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Abstract: In this work, we aim to investigate the convex minimization problem of the sum of
two objective functions. This optimization problem includes, in particular, image reconstruction and
signal recovery. We then propose a new modified forward-backward splitting method without the
assumption of the Lipschitz continuity of the gradient of functions by using the line search procedures.
It is shown that the sequence generated by the proposed algorithm weakly converges to minimizers
of the sum of two convex functions. We also provide some applications of the proposed method
to compressed sensing in the frequency domain. The numerical reports show that our method has
a better convergence behavior than other methods in terms of the number of iterations and CPU time.
Moreover, the numerical results of the comparative analysis are also discussed to show the optimal
choice of parameters in the line search.

Keywords: convex minimization problem; forward-backward splitting method; Hilbert space;
line search

1. Introduction

Let H be a real Hilbert space, and let f , g : H → R ∪ {+∞} be proper, lower-semicontinuous,
and convex functions. The convex minimization problem is modeled as follows:

min
x∈H

( f (x) + g(x)). (1)

Throughout this paper, assume that Problem (1) is nonempty, and the solution set is denoted
by S∗. We know that Problem (1) can be described by the fixed point equation, that is,

x = proxαg(x− α∇ f (x)) (2)

where α > 0 and proxg is the proximal operator of g defined by proxg = (Id + ∂g)−1 where Id denotes
the identity operator in H and ∂g is the classical convex subdifferential of g. Using this fixed point
equation, one can define the following iteration process:

xk+1 = proxαk g︸ ︷︷ ︸
backward step

(xk − αk∇ f (xk))︸ ︷︷ ︸
forward step

, (3)

where αk is a suitable stepsize. This algorithm is known as the forward-backward algorithm, and it
includes, as special cases, the gradient method [1–3] and the proximal algorithm [4–7]. Recently,
the construction of algorithms has become a crucial technique for solving some nonlinear and
optimization problems (see also [8–15]).
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In 2005, Combettes and Wajs [16] proposed the following algorithm, which is based on iteration (3)
as follows:

Algorithm 1 ([16]). Given ε ∈ (0, min{1, 1
α}) and letting x0 ∈ RN , for k ≥ 1:

yk = xk − αk∇ f (xk),

xk+1 = xk + λk(proxαk gyk − xk), (4)

where αk ∈ [ε, 2
α − ε], λk ∈ [ε, 1] and α is the Lipschitz constant of the gradient of f .

It was proven that the sequence generated by (4) converges to minimizers of f + g. However,
we note that the convergence of Algorithm 1 depends on the Lipschitz continuity of the gradient of f ,
which is not an easy task to find in general.

The Douglas–Rachford algorithm is another method that can be used to solve the problem (1).
It is defined in the following manner:

Algorithm 2 ([16]). Fix ε ∈ (0, 1), γ > 0 and let x0 ∈ RN . For k ≥ 1, calculate

yk = proxγgxk,

xk+1 = xk + λk(proxγ f (2yk − xk)− yk), (5)

where λk ∈ [ε, 2− ε].

It was shown that the sequence (xk) defined by (5) converges to minimizers of f + g. In this
case, we see that the main drawback of Algorithm 2 is that it requires two proximity operators of
convex functions f and g per iteration. This leads to a slow convergence speed of algorithms based on
Algorithm 2. Please see Section 4 for its convergence.

Very recently, Cruz and Nghia [17] introduced the forward-backward algorithm by using the line
search technique in the framework of Hilbert spaces. Assume that the following conditions are satisfied:
(A1) f , g : H → R∪ {+∞} are two proper, l.s.c, convex functions where domg ⊆ dom f and domg is
nonempty, closed, and convex.
(A2) f is Fréchet differentiable on an open set that contains domg. The gradient ∇ f is uniformly
continuous on bounded subsets of domg. Moreover, it maps any bounded subset of domg to a bounded
set in H.

Linesearch 1. Let σ > 0, θ ∈ (0, 1) and δ ∈ (0, 1
2 ).

Input. Given α = σ and J(x, α) := proxαg(x− α∇ f (x)) with x ∈ domg
While α‖∇ f (J(x, α))−∇ f (x)‖ > δ‖J(x, α)− x‖

do α = θα.
End While

Output.α.

It was proven that Line Search 1 is well defined, i.e., this line search stops after finitely many steps.
By this fact, Cruz and Nghia [17] also considered the following algorithm:

Algorithm 3. Fix σ > 0, θ ∈ (0, 1) and δ ∈ (0, 1
2 ), and let x0 ∈ domg. For k ≥ 1, calculate:

xk+1 = proxαk g(xk − αk∇ f (xk)),

with αk := Line Search 1 (xk, σ, θ, δ).
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They showed that the sequence (xk) generated by Algorithm 3 involving the line search technique
that eliminates the Lipschitz assumption on the gradient of f converges weakly to minimizers of f + g.
It is observed that, to obtain its convergence, one has to find the stepsize α in each iteration. This can
be costly and time consuming in computation.

Recently, there have been many works on modifying the forward-backward method for solving
convex optimization problems (see, for example, [18–23]).

In variational theory, Tseng [24] introduced the following method for solving the variational
inequality problem (VIP):

yk = PC(xk − λFxk),

xk+1 = yk + λ(Fyk − Fxk), (6)

where PC is a metric projection from a Hilbert space onto the set C, F is a monotone and L-Lipschitz
continuous mapping, and λ ∈ (0, 1/L). Then, the sequence generated by (6) weakly converges to
a solution of VIP. This method is often called Tseng’s extragradient method and has received great
attention by researchers due to its convergence speed (see, for example, [25–28]). Following this
research direction, the main challenge is to design novel algorithms that can speed up the convergence
rate compared to Algorithms 1–3.

In this paper, inspired by Cruz and Nghia [17], we suggest a new forward-backward algorithm to
solve the convex minimization problem. We then prove weak convergence theorems of the proposed
algorithm. Finally, some numerical experiments in signal recovery are given to show its efficiency.
Numerical experiments show that our new algorithms have a better convergence behavior than other
methods in comparison. The main advantage of this work is that our schemes do not require the
computation of the Lipschitz constant as assumed in Algorithm 1.

The content is organized as follows: In Section 2, we recall the useful concepts that will be used
in the sequel. In Section 3, we establish the main theorem of our algorithms. In Section 4, we give
numerical experiments to validate the convergence theorems, and finally, in Section 5, we give the
conclusions of this paper.

2. Preliminaries

In this section, we give some definitions and lemmas that play an essential role in our analysis.
The strong and weak convergence of (xk)k∈N to x will be denoted by xk → x and xk ⇀ x, respectively.
The subdifferential of h at z is defined by:

∂h(z) = {u ∈ H : 〈u, x− z〉 ≤ h(x)− h(z), z ∈ H}.

It is known that ∂h is maximal monotone [29].
The proximal operator of g is defined by proxg : H → domg with proxg(z) = (Id + ∂g)−1(z), z ∈

H. We know that the proxg is single valued with full domain. Moreover, we have:

z− proxαg(z)

α
∈ ∂g(proxαg(z)) for all z ∈ H, α > 0. (7)

The following lemma is crucial in convergence analysis.

Lemma 1 ([29]). Let H be a Hilbert space. Let S be a nonempty, closed, and convex set of H, and let (xk) be a
sequence in H that satisfies:

(i) lim
k→∞
‖xk − x‖ exists for each x ∈ S;

(ii) ωw(xk) ⊂ S.
Then, (xk) weakly converges to an element of S.
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3. Main Results

In this section, we suggest a new forward-backward algorithm and prove the weak convergence.
Next, we assume that Conditions (A1)–(A2) hold.

Algorithm 4. Step 0. Given σ > 0, θ ∈ (0, 1), γ ∈ (0, 2), and δ ∈ (0, 1
2 ). Let x0 ∈ domg.

Step 1. Calculate:

yk = proxαk g(xk − αk∇ f (xk))

where αk = σθmk and mk is the smallest nonnegative integer such that:

αk‖∇ f (xk)−∇ f (yk)‖ ≤ δ‖xk − yk‖. (8)

If xk = yk, then stop, and yk is a solution of S∗. Else, go to Step 2.
Step 2. Calculate:

xk+1 = xk − γηkdk

where:

dk = xk − yk − αk(∇ f (xk)−∇ f (yk)) and ηk = (1− δ)
‖xk − yk‖2

‖dk‖2 .

Set k := k + 1, and go to Step 1.

We next summarize the methods for solving the convex minimization problem (CMP) in Figure 1.

Figure 1. The flowchart of the method for the convex minimization problem (CMP).

Theorem 1. Let (xk)k∈N and (αk)k∈N be generated by Algorithm 4. If there is α > 0 such that αk ≥ α > 0 for
all k ∈ N, then (xk)k∈N weakly converges to an element of S∗.

Proof. Let x∗ be a solution in S∗. Then, we obtain:

‖xk+1 − x∗‖2 = ‖xk − γηkdk − x∗‖2

= ‖xk − x∗‖2 − 2γηk〈xk − x∗, dk〉+ γ2η2
k‖dk‖2. (9)
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Using the definition of dk and the line search (8), we have:

〈xk − x∗, dk〉
= 〈xk − yk, dk〉+ 〈yk − x∗, dk〉
= 〈xk − yk, xk − yk − αk(∇ f (xk)−∇ f (yk))〉+ 〈yk − x∗, xk − yk − αk(∇ f (xk)−∇ f (yk))〉 (10)

= ‖xk − yk‖2 − 〈xk − yk, αk(∇ f (xk)−∇ f (yk))〉+ 〈yk − x∗, xk − yk − αk(∇ f (xk)−∇ f (yk))〉
≥ ‖xk − yk‖2 − αk‖xk − yk‖‖∇ f (xk)−∇ f (yk)‖+ 〈yk − x∗, xk − yk − αk(∇ f (xk)−∇ f (yk))〉
≥ ‖xk − yk‖2 − δ‖xk − yk‖2 + 〈yk − x∗, xk − yk − αk(∇ f (xk)−∇ f (yk))〉.

Since yk = proxαk g(xk − αk∇ f (xk)), it follows that (I − αk∇ f )xk ∈ (I − αk∂g)yk. Moreover, since

∂g is maximal monotone, there is vk ∈ ∂g(yk) such that:

(I − αk∇ f )xk = yk − αkvk.

This shows that:

vk =
1
αk

(xk − yk − αk∇ f (xk)). (11)

On the other hand, 0 ∈ ∇ f (x∗)+ ∂g(x∗) ⊆ ∂( f + g)(x∗) and∇ f (yk)+ vk ∈ ∂( f + g)yk. Therefore,
we see that:

〈∇ f (yk) + vk, yk − x∗〉 ≥ 0. (12)

Substituting (11) into (12), we get that:

1
αk
〈xk − yk − αk∇ f (xk) + αk∇ f (yk), yk − x∗〉 ≥ 0. (13)

This gives:

〈xk − yk − αk∇ f (xk) + αk∇ f (yk), yk − x∗〉 ≥ 0. (14)

Combining (10) and (14), we obtain:

〈xk − x∗, dk〉 ≥ (1− δ)‖xk − yk‖2. (15)

Since ηk = (1− δ) ‖x
k−yk‖2

‖dk‖2 , we have ηk‖dk‖2 = (1− δ)‖xk − yk‖2. This shows that:

−2γηk(1− δ)‖xk − yk‖2 = −2γη2
k‖dk‖2. (16)

By (15) and (16), we see that:

−2γηk〈xk − x∗, dk〉 ≤ −2γηk(1− δ)‖xk − yk‖2

= −2γη2
k‖dk‖2.

Therefore, from (9) and the above, we have:

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2γη2
k‖dk‖2 + γ2η2

k‖dk‖2

= ‖xk − x∗‖2 − 2
γ
‖γηkdk‖2 + ‖γηkdk‖2

= ‖xk − x∗‖2 − 2− γ

γ
‖γηkdk‖2. (17)
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Since xk+1 = xk − γηkdk, it follows that γηkdk = xk − xk+1. This implies:

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2− γ

γ
‖xk − xk+1‖2. (18)

Thus, lim
k→∞
‖xk − x∗‖ exists, and hence, (xk) is bounded. This yields lim

k→∞
‖xk − xk+1‖ = 0. We

note, by (18), that:
2− γ

γ
‖xk − xk+1‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2.

By the monotonicity of ∇ f , we see that:

‖dk‖2 = ‖xk − yk − αk(∇ f (xk)−∇ f (yk))‖2

= ‖xk − yk‖2 + α2
k‖∇ f (xk)−∇ f (yk)‖2 − 2αk〈xk − yk,∇ f (xk)−∇ f (yk)〉

≤ (1 + δ2)‖xk − yk‖2,

equivalently:
1
‖dk‖2 ≥

1
(1 + δ2)‖xk − yk‖2 .

Therefore, we have:

ηk = (1− δ)
‖xk − yk‖2

‖dk‖2 ≥ 1− δ

1 + δ2 . (19)

On the other hand, we have:

ηk‖dk‖2 = (1− δ)‖xk − yk‖2. (20)

Therefore, it follows that:

‖xk − yk‖2 =
1

1− δ
(ηk‖dk‖2)

=
1

(1− δ)(γ2ηk)
(‖γηkdk‖2)

=
1

(1− δ)(γ2ηk)
‖xk+1 − xk‖2. (21)

Combining (20) and (21), we obtain:

‖xk − yk‖2 ≤ 1 + δ2

[(1− δ)γ]2
‖xk+1 − xk‖2.

Since ‖xk+1 − xk‖ → 0 as k → ∞, ‖xk − yk‖ → 0 as k → ∞. By the boundedness of (xk)k∈N,
we know that the set of its weak accumulation points is nonempty. Let x∞ be a weak accumulation
point of (xk)k∈N. Therefore, there is a subsequence (xnk )k∈N of (xk)k∈N. Next, we show that x∞ ∈ S∗.
Let (v, u) ∈ Graph(∇( f )+ ∂(g)), that is u−∇ f (v) ∈ ∂g(v). Since ykn = (I + αkn ∂g)−1(I− αkn∇ f )xkn ,
we obtain:

(I − αkn∇ f )xkn ∈ (I + αkn ∂g)ykn ,

which yields:

1
αkn

(xkn − ykn − αkn∇ f (xkn)) ∈ ∂g(ykn).
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Since ∂g is maximal, we have:

〈v− ykn , u−∇ f (v)− 1
αkn

(xkn − ykn − αkn∇ f (xkn))〉 ≥ 0.

This shows that

〈v− ykn , u〉 ≥ 〈v− ykn ,∇ f (v) +
1

αkn

(xkn − ykn − αkn∇ f (xkn))〉

= 〈v− ykn ,∇ f (v)−∇ f (xkn)〉+ 〈v− ykn ,
1

αkn

(xkn − ykn)〉

= 〈v− ykn ,∇ f (v)−∇ f (ykn)〉+ 〈v− ykn ,∇ f (ykn)−∇ f (xkn)〉

+〈v− ykn ,
1

αkn

(xkn − ykn)〉

≥ 〈v− ykn ,∇ f (ykn)−∇ f (xkn)〉+ 〈v− ykn ,
1

αkn

(xkn − ykn)〉.

Since lim
k→∞
‖xk − yk‖ = 0 and by (A2), we have lim

k→∞
‖∇ f (xk)−∇ f (yk)‖ = 0. Hence, we obtain:

〈v− x∞, u〉 = lim
n→∞
〈v− ykn , u〉 ≥ 0. (22)

Hence, we obtain 0 ∈ (∇ f + ∂g)x∞, and consequently, x∞ ∈ S∗. This shows that (xk) converges
weakly to an element of S∗ by applying Lemma 1. We thus complete the proof.

4. Numerical Experiments

Next, we apply our result to the signal recovery in compressive sensing. We show the
performance of our proposed Algorithm 4, Algorithm 1 of Combettes and Wajs [16], Algorithm 2 of
Douglas–Rachford [22], and Algorithm 3 of Cruz and Nghia [17]. This problem can be modeled as:

y = Ax + ε, (23)

where y ∈ RM is the observed data, ε is the noise, A : RN → RM(M < N) is a bounded and linear
operator, and x ∈ RN is a recovered vector containing m nonzero components. It is known that (23)
can be modeled as the LASSO problem:

min
x∈RN

(
1
2
‖Ax− y‖2

2 + λ‖x‖1), (24)

where λ > 0. Therefore, we can apply the proposed method to solve (1) when f (x) = 1
2‖y− Ax‖2

2
and g(x) = λ‖x‖1.

In experiment, y is generated by the Gaussian noise with SNR = 40, A is generated by the normal
distribution with mean zero and variance one, and x ∈ RN is generated by a uniform distribution in
[−2, 2]. We use the stopping criterion by:

MSE =
1
N
‖xk − x∗‖2 < 10−3,

where xk is an estimated signal of x∗.
In the following, the initial point x0 is chosen randomly, and αk in Algorithm 1 is 1

‖A‖2 and
λk = 0.5. In Algorithm 2, λk = 0.02 and γ = 0.02. Let σ = 100, θ = 0.1, and δ = 0.1 in Algorithm 3
and Algorithm 4, and let γ = 1.9 in Algorithm 4. We denote by CPU the time of CPU and by iter the
number of iterations. In Table 1, we test the experiment five times and then calculate the averages of
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CPU and iter. All numerical experiments presented were obtained from MATLAB R2010a running on
the same laptop computer. The numerical results are shown as follows:

Table 1. Computational results for compressed sensing.

m-Sparse Signal Method N = 512, M = 256

CPU Iter

m = 10 Algorithm 1 2.4095 1150
Algorithm 2 22.1068 608
Algorithm 3 0.9103 399
Algorithm 4 0.7775 326

m = 20 Algorithm 1 7.2877 2073
Algorithm 2 41.1487 1106
Algorithm 3 1.5127 589
Algorithm 4 1.3803 516

m = 25 Algorithm 1 10.2686 2463
Algorithm 2 50.6234 1310
Algorithm 3 1.9321 706
Algorithm 4 1.7597 611

m = 30 Algorithm 1 13.4585 2825
Algorithm 2 57.5277 1477
Algorithm 3 2.1781 751
Algorithm 4 2.0341 669

From Table 1, we see that the experiment result of Algorithm 4 was better than those of
Algorithms 1 and 2 in terms of CPU time and number of iterations in each cases.

Next, we provide Figure 2 to show signal recovery in compressed sensing for one example and
Figure 3 to show the convergence of each algorithm for all cases via the graph of the MSE value and
number of iterations when N = 512, M = 256, and m = 20.
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0

0.5

1

Original signal (N = 512, M = 256, m = 25)

50 100 150 200 250

−20
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Measured values with SNR = 40
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Recovered signal by Algorithm 1 (3155 iterations, CPU = 9.3871)
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Recovered signal by Algorithm 3 (830 iterations, CPU = 2.5200)
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−1

−0.5

0

0.5

1

Recovered signal by Algorithm 4 (740 iteratons, CPU = 2.3190)

50 100 150 200 250 300 350 400 450 500
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Recovered signal by Algorithm 2 (1678 iteration, CPU = 65.6590)

Figure 2. Original signal, observed data, and recovered signal by Algorithm 1, Algorithm 2,
Algorithm 3, and Algorithm 4 when N = 512 and M = 256.
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Figure 3. The MSE value and number of iterations for all cases when N = 512 and M = 256.

From Figures 2 and 3, it is revealed that the convergence speed of Algorithm 4 was better than
the other algorithm. To be more precise, Algorithm 2 had the highest CPU time since it required
two proximity operators in computation per iteration. Moreover, Algorithm 1 that had the stepsize that
was bounded above by the Lipschitz constant had the highest number of iterations. In our experiments,
it was observed that the initial guess did not have any significant effect on the convergence behavior.

Next, we analyze the convergence and the effects of the stepsizes, which depended on parameters
δ, θ, γ, and σ in Algorithm 4.

We next study the effect of the parameter δ in the proposed algorithm for each value of δ.
From Table 2, we observe that the CPU time and the number of iterations of Algorithm 4 became

larger when the parameter δ approached 0.5 when N = 512, M = 265 and N = 1024, M = 512.
Figure 4 shows the numerical results for each δ.

Table 2. The convergence of Algorithm 4 with each δ.

Given: σ = 100, θ = 0.1, γ = 1.9

δ
N = 512, M = 256 N = 1024, M = 512

m = 20 m = 20

CPU Iter CPU Iter

0.20 3.2934 495 12.6411 487
0.28 3.4913 550 14.9438 533
0.36 3.4361 635 16.5947 605
0.44 4.4041 743 20.6721 703

From Figure 4, we see that our algorithm worked effectively when the value of δ was taken
close to zero.

Next, we investigate the effect of the parameter θ in the proposed algorithm. We intend to vary
this parameter and study its convergence behavior. The numerical results are shown in Table 3.

From Table 3, we observe that the CPU time of Algorithm 4 became larger and the number of
iterations had a small reduction when the parameter θ approached one when N = 512, M = 265 and
N = 1024, M = 512. Figure 5 shows the numerical results for each θ.
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Figure 4. Graph of number of iterations versus MSE when N = 512, M = 265 and N = 1024, M = 512,
respectively.

Table 3. The convergence of Algorithm 4 with each θ.

Given: σ = 100, δ = 0.1, γ = 1.9

θ
N = 512, M = 256 N = 1024, M = 512

m = 20 m = 20

CPU Iter CPU Iter

0.3 4.0185 382 13.4732 354
0.5 4.2358 312 22.2328 342
0.7 7.5081 298 27.8198 320
0.9 21.7847 290 85.3605 311
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Figure 5. Graph of the number of iterations versus MSE where N = 512, M = 265 and N = 1024, M =

512, respectively.

From Figure 5, it is shown that Algorithm 4 worked effectively when the value of θ was chosen
close to one.

Next, we study the effect of the parameter γ in the proposed algorithm. The numerical results are
shown in Table 4.



Mathematics 2020, 8, 42 11 of 13

Table 4. The convergence of Algorithm 4 with each γ.

Given: σ = 100, θ = 0.1, δ = 0.1

γ
N = 512, M = 256 N = 1024, M = 512

m = 20 m = 20

CPU Iter CPU Iter

0.8 13.9690 1450 38.2790 1624
1.1 7.8978 988 23.3411 1124
1.4 5.1804 724 17.6275 866
1.7 3.8323 554 13.6241 700

From Table 4, we see that the CPU time and the number of iterations of Algorithm 4 became
smaller when the parameter γ approached two when N = 512, M = 265 and N = 1024, M = 512.
We show numerical results for each cases of γ in Figure 6.
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Figure 6. Graph of the number of iterations versus MSE where N = 512, M = 265 and N = 1024, M =

512, respectively.

From Figure 6, it is shown that Algorithm 4 worked effectively when the value of γ was chosen
close to two.

Next, we study the effect of the parameter σ in the proposed algorithm. The numerical results are
given in Table 5.

Table 5. The convergence of Algorithm 4 with each σ.

Given: δ = 0.1, θ = 0.1, γ = 1.9

σ
N = 512, M = 256 N = 1024, M = 512

m = 20 m = 20

CPU Iter CPU Iter

5 4.7055 680 11.7794 496
30 6.2280 843 11.3827 453
55 4.4271 634 14.2537 532
80 3.9635 606 16.5507 596

From Table 5, we see that the parameter σ had no effect in terms of the number of iterations and
CPU time when N = 512, M = 265 and N = 1024, M = 512.
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5. Conclusions

In this work, we studied the modified forward-backward splitting method using line searches to
solve convex minimization problems. We proved the weak convergence theorem under some weakened
assumptions on the stepsize. It was found that the proposed algorithm had a better convergence
behavior than other methods through experiments. Our algorithms did not require the Lipschitz
condition on the gradient of functions. We also presented numerical experiments in signal recovery
and provided a comparison to other algorithms. Moreover, the effects of all parameters were shown
in Section 4. This main advantage was very useful and convenient in practice for solving some
optimization problems.
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