constants are small (which occurs for larger and heavier molecules). For HRC3DS, the smallest pair 
of triangles with a J value of 1 may also be difficult to locate in 3D space. Therefore, an alternative 
method is needed to determine or confirm the value of J assigned to each peak and basic rotational 
pattern, so that molecular constants can subsequently be determined. The purpose of this paper is to 
describe such a method and to provide a proof that its solution is unique. 

2. Materials and Methods 

The method of combination differences [14] has long been used for analyzing one-dimensional 
rotationally resolved spectra. The rotationally resolved energy levels of a diatomic molecule can be 
described by the following equation: E = T + G + B(J)(J + 1) − D(J )(J + 1)   

for both the upper- and lower-state levels. For the common selection rule of ΔJ =  ±1, the energy 
difference between peaks that have the same J value can be described by the following: ΔF(J) = R(J) − P(J) = (4J + 2)(B − 2D(J + J + 1)    = (4J + 2)(Y , + 2Y , (J + J + 1))  

Figure 2. The basic rotational pattern in HRC3DS consists of six peaks, all with the same J value, that
form two triangles. The size of each triangle pair grows with increasing J. The above cartoon shows
three pairs of triangles (small, medium, and large) for J = 1, 2, and 3.

The main advantages of HRC2DS over conventional 1D spectroscopy are the dramatic
improvement in spectral resolution and the automated peak organization and sorting capabilities.
These capabilities make it relatively easy to identify peaks with the same vibrational and rotational
quantum numbers. Furthermore, since the basic rotational units increase in size with J and are
sequentially juxtaposed, the technique makes it easy to find series of basic rotational units that are
sequentially ordered by J. As a result, if one unit has its peaks assigned by rotational and vibrational
quantum numbers, then all the others can easily be assigned. For example, in HRC2DS, if the J value is
determined for one rectangle, then the J values are easy to determine for all other rectangles that belong
to the same pattern. Furthermore, all of the rectangles in that pattern will have the same vibrational
quantum numbers. If multiple patterns are observed, then the assigned rectangles for one can be
used to assign J values for the other pattern, since their peaks may have the same x-axis or y-axis
wavelengths. For example, nearly identical patterns that differ by one vibrational quantum number
can often be seen adjacent to each other. Therefore, the successful assignment of just one rectangle
could facilitate the assignment of all peaks in the entire 2D spectrum.

In principle, one could assign all rectangles in an HRC2DS spectrum by looking for the smallest
rectangle, which should be located at the center of the pattern, and assigning its peaks a J value of
1. In practice, however, the smaller rectangles can be difficult to resolve, especially if the rotational
constants are small (which occurs for larger and heavier molecules). For HRC3DS, the smallest pair
of triangles with a J value of 1 may also be difficult to locate in 3D space. Therefore, an alternative
method is needed to determine or confirm the value of J assigned to each peak and basic rotational
pattern, so that molecular constants can subsequently be determined. The purpose of this paper is to
describe such a method and to provide a proof that its solution is unique.

2. Materials and Methods

The method of combination differences [14] has long been used for analyzing one-dimensional
rotationally resolved spectra. The rotationally resolved energy levels of a diatomic molecule can be
described by the following equation:

E = T + Gv + B(J)(J + 1) −D
(
J2
)
(J + 1)2
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for both the upper- and lower-state levels. For the common selection rule of ∆J = ±1, the energy
difference between peaks that have the same J value can be described by the following:

∆F(J) = R(J) − P(J) = (4J + 2)(B− 2D
(
J2 + J + 1

)
= (4J + 2)

(
Y0,1 + 2Y0,2

(
J2 + J + 1

))
where the J’s are rotational quantum numbers for the initial ground state, and the Dunham coefficients,
Y0,1 and Y0,2, are for the upper level of the corresponding resonances.

In HRCMDS, combination differences such as these correspond to the widths and heights of
rectangles and triangles in the observed 2D and 3D spectra (see Figure 3) [6,13]. If a series of adjacent
rectangles or triangles is observed, then their initial rotational quantum numbers (J) should increase
sequentially with the size of the rectangle or triangle. The challenge is to determine the values of both
the variable J and the parameters Y0,1, Y0,2, . . . from the observed sequence of combined differences
(i.e., the widths and heights of the rectangles or triangles). For a general polynomial, each proposed
integer value of J could yield a different set of parameters that would fit the data, because the function
could simply be shifted. However, the energy polynomial function has some unique properties because
of its special form; it is a polynomial in J(J + 1) instead of just J. We exploit this property when exploring
the effects of translation in Theorem 4 below; translations of polynomials in J(J + 1) are not polynomials
in J(J + 1). The following section is a proof that using a series of sequential combined differences to
solve for J and the associated parameters yields a result that is unique.
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Figure 3. The height and the width of the rectangles in HRC2DS can be used for the method of
combination differences. If the frequency on the x axis is different from that on the y axis, then
combination differences for two different regions of the spectrum will be recorded simultaneously.
Analysis for each axis can be conducted independently, but in the end, the J values should agree for
both sets of results.

Mathematical Model

Assume that the energy function for a molecule has the form E(J) = Y0,1J(J + 1) + Y0,2J2(J + 1)2 +

. . .+ Y0,nJn(J + 1)n + constant for some positive integer value of n. E(J) is therefore a function of
J(J + 1), where the number J is a positive integer. Data values c1, c2, c3 . . . are collected from the
dimensions of boxes or triangles in the multidimensional spectra. As a result, E(J + 1) − E(J− 1) =
c1, E(J + 2) − E(J) = c2, . . . E(J + k) − E(J + k− 2) = ck. However, the corresponding values for J are
unknown. Furthermore, we assume that sufficient data is acquired so that k > 2n. The goal for a
spectroscopist is to find the J value and the coefficients Y0,n for the energy function E(J) that would fit
the observed data.
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The purpose of the following is to show that the determined values for J and Y0,n will be uniquely
determined by the observed values c1, c2, . . . ck. For an arbitrary polynomial f(x), it is most definitely not
the case that the set of equations f(J + 1)− f(J− 1) = c1, f(J + 2)− f(J) = c2, . . . , f(J + k)− f(J + k− 2) =
ck uniquely determines f(x) and J for a given set c1, c2, . . . ck. For if f(x) and J satisfy the constraints,
then so do g(x) and A where g(x) = f(x − A + J) for any A. However, E has a special form that we
exploit in the following theorems.

For polynomials, in expressions such as E(J + i) − E(J + i− 2), the constant term always vanishes
so there is no way to determine it from this observed data; hence, techniques different from the ones
considered in this paper are used to determine any vibrational or electronic energies. For this paper,
we will assume that such constants cancel and consider only the higher-order coefficients. Though not
considered in this paper, the reader should note that they can be uniquely determined.

Theorem 1. Let L(E1(J), J = Ji) denote E1(Ji + 1) − E1(Ji − 1). Then L is linear in E.

Proof.
L(E1(J) + E2(J), J = Ji) = (E1 + E2)(Ji + 1) − (E1 + E2)(Ji − 1)

= E1(Ji + 1) + E2(Ji + 1) − E1(Ji − 1) − E2(Ji − 1)
= E1(Ji + 1) − E1(Ji − 1) + E2(Ji + 1) − E2(Ji − 1)

= L(E1(J), J = Ji) + L(E2(J), J = Ji)

also,
L(αE, J = Ji) = (αE)(Ji + 1) − (αE)(Ji − 1)

= αE(Ji + 1) −αE(Ji − 1)
= α(E(Ji + 1) − E(Ji − 1))

�

Theorem 2. Suppose E(J) and F(J) are energy functions (with zero constant terms) such that E(J + 1) −
E(J − 1) = F(J + 1) − F(J − 1) for all J. Then E(J) = F(J) for all J, and if E and F produce the same observables
corresponding to the same quantum numbers, then E and F are the same everywhere.

Proof. The following proof is by contradiction. Suppose E(J) is the not the same polynomial as F(J).
Then, there must be a highest-degree term at which they differ. Let E(J) = a1J + . . .+ anJn + s(J) and
F(J) = b1J + . . .+ bnJn + s(J) where an , bn and s(J) represents the higher-order parts that are the
same in these two functions. Consider the following expression:

E(J + 1) − E(J− 1) = F(J + 1) − F(J− 1)

which becomes a1(J + 1) . . . + an(J + 1)n
− a1(J− 1) . . . − an(J− 1)n = b1(J + 1) . . . + bn(J + 1)n

−

b1(J− 1) . . .− bn(J− 1)n. If n = 1, this expression reduces to the following:

a1(J + 1) − a1(J− 1) = b1(J + 1) − b1(J− 1)

or
2a1 = 2b1

which contradicts the assumption that an , bn. Thus, we may assume n ≥ 2. Collecting similar terms
and dividing by Jn−1 (which is not a constant) yields the following:

a1[(J+1)−(J−1)]
Jn−1 + . . .+

an[(J+1)n
−(J−1)n]

Jn−1

=
b1[(J+1)−(J−1)]

Jn−1 + . . .+
bn[(J+1)n

−(J−1)n])]
Jn−1
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where, for all terms except an and bn, the numerators are degree less than n − 1. For the an and bn

terms, the numerator has degree equal to n − 1. Hence, letting J→∞, the lower-order terms vanish,
yielding the following:

lim
J→∞

an
[
(J + 1)n

− (J− 1)n
]

Jn−1

 = lim
J→∞

bn
[
(J + 1)n

− (J− 1)n
]

Jn−1


or

2nan = 2nbn

which yields the contradiction an = bn. �

Theorem 3. Suppose E1 and E2 are energy functions that describe the same data from an experiment
with possibly different quantum numbers. That is, L(E1(J), J = J1 + i) = ci and L(E2(J), J = J2 + i) = ci
for i = 1 . . . k, where k > 2n. Then E1(J) = E2(J − J1 + J2) for all J. Therefore, E1 and E2 are translations of
each other.

Proof. Suppose L(E1(J), J = J1 + i) = ci and L(E2(J), J = J2 + i) = ci.
Then

L(E1(J) − E2(J− J1 + J2), J = J1 + i)
= L(E1(J), J = J1 + i) − L(E2(J− J1 + J2), J = J1 + i)
= E1(J1 + i + 1) − E1(J1 + i− 1) − E2(J1 + i− J1 + J2 + 1) + E2(J1 + i− J1 + J2 − 1)
= E1(J1 + i + 1) − E1(J1 + i− 1) − E2(J2 + i + 1) + E2(J2 + i− 1)
= L(E1(J), J = J1 + i) − L(E2(J), J = J2 + i)
= ci − ci = 0

Since E1(J) and E2(J) are 2nth degree polynomials, it follows E1(J) − E2(J− J1 + J2) is polynomial
of degree at most 2n. However, the above computation (recalling the definition of L) shows E1(J + 1)−
E2(J− J1 + J2 + 1)− [E1(J− 1) − E2(J− J1 + J2 − 1)] has k zeros, namely at J1 + i for i = 1 . . . k. This result
implies the following:

E1(J + 1) − E2(J− J1 + J2 + 1) − [E1(J− 1) − E2(J− J1 + J2 − 1)] = 0

for all J, since k is larger than 2n. Thus, we get the following:

E1(J + 1) − E1(J− 1) = E2(J− J1 + J2 + 1) − E2(J− J1 + J2 − 1)

for all J. Theorem 2 implies the following:

E1(J) = E2(J− J1 + J2).

�

Theorem 4. If E(J) is an energy function, then E(J − a) is not an energy function for a , 0.

Proof. Suppose E(J) = Y0,1J(J + 1) + Y0,2J2(J + 1)2 + . . .+ Y0,nJn(J + 1)n for some n value with Y0,n ,

0. Assume E(J− a) is an energy function. Then, we get the following:

E(J− a) = z1J(J + 1) + z2J2(J + 1)2 + . . .+ znJn(J + 1)n
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for some values z1, z2, . . . zn. We also get the following:

E(J− a) = Y0,1(J− a)(J− a + 1) + Y0,2(J− a)2(J− a + 1)2 + . . .+ Y0,n(J− a)n(J− a + 1)n

now we equate coefficients for the J2n and J2n−1 terms in the two expressions for E(J− a) above.
Expanding the two expressions, we obtain the following:

zn
(
J2n + nJ2n−1 + . . .

)
= Y0,n

(
Jn
− naJn−1 + . . .

)(
Jn + n(−a + 1)Jn−1 + . . .

)
= Y0,n

(
J2n + (−2na + n)J2n−1 + . . .

)
where the former expression has zn for its 2nth coefficient; the latter has Y0,n. Hence, Y0,n = zn.
Considering the J2n−1 coefficient, we obtain the following:

nzn = Y0,n(−2na + n)

If we substitute Y0,n = zn, we obtain the following:

nYn = Y0,n(−2na + n)

since n , 0,
Y0,n = Y0,n(−2a + 1)

which implies −2a + 1 = 1 or a = 0. Putting these results together completes the goal of this proof. �

Theorem 5. Given data values c1, c2, . . . , ck with k > 2n, there exists at most one energy function E(J) =

Y0,1 J(J + 1) + Y0,2 J2(J + 1)2 + . . .+ Y0,n Jn(J + 1)n and a unique integer J such that E(J + 1) − E(J − 1) =
c1, E(J + 2) − E(J) = c2, . . .E(J + k) − E(J + k− 2) = ck.

Proof. If two energy functions exist, by Theorem 3, they would be translations of each other. By Theorem
4, a translation of an energy function is not an energy function. �

3. Results

In order to test how well this approach can determine the correct coefficients of E and the quantum
number J from the differences E(J + 1) − E(J − 1) = c1, . . . , E(J + k + 1) − E(J + k − 1) = ck, we used
simulated data based upon published Dunham coefficients for the 79,81Br2 isotopologue [15]. The first
test involved four different data sets, each with a different initial value of J, and a varying amount of
simulated experimental error that was added to each calculated peak value, using a random number
generator. Three separate error levels were tested: no random error (other than rounding errors),
small random errors (standard deviation ~0.003 cm−1) consistent with a tunable dye laser that has
been monitored using a wavemeter, and big random errors (standard deviation ~0.03 cm−1) consistent
with a tunable dye laser that has not been used with a wavemeter. The implemented strategy was
to systematically test possible J values ranging from J = 1 to J = 300, to use least squares to find the
coefficients Y0,i which worked best with each J value, and then to compute the total absolute error for
each J value. The solutions that gave the smallest error for the J value were then selected as the best J
and Y0,i values. Algorithm 1 illustrates the procedure that was used.



Mathematics 2020, 8, 44 8 of 12

Algorithm 1. Strategy for Finding E(x) and the Quantum Numbers.

Set initial Error = 1000 and J = 0
FOR x from 1 to 300 do
FOR i from 1 to k do
Solve the system E(x + i + 1) − E(x + i− 1) = ci using Least Squares approximation.
END FOR

If
k∑

i=1
(E(x + i + 1) − E(x + i− 1) − ci)

2 < Error,

set Error =
k∑

i=1
(E(x + i + 1) − E(x + i− 1) − ci)

2

set J = x and store coefficients
END FOR
Output J and coefficients

This procedure also explored the effect of varying the number of points (1 point = distance between
two peaks in the HRC2D spectrum having the same J value and the same x- or y-axis value) included
in each simulation; the number of points used was either 25, 50, 75, or 100. The results are shown in
Table A1 of Appendix A, and the key findings are summarized here. The accuracy of the determined J
value depends primarily upon the number of points and the size of the error. For the no-error and
small-error cases, the value of J was always determined correctly when the number of points used was
at least 50. In all but one case, the value of J was determined correctly when the number of points was
reduced to 25 points. For the big-error case, the value of J could always be determined correctly when
the number of points was increased to 100.

The results also show that the accuracy of the calculated Y0,i values also depended upon the
number of points and the size of the error. For the no-error and small-error cases, the value of Y0,1
was always within 1% of the correct value when the number of points used was at least 50. For the
big-error case, the value of Y0,1 could always be determined correctly to within 1% when the number
of points was increased to 100 and within 4% when the number of points was increased to 50.

For the no-error and small-error cases, the value of Y0,2 was always within 13% of the correct
value when the number of points used was at least 100. The values of Y0,2 were generally not accurate
for the big-error cases, and the values of Y0,3 were generally not accurate.

The results of the first test indicated that both J and Y0,1 could be determined with a high degree
of accuracy when the number of points was high (e.g., 100). However, the accuracies for Y0,2 and Y0,3
were much poorer and highly sensitive to the level of experimental error. One possible reason was
that the size of the experimental errors was relatively large compared to the small size of bromine’s
rotational constants (Y0,1 ≈ 0.08 and Y0,2 ≈ 2 × 10−8 cm−1). Most molecules don’t contain heavy atoms
like bromine, and many are likely to have larger rotational constants. Therefore, a second test was
carried out, using rotational constants that were roughly an order of magnitude larger. Once again,
four different data sets were used with the same three error levels, but the values of J were changed.
The results are shown in Table 1.
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Table 1. Results from the second test, after increasing the size of the Dunham coefficients and the
number of experimental points (see text in the preceding paragraph). The starting J values were 3, 6, 9,
12, 16, 26, 66, and 106, and the actual Dunham coefficients are shown at the bottom of the table.

Error Level # of Points Jinitial Y0,1, cm−1 Y0,2, cm−1 Y0,3, cm−1

Big Errors 100 pts 3 0.89255283 2.19406849 × 10−7 1.80551004 × 10−12

Small Errors 100 pts 3 0.89209091 2.61543332 × 10−7 9.86887062 × 10−14

No Errors 100 pts 3 0.89204291 2.65312774 × 10−7
−2.69725614 × 10−14

Big Errors 100 pts 6 0.89253784 2.17170076 × 10−7 1.93329779 × 10−12

Small Errors 100 pts 6 0.89209175 2.61492754 × 10−7 1.1231689 × 10−13

No Errors 100 pts 6 0.89204291 2.65312776 × 10−7
−2.69727379 × 10−14

Big Errors 100 pts 9 0.89253362 2.26479359 × 10−7 1.25914078 × 10−12

Small Errors 100 pts 9 0.89208591 2.62090548 × 10−7 9.02917184 × 10−14

No Errors 100 pts 9 0.89204291 2.65312777 × 10−7
−2.69727795 × 10−14

Big Errors 100 pts 12 0.89245951 2.37361798 × 10−7 9.01122185 × 10−13

Small Errors 100 pts 12 0.89208586 2.62147748 × 10−7 8.81929312 × 10−14

No Errors 100 pts 12 0.89204291 2.65312786 × 10−7
−2.69733292 × 10−14

Big Errors 100 pts 16 0.89239794 2.44897158 × 10−7 5.92940375 × 10−13

Small Errors 100 pts 16 0.89208775 2.61603177 × 10−7 1.02551945 × 10−13

No Errors 100 pts 16 0.89204291 2.65312790 × 10−7
−2.69735537 × 10−14

Big Errors 100 pts 26 0.89238916 2.47486226 × 10−7 4.2166196 × 10−13

Small Errors 100 pts 26 0.89207606 2.63643878 × 10−7 1.31127861 × 10−14

No Errors 100 pts 26 0.89204291 2.65312822 × 10−7
−2.69743972 × 10−14

Big Errors 100 pts 66 0.89230088 2.56825316 × 10−7 1.06531051 × 10−13

Small Errors 100 pts 66 0.89206372 2.64810528 × 10−7
−2.13858732 × 10−14

No Errors 100 pts 66 0.89204291 2.65312788 × 10−7
−2.69733892 × 10−14

Big Errors 100 pts 106 0.89220592 2.62871958 × 10−7
−8.86578515 × 10−15

Small Errors 100 pts 106 0.89207021 2.64725851 × 10−7
−2.13572976 × 10−14

No Errors 100 pts 106 0.89204291 2.65312789 × 10−7
−2.69734140 × 10−14

Actual values 0.892042912 2.65313 × 10−7
−2.69734 × 10−14

The results for Table 1 show that increasing the rotational constants by an order of magnitude caused
a significant improvement for both J and the Y0,i’s. For all values of J and all three error levels, the J values
were determined correctly, the calculated Y0,1’s were all within 0.06% of the correct value, and the Y0,2’s
were all within 18% of the correct value when 100 points were used. The Y0,3’s were still highly susceptible
to experimental errors, but were within 0.004% of the correct value for the no-error case.

4. Discussion and Conclusions

The results show that combination differences can be used to determine accurate values for J
and Y0,1 for a sequence of peaks and basic rotational units recorded using HRC2DS. The accuracy is
greatest when the number of points is high and when the experimental error is small relative to the
rotational constants. The resulting Y0,2 values can also be close to the correct values, if the size of the
error is small and the number of points is high. The Y0,3 values were not consistently accurate, but Y0,3
values often disagree in the published literature. In general, the accuracies of all quantum numbers
and molecular constants improved when the molecular constants were larger, when the number of
points were increased, and when the error was reduced.

Unlike a conventional 1D spectrum, an off-diagonal 2D spectrum provides the opportunity to
obtain molecular constants for two different regions of a spectrum, when the range of x-axis values is
different from the range of y-axis values. Since all four peaks in the basic unit have the same rotational
quantum number (see Figure 3), this method provides an additional mechanism for checking the
assignment of the peaks; the J value calculated using the dimensions of the box along the x axis can
be compared to the J value calculated using the dimensions of the same box along the y axis. If the
analysis was carried out accurately, both of these J values should agree.
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This paper explored the feasibility of determining rotational quantum numbers and molecular
constants, using peak positions that appear sequentially ordered in HRCMDS spectroscopy.
A mathematical proof was used to determine that the solutions should be unique due to the special
form of the rotational energy function. Tests using simulated data with varying amounts of error were
conducted to determine whether the technique would yield correct solutions. The tests showed that
values for J and Y0,1 could be accurately obtained, and that Y0,2 could be determined if the experimental
error was not too large. Y0,3 could only be determined accurately when no experimental error was
added to the simulated data.
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Appendix A

Table A1. Results from the initial test, where the number of points, the values of J, and the size of
the errors were varied while calculating the corresponding values for J and the Dunham coefficients.
The starting J values were 14, 35, 51, and 81, and the actual Dunham coefficients are shown at the
bottom of the table.

Error Level # of Points Jinitial Y0,1, cm−1 Y0,2, cm−1 Y0,3, cm−1

No Errors 100 pts 14 0.08109521 2.03968977 × 10−8
−3.89219045 × 10−15

75 pts 14 0.08109483 2.05182046 × 10−8
−1.36884143 × 10−14

50 pts 14 0.08109472 2.06032965 × 10−8
−2.68858980 × 10−14

25 pts 14 0.08109522 1.94837508 × 10−8 5.61803126 × 10−13

Small Errors 100 pts 14 0.08113291 1.78023302 × 10−8 8.16299750 × 10−14

75 pts 14 0.08113708 1.68344026 × 10−8 1.34713499 × 10−13

50 pts 14 0.08116139 4.11706216 × 10−9 1.85385080 × 10−12

25 pts 14 0.08119704 −2.90892827 × 10−8 1.00365828 × 10−11

Big Errors 100 pts 14 0.08156117 −1.72537606 × 10−8 1.36171159 × 10−12

75 pts 14 0.08164436 −4.13774307 × 10−8 3.11426439 × 10−12

50 pts 14 0.08171793 −7.06582277 × 10−8 6.27145934 × 10−12

25 pts 14 0.08182648 −4.21714393 × 10−8
−6.13488152 × 10−11

No Errors 100 pts 35 0.08109568 2.03193965 × 10−8
−2.48276438 × 10−16

75 pts 35 0.08109530 2.03929336 × 10−8
−4.11740049 × 10−15

50 pts 35 0.08109520 2.04123946 × 10−8
−4.70176481 × 10−15

25 pts 35 0.08109535 2.03666262 × 10−8 1.93443505 × 10−15

Small Errors 100 pts 35 0.08112604 1.89458088 × 10−8 2.97848434 × 10−14

75 pts 35 0.08112809 1.87039808 × 10−8 3.49712518 × 10−14

50 pts 35 0.08113544 1.66779331 × 10−8 1.94844871 × 10−13

25 pts 35 0.08118682 3.08073786 × 10−9 2.47833932 × 10−12

Big Errors 100 pts 35 0.08139134 5.62190192 × 10−9 3.67702512 × 10−13

75 pts 35 0.08139392 4.62630361 × 10−9 4.42007390 × 10−13

50 pts 35 0.08152763 2.79297878 × 10−8 2.5987389 × 10−12

25 pts 36 0.07880983 2.10198855 × 10−7
−5.00843837 × 10−12

No Errors 100 pts 51 0.08109486 2.03776852 × 10−8
−1.98835270 × 10−15

75 pts 51 0.08109633 2.01893621 × 10−8 4.70399190 × 10−15

50 pts 51 0.08109742 2.00608361 × 10−8 7.81735324 × 10−15

25 pts 51 0.08110110 1.88504932 × 10−8 1.25994754 × 10−15
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Table A1. Cont.

Error Level # of Points Jinitial Y0,1, cm−1 Y0,2, cm−1 Y0,3, cm−1

Small Errors 100 pts 51 0.08111866 1.95719709 × 10−8 1.31412859 × 10−14

75 pts 51 0.08111828 1.95767484 × 10−8 1.47601635 × 10−14

50 pts 51 0.08112695 1.81836449 × 10−8 7.87643200 × 10−14

25 pts 51 0.08119245 2.01562374 × 10−9 1.33776800 × 10−12

Big Errors 100 pts 51 0.08131183 1.33722504 × 10−8 1.23590905 × 10−13

75 pts 51 0.08127935 1.78444890 × 10−8
−4.74099940 × 10−14

50 pts 52 0.07936955 1.06890043 × 10−7
−2.26580346 × 10−12

25 pts 55 0.07207010 7.08961854 × 10−7
−3.09861619 × 10−11

No Errors 100 pts 81 0.08109480 2.04051865 × 10−8
−2.89415455 × 10−15

75 pts 81 0.08109494 2.03895778 × 10−8
−2.42984704 × 10−15

50 pts 81 0.08109395 2.04767400 × 10−8
−4.83635291 × 10−15

25 pts 81 0.08109532 2.03379732 × 10−8
−3.32980260 × 10−15

Small Errors 100 pts 81 0.08110921 2.02770410 × 10−8
−2.70682606 × 10−15

75 pts 81 0.08110778 2.03544850 × 10−8
−3.67373450 × 10−15

50 pts 81 0.08112129 1.90585362 × 10−8 3.53673322 × 10−14

25 pts 79 0.08448515 −1.14297175 × 10−7 3.19445048 × 10−12

Big Errors 100 pts 81 0.08131168 1.54998371 × 10−8 5.18361372 × 10−14

75 pts 82 0.08003646 4.27844604 × 10−8
−2.84353671 × 10−13

50 pts 83 0.07850241 9.20046487 × 10−8
−1.19337516 × 10−12

25 pts 130 0.02993795 8.06085853 × 10−7
−7.39315036 × 10−12

Actual values 0.08109481 2.04087 × 10−8
−2.99704 × 10−15
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